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Benoit B. Mandelbrot (1924–2010)

• “If we talk about impact inside mathematics, and
applications to the sciences, he is one of the most
important figures of the last 50 years.” -Hans-Otto Peitgen.

• He brought background into foreground, made exceptions
into the rule. His work reorganized how people see things.

• Example. Note in the following photograph a possible
fractal structure in the hair (après A. Einstein).
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Benoit Mandelbrot
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Some Important Themes:

• Structures having self-similar and self-a�ne substructures.

• Structures produced by multiplicative product processes on
trees; canonical cascade measures, a model for turbulence
(“multifractal products”), generalizing a model of
Yaglom (1966).

• Measures of fractal behavior on di↵erent scales: the
multi-fractal formalism
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A Typical Paper

B. B. Mandelbot, Negative Fractal Dimensions and

Multifractals, Physica A 163 (1990), 306–315.

• Abstract: “A new notion of fractal dimension is defined.
When it is positive, it e↵ectively falls back on known
definitions. But its motivating virtue is that it can take
negative values, which measure usefully the degree of
emptiness of empty sets.”

• Citation list: 21 references, of which 10 are to the author’s
previous papers and talks. Self-citation dimension:
10/21 = 0.47619 (an empirical estimate).
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Functions Related To Number Theory

We discuss two functions related to number theory with
fractal-like behavior.

• Farey Fractions. The geologist Farey (1816) noted them
in: “On a curious Property of vulgar Fractions.” His
observation then proved by Cauchy (1816). But the curious
property already noted earlier by Haros (1802).

• Takagi function (Takagi (1903)). This particular continuous
function on [0,1] is everywhere non-di↵erentiable.
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Farey Fractions

The Farey sequence FN consists of all rational fractions r = p
q

in [0,1], in lowest terms, having max(p, q)  N . Write them in
increasing order as {rn : 0  n  |FN |� 1}.

Thus:

F1 = {
0

1
,
1

1
}, |F1| = 2

F2 = {
0

1
,
1

2
,
1

1
}, |F2| = 3

F3 = {
0

1
,
1

3
,
1

2
,
2

3
,
1

1
}, |F3| = 5
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Farey Fractions-2

• The Farey sequence FN has cardinality

|FN | =
6

⇡2 N2 +O

✓
N logN

◆
.

• (Farey’s curious Property) Neighboring elements a
b < a0

b0 of
FN satisfy

det [
a a0

b b0
] = ab0 � ba0 = �1.

• The Riemann hypothesis is encoded in the following
question ...
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How well spaced are the Farey fractions?

• What we know:

Theorem. The ensemble spacing of FN approaches the

uniform distribution on [0,1] as N ! 1.

The approach holds in many senses, e.g. the
Kolmogorov-Smirnov statistic.

• However the individual gaps between neighboring member
of the Farey sequence FN are of quite di↵erent sizes,
varying between 1

N and 1
N2.

• The rate of approach to the uniform distribution is what
encodes the Riemann hypothesis, by...
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Franel’s Theorem

• Franel’s Theorem (1924) The Riemann hypothesis is

equivalent to: For each ✏ > 0 and all N one has

|FN |X

n=1
(rn �

n

|FN)|
)2  C✏N

�1+✏.

• This says, in some sense, the individual discrepancies from
uniform distribution are of average size 1

N3/2�✏.

• Generalizations to other discrepancy functions given by
Mikolas (1948, 1949), and by Kanemitsu, Yoshimoto and
Balasubramanian (1995, 2000).
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A New Question: Products of Farey
Fractions

(Ongoing work with Harm Derksen) The Farey product F (N) is
the product of all Farey fractions in FN , excluding 0.

• Question 1. How does F (N) grow as N ! 1?

Answer: logF (N) = �⇡2

12N
2 +O(N logN)

• Question 2. For a fixed prime p, how does divisiblity by p,
that is, the function ordp(F (N)), behave as N increases?

Partial Answer: It exhibits approximately self-similar fractal

behavior (empirically) on logarithmic scale. There is a race

between primes p dividing numerator versus denominator.
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Products of Farey Fractions-2

• Theorem. (1) There is upper bound

|ordp(F (N))| = O(N(logN)2).

(2) Infinitely often one has

|ordp(F (N))| >
1

2
N logN.

• Conjecture 1. |ordp(F (N))| = O(N logN),

• Conjecture 2. ordp(F (N)) changes sign infinitely often.
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A Toy Model-Total Farey Sequence

The total Farey sequence GN consists of all rational fractions
r = p

q in [0,1], not necessarily given in lowest terms,

having max(p, q)  N .

Thus

G4 = {
0

1
,
1

4
,
1

3
,
1

2
(counted twice),

2

3
,
3

4
,
1

1
},

Thus

|G4| = 8 > |F4| = 7.
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Products of Total Farey Fractions-1

The total Farey product G(N) is the product of all total Farey
fractions, excluding 0. Here G(N) = 1!2!3!···N !

112233···NN .

• Problem 1. How does G(N) grow as N ! 1?

Answer: logG(N) = �1
2N

2 +O(N logN)

• Question 2. For a fixed prime p, how does ordp(G(N))
behave as N increases?

Answer: There is a race between primes p dividing

numerator versus denominator. But now it is analyzable

and has provably fractal behavior.
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Products of Total Farey Fractions-2

• Key Fact. 1/G(N) is an integer, given by a product of
binomial coe�cients

1

G(N)
=

NY

j=0

⇣N
j

⌘
.

• Theorem.
(1) The size of ordp(G(N)) is

|ordp(G(N))| = O(N logN).

(2) ordp(G(N))  0. Thus it never changes sign. But:

ordp(G(N) = 0 infinitely often.
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Total Farey Products-Fractal Behavior

• Binomial coe�cients viewed (mod p) have self-similar
fractal behavior. For example Pascal’s triangle viewed
(mod 2) produces the Sierpinski gasket.

• Lucas’s theorem(1878) specifies the (mod p) behavior of⇣
a
b

⌘
in terms of the base p expansions of a and b.

• More complicated scaling behavior occurs (mod pn).

• Obtain a scaling limit in terms of the base p-expansion of
N . If the top d digits of N are fixed, and one averages over
the other digits, then get a kind of limit...
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Fractal Behavior: Binomial Coe�cients modulo 2
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Farey Products-Fractal Behavior?

• From F (N) one gets G(N), via:

G(N) =
NY

j=1
F (b

N

j
c).

• Therefore, by Möbius inversion,

F (N) =
NY

j=1
G(b

N

j
c)µ(j)

• Results about G(N) permit some analysis of F (N).
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Another Function: The Takagi Function

The Takagi function was constructed by Teiji Takagi (1903) as
an example of continuous nowhere di↵erentiable function on
unit interval.

Let ⌧ x � be the distance of x to the nearest integer (a tent
function). The function is:

⌧(x) :=
1X

n=0

⌧ 2nx �
2n

Takagi may have been motivated by Weierstrass
nondi↵erentiable function (1870’s).
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Teiji Takagi (1875–1960)

• Teiji Takagi grew up in a rural area, was sent away to
school. He read math texts in English, since no texts were
available in Japanese. He was sent to Germany in
1897-1901, studied first in Berlin, then moved to Góttingen
to study with Hilbert.

• In isolation, he established the main theorems of class field
theory (around 1920). This made him famous as a number
theorist.

• He founded the modern Japanese mathematics school,
writing many textbooks for schools at all levels.
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Graph of Takagi Function
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Main Property: Everywhere
Non-di↵erentiability

• Theorem (Takagi (1903)) The function ⌧(x) is continuous
on [0,1] and has no finite derivative at each point x 2 [0,1]
on either side.

• Base 10 variant function discovered by van der Waerden
(1930), Takagi function rediscovered by de Rham (1956).
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Recursive Construction

• The n-th approximant

⌧n(x) :=
nX

j=0

1

2j
⌧ 2jx �

• This is a piecewise linear function, with breaks at the
dyadic integers k

2n, 1  k  2n � 1.

• All segments have integer slopes, in range between �n and
+n. The maximal slope +n is attained in [0, 1

2n] and the
minimal slope �n in [1� 1

2n,1].
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Takagi Approximants-⌧2
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Takagi Approximants-⌧3
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Takagi Approximants-⌧4
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Properties of Approximants

• The n-th approximant

⌧n(x) :=
nX

j=0

1

2j
⌧ 2jx �

agrees with ⌧(x) at all dyadic rationals k
2n.

These values then freeze, i.e. ⌧n( k
2n) = ⌧n+j(

k
2n).

• The approximants are nondecreasing at each step. They
approximate Takagi function ⌧(x) from below.
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Functional Equations

• Fact. The Takagi function, satisfies, for 0  x  1, two
functional equations:

⌧(
x

2
) =

1

2
⌧(x) +

1

2
x

⌧(
x+1

2
) =

1

2
⌧(x) +

1

2
(1� x).

• These are a kind of dilation equation, relating function on
two di↵erent scales.
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Takagi Function in Number Theory

• Let e2(n) sum the binary digits in n. Then

1X

n=1

e2(n)

ns
= 2�s(1� 2�s)�1⇣(s),

where ⇣(s) is the Riemann zeta function.

• Let

S2(N) :=
NX

n=1
e2(n)

sum all the binary digits in the binary expansions of the first
N integers.
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Takagi Function in Number Theory-2

Trollope (1968) showed that

S2(N) =
1

2
N log2N +NE2(N),

where E2(N) is an oscillatory function, given by an exact
formula involving the Takagi function.

Delange (1975) showed there is a continuous function F (x) of
period 1 such that for all positive integers N ,

E2(N) = F (log2N),

with

F (x) =
1

2
(1� x)� 2{x}⌧(2{x}�1),

where {x} = x� bxc and ⌧(x) is the Takagi function.
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Level Sets of the Takagi Function

• Definition. The level set L(y) = {x : ⌧(x) = y}.

(Here 0  y  2
3. Also: ⌧(x) is rational if x is rational.)

• Problem. How large are the level sets of the Takagi
function?

• Various results on this obtained in two papers with
Z. Maddock, arXiv:1009.0855, arXiv:1011:3183.
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Size of Level Sets: Cardinality

There exist levels y such that L(y) is finite, countable, or
uncountable:

• L(15) is finite, containing two elements.
Knuth (2005) showed that L(15) = { 3459

87040,
83581
87040}.

• L(12) is countably infinite.

• L(23) is uncountably infinite.
Baba (1984) showed it has Hausdor↵ dimension 1/2.
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Level Sets-Ordinate view

• We can compute the expected size of a level set L(y) for a
random (ordinate) level y...

• Theorem.
(1) (Buczolich (2008)) The expected size of a level set
L(y) for y drawn at random is finite.

(2) (L-Maddock (2010)) The expected number of elements
in a level set L(y) for y drawn at random is infinite.

• Extensive further analysis of finite level sets has been given
by Pieter Allaart in arXiv:1102.1616, arXiv:1107.0712

34



Level Sets-Abscissa view

• We can compute the expected size of a level set L(⌧(x)) for
a random (abscissa) value x...

• Theorem. If a value x 2 [0,1] is drawn at random, then with
probability one the level set L(⌧(x)) is uncountably infinite.

• Conjecture. A random L(⌧(x)) drawn this way almost
surely has Hausdor↵ dimension 0.
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Multifractal Spectrum for Level Sets of the
Takagi Function?

• Theorem. The set Big of levels y such that the level set
L(y) has positive Hausdor↵ dimension, is itself a set of full
Hausdor↵ dimension 1.

• Conjecture. Let S(↵) be the set of levels y such that the
Hausdor↵ dimension of the level set L(y) exceeds ↵, and let
f(↵) be the Hausdor↵ dimension of S(↵). Then the function
f(↵) exhibits the properties of a multi-fractal spectrum.
Namely f(↵) is a convex function of ↵ on [0,1/2] with
f(0) = 1, and f(12) = 0.
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Takagi Function Surveys

• The Takagi function has one hundred years of history and
results. See the survey papers:

• P. Allaart and K. Kawamura, The Takagi Function: A

Survey, arXiv:1110.1691

• J. Lagarias, The Takagi Function and its Properties,
arXiv:1112:4205.

• Work of J. L. partially supported by grants DMS-0801029
and DMS-1101373.
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The End

Thank you for your attention!
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