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Part I. Introduction and History

• Definition The distance to nearest integer function
(sawtooth function)

⌧ x�= dist(x, Z)

• The map T (x) = 2⌧ x� is sometimes called the
symmetric tent map, when restricted to [0,1].
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The Takagi Function

• The Takagi Function ⌧(x) : [0,1]! [0,1] is

⌧(x) =
1X

j=0

1

2j
⌧ 2jx�

• This function was introduced by Teiji Takagi (1875–1960)
in 1903. Takagi is famous for his work in number theory.
He proved the fundamental theorem of Class Field Theory
(1920, 1922).

• He was sent to Germany 1897-1901. He visited Berlin and
Góttingen, saw Hilbert.
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Graph of Takagi Function
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Main Property: Everywhere
Non-di↵erentiability

• Theorem (Takagi (1903) The function ⌧(x) is continuous
on [0,1] and has no derivative at each point x 2 [0,1] on
either side.

• van der Waerden (1930) discovered the base 10 variant,
proved non-di↵erentiability.

• de Rham (1956) also rediscovered the Takagi function.
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History

• The Takagi function ⌧(x) has been extensively studied in all
sorts of ways, during its 100 year history, often in more
general contexts.

• It has some surprising connections with number theory and
(less surprising) with probability theory.

• It has showed up as a “toy model” in study of chaotic
dynamics, as a fractal, and it has connections with
wavelets. For it, many things are explicitly computable.
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Generalizations

• For g(x) periodic of period one, and a, b > 1, set

Fa,b,g(x) :=
1X

j=0

1

aj
g(bjx)

• This class includes: Weierstrass nondi↵erentiable function.
Takagi’s work may have been motivated by this function.

• Properties of functions depend sensitively on a, b and the
function g(x). Sometimes get smooth function on [0, 1]
(Hata-Yamaguti (1984))

F (x) :=
1X

j=0

1

4j
⌧ 2jx�= 2x(1� x).
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Recursive Construction

• The n-th approximant function

⌧n(x) :=
nX

j=0

1

2j
⌧ 2jx�

• This is a piecewise linear function, with breaks at the
dyadic integers k

2n, 1  k  2n � 1.

• All segments have integer slopes, ranging between �n and
+n. The maximal slope +n is attained on [0, 1

2n] and the
minimal slope �n on [1� 1

2n,1].
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Takagi Approximants-⌧2
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Takagi Approximants-⌧3
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Takagi Approximants-⌧4
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Properties of Approximants

• The n-th approximant

⌧n(x) :=
nX

j=0

1

2j
⌧ 2jx�

agrees with ⌧(x) at all dyadic rationals k
2n.

These values then freeze, i.e. ⌧n( k
2n) = ⌧n+j(

k
2n).

• The approximants are nondecreasing at each step. Thus
they approximate Takagi function ⌧(x) from below.
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Symmetry

• Local symmetry

⌧n(x) = ⌧n(1� x).

• Hence:

⌧(x) = ⌧(1� x).
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Functional Equations

• Fact. The Takagi function, satisfies, for 0  x  1, two
functional equations:

⌧(
x

2
) =

1

2
⌧(x) +

1

2
x

⌧(
x + 1

2
) =

1

2
⌧(x) +

1

2
(1� x).

• These are a kind of dilation equation: They relate
function values on two di↵erent scales.
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Takagi Function Formula

• Takagi’s Formula (1903): Let x 2 [0,1] have the binary
expansion

x = .b1b2b3... =
1X

j=1

bj

2j
.

Then

⌧(x) =
1X

n=1

ln(x)

2n
.

with

ln(x) = b1 + b2 + · · · + bn�1 if bit bn = 0.

= (n� 1)� (b1 + b2 + · · · + bn�1) if bit bn = 1.
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Takagi Function Formula-2

Example. 1
3 = .010101... (binary expansion)

We have

⌧ 2 ·
1

3
�=⌧

2

3
�=

1

3
, ⌧ 4 ·

1

3
�=

1

3
, ...

so by definition of the Takagi function

⌧(
1

3
) =

1
3
1

+
1
3
2

+
1
3
4

+
1
3
8

+ · · · =
2

3
.

Alternatively, the Takagi formula gives

⌧(
1

3
) =

0

2
+

1

4
+

1

8
+

2

16
+

2

32
+

3

64
... =

2

3
.
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Takagi Function Formula-3

Example. 1
5 = .00110011... (binary expansion)

We have

⌧ 2 ·
1

5
�=

2

5
, ⌧ 4 ·

1

5
�=

1

5
, ⌧ 8 ·

1

5
�=

2

5
, ...

so by definition of the Takagi function

⌧(
1

5
) =

1
5
1

+
2
5
2

+
1
5
4

+
2
5
8

+ · · · =
8

15
.

Alternatively, the Takagi formula gives

⌧(
1

5
) =

0

2
+

0

4
+

0

8
+

2

16
+

2

32
+

2

64
+

2

128
+

4

256
+ ... =

8

15
.
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Graph of Takagi Function: Review
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Fourier Series

Theorem. The Takagi function ⌧(x) is periodic with period 1.
It is is an even function. So it has a Fourier series expansion

⌧(x) := c0 +
1X

n=1
cn cos(2⇡nx)

with Fourier coe�cients

cn = 2
Z 1

0
⌧(x) cos(2⇡nx)dx = 2

Z 1

0
⌧(x)e2⇡inxdx

These are:

c0 =
Z 1

0
⌧(x)dx =

1

2
,

and, for n � 1, writing n = 2m(2k + 1),

cn =
2m

(n⇡)2
.
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Part II. Number Theory: Counting Binary
Digits

• Consider the integers 1,2,3, ... represented in binary
notation. Let S2(N) denote the sum of the binary digits of
0,1, ..., N � 1, i.e. S2(N) counts the total number of 10s in
these expansions.

N = 1 2 3 4 5 6 7 8 9

1 10 11 100 101 110 111 1000 1001

S2(N) = 1 2 4 5 7 9 12 13 15

• The function arises in analysis of algorithms for searching:
Knuth, Art of Computer Programming, Volume 4 (2011).
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Counting Binary Digits-2

• Bellman and Shapiro (1940) showed S2(N) ⇠ 1
2N log2 N .

• Mirsky (1949) improved this: S2(N) = 1
2N log2 N + O(N).

• Trollope (1968) improved this:

S2(N) =
1

2
N log2 N + N E2(N),

where E2(N) is a bounded oscillatory function.
He gave an exact combinatorial formula for E2(N) involving
the Takagi function.
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Counting Binary Digits-3

• Delange (1975) gave an elegant improvement of Trollope’s
result...

• Theorem. (Delange 1975) There is a continuous function
F (x) of period 1 such that, for all integer N � 1,

S2(N) =
1

2
N log2 N + N F (log2 N),

in which:

F (x) =
1

2
(1� {x})� 2�{x}⌧(2{x}�1)

where ⌧(x) is the Takagi function, and {x} := x� [x].
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Counting Binary Digits-4

• The function F (x)  0, with F (0) = 0.

• Delange found that F (x) has an explicit Fourier expansion
whose coe�cients involve the values of the Riemann zeta
function on the line Re(s) = 0, at ⇣(2k⇡i

log 2), k 2 Z.
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Counting Binary Digits-5

• Flajolet, Grabner, Kirchenhofer, Prodinger and Tichy
(1994) gave a direct proof of Delange’s theorem using
Dirichlet series and Mellin transforms.

• Identity 1. Let e2(n) sum the binary digits in n. Then

1X

n=1

e2(n)

ns
= 2�s(1� 2�s)�1⇣(s).
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Counting Binary Digits-6

• Identity 2: Special case of Perron’s Formula. Let

H(x) :=
1

2⇡i

Z 2+i1

2�i1

⇣(s)

2s � 1
xs ds

s(s� 1)
.

Then for integer N have an exact formula

H(N) =
1

N
S2(N)�

N � 1

2
.

• Proof. Shift the contour to Re(s) = �1
4. Pick up

contributions of a double pole at s = 0 and simple poles at
s = 2⇡ik

log 2, k 2 Z, k 6= 0. Miracle occurs: The shifted contour
integral vanishes for all integer values x = N . (It is a kind
of step function, and does not vanish identically.)
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Part III. Analysis: Fluctuation Properties

• The Takagi function oscillates rapidly. It is an analysis
problem to understand the size of its fluctuations on various
scales.

• These problems have been completely answered, as
follows...
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Fluctuation Properties: Single Fixed Scale

• The maximal oscillations at scale h are of
order: h log2

1
h.

• Proposition. For all 0 < h < 1 the Takagi function satisfies

|⌧(x + h)� ⌧(x)|  2h log2
1

h
.

• This bound is sharp within a multiplicative factor of 2.
Kôno (1987) showed that as h! 0 the constant goes to 1.
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Maximal Asymptotic Fluctuation Size

• The asymptotic maximal fluctuations at scale h! 0 are of
order: h

q
2 log2

1
h log log log2

1
h in the following sense.

• Theorem (Kôno 1987) Let �l(h) =
q

log2
1
h. Then for all

x 2 (0,1),

lim sup
h!0+

⌧(x + h)� ⌧(x)

h �l(h)
q

2 log log�l(h)
= 1,

and

lim inf
h!0+

⌧(x + h)� ⌧(x)

h �l(h)
q

2 log log�l(h)
= �1.
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Average Scaled Fluctuation Size

• Average Fluctuation size at scale h is Gaussian,
proportional to h

q
log2

1
h.

• Theorem (Gamkrelidze 1990) Let �l(h) =
q

log2
1
h. Then

for each real y,

lim
h!0+

Meas {x :
⌧(x + h)� ⌧(x)

h �l(h)
 y} =

1p
2⇡

Z y

�1
e�

1
2t2dt.

• Kôno’s result on maximum asymptotic fluctuation size is
analogous to the law of the iterated logarithm.
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Part IV. Rational Values

• Easy Fact.

(1) The Takagi function maps dyadic rational numbers k
2n

to dyadic rational numbers ⌧( k
2n) = k0

2n0 , where n0  n.

(2) The Takagi function maps rational numbers r = p
q to

rational numbers ⌧(r) = p0
q0. Here the denominator of ⌧(r)

may sometimes be larger than that of r.

• Next formulate four (hard?) unsolved problems...
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Rational Values: Pre-Image Problems

• Problem 1. Determine whether a rational r0 has some
rational preimage r with ⌧(r) = r0.

• Problem 2. Determine which rationals r0 have an
uncountable level set L(r0).

This (unsolved) problem was raised by Donald Knuth in:
The Art of Mathematical Programming Volume 4
(Fascicle 3, Problem 83 in 7.2.1.3 (2004)) He says:
“WARNING: This problem can be addictive.”
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Rational Values: Iteration Problems

• Problem 3. Determine the behavior of ⌧(x) under iteration,
on domain of dyadic rational numbers.

For dyadic rationals the denominators are nonincreasing, so
all iterates go into periodic orbits. Figuring out orbit
structure could be an challenging problem.

• Problem 4. Same, on larger domain of all rational numbers.

Here the denominators can increase or decrease at each
iteration. This feature resembles: the 3x + 1 problem.
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Part V. Level Sets of the Takagi Function

• Definition. The level set L(y) = {x : ⌧(x) = y}.

• Problem. How large are the level sets of the Takagi
function?

• Quantitative Problem. Determine exact count if finite;
Determine Hausdor↵ dimension if infinite.

• Answer depends on sampling method: Could choose
random x-values (abscissas) or random y-values (ordinates)
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Aside: Hausdor↵ Dimension

• Hausdor↵ dimension is a measure of size of a point set in a
metric space. (“Fractional dimension”).

• Fact. For any subset S of real line: 0  dimH(S)  1.

• Fact. All countable sets S have Hausdor↵ dimension 0, so
any set of positive Hausdor↵ dimension is uncountable.

• Fact. The Cantor set has Hausdor↵ dimension log2
log3 ⇡ 0.630.
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Size of Level Sets: Cardinality

• Fact. There exist levels y such that L(y) is finite,
countable, or uncountable.

• L(1
5) is finite, containing two elements.

Knuth (2004) showed that L(1
5) = { 3459

87040, 83581
87040}.

• L(1
2) is countably infinite.

• L(2
3) is uncountably infinite.

Baba (1984) observed this holds...because...

37



Size of Level Sets: Hausdor↵ Dimension

• Theorem (Baba 1984) The set L(2
3) has Hausdor↵

dimension 1
2.

• This result followed up by...

• Theorem (Maddock 2010) All level sets L(y) have
Hausdor↵ dimension at most 0.699.

• Conjecture (Maddock 2010) All level sets L(y) have
Hausdor↵ dimension at most 1

2.
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Local Level Sets-1

• Approach to understand level sets: break them into local
level sets, which are easier to understand.

• The local level set containing x is described completely
in terms of the binary expansion of x =

P
n�1 bn2�n.
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Deficient Digit Function-1

• Definition. The deficient digit function Dn(x) counts the
excess of 0’s over 1’s in the first n digits of the binary
expansion of x.

• Example. x = .00111001...

n 1 2 3 4 5 6 7 8

bn 0 0 1 1 1 0 0 1

Dn(x) 1 2 1 0 �1 0 �1 0

• Defn. The breakpoints are positions where Dn(x) = 0. In
example these are positions 4, 6, and 8 ...
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Deficient Digit Function-2

• Deficient digit function formula:

Dn(x) = n� 2(b1 + b2 + · · · + bn)

• Congruence: Dn(x) ⌘ n (mod 2)

• Bounds: � n  Dn(x)  n

• Key Fact. The values {D1(x), D2(x), D3(x), ...} for a
random x follow a simple random walk that takes equal
steps of size ±1.
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Local Level Sets-2

• Given x, look at all the breakpoint values

0 = c0 < c1 < c2 < ...

where Dcj(x) = 0, i.e. values n where the random walk
returns to the origin. Call this set the breakpoint set Z(x).

• The binary expansion of x is broken into blocks of digits
with position cj < n  cj+1. The flip operation exchanges
digits 0 and 1 inside a block.

• Definition. The local level set Lloc
x consists of all numbers

x0 ⇠ x by a (finite or infinite) set of flip operations. All
numbers in Lloc

x have the same breakpoint set Z(x) = Z(x0).
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Propeties of Local Level Sets

• Property 1. Lloc
x is a closed set.

• Property 2. Lloc
x is either a finite set of cardinality 2Z(x), if

there are finitely many blocks in Z(x), or is a Cantor set
if there are infinitely many blocks in Z(x).

• Property 3. Each level set partitions into a disjoint union of
local level sets.
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Level Sets-Abscissa Viewpoint

• Problem. Draw a random point x uniformly in [0,1]. How
large is the level set L(⌧(x))?

• Partial Answer. At least as large as the local level set Lloc
x .

• Theorem A. For a randomly drawn point x, with probability
one the local level set Lloc

x is an uncountable (Cantor) set ,
of Hausdor↵ dimension 0.
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Proof of Theorem A

(1) With probability one, the set of breakpoints Z(x) is infinite:
A one-dimensional random walk Dn(x) returns to the origin
infinitely often almost surely. This makes Lloc

x a Cantor set.

(2) With probability one, the expected time for a
one-dimensional random walk Dn(x) to return to the origin
is infinite. This “implies” that most local level sets have
Hausdor↵ dimension 0.
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Expected Number of Local Level Sets:
Ordinate View

• The number of local level sets on a level can be an
arbitrarily large integer value and also can be countably
infinite.

• We are able to estimate the number of local level sets when
the ordinate y is picked at random:

• Theorem B. The expected number of local level sets for an
(ordinate) y drawn uniformly from [0, 2

3] is exactly 3/2.
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Level Sets-Ordinate View

• We can compute the expected size of a level set L(y) for a
random (ordinate) level y...

• Theorem C.
(1) The expected size of a level set L(y) for y drawn at
random from [0, 2

3] is finite.

(2) However, the expected number of elements in a level
set L(y) for y drawn at random from [0, 2

3] is infinite.

• Result (1) first proved by Buczolich(2008).
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Local Level Sets: Size Paradox?

• Ordinate View: Level sets L(y) are finite with probability 1.

• Abscissa View: Level sets L(⌧(x)) are uncountably infinite
with probability 1.

• Reconciliation Mechanism: x-values preferentially select
level sets that are “large”.

48



Approach to Results

• Idea is to study the left hand endpoints of local level sets...

• Definition. The deficient digit set ⌦L is the set of left-hand
endpoints of all local level sets.

• Fact. The set ⌦L consists of all real numbers x whose
binary expansions have at least as many 0’s as 1’s after n

steps. That is, all Dn(x) � 0.
(The random walk stays nonnegative!)
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Approach to Results-cont’d.

• Key point. ⌦L keeps track of all local level sets. It is a
closed set obtained by removing a countable set of open
intervals from [0,1]. It has has a Cantor set structure.

• Theorem. ⌦L has measure 0, but has full Hausdor↵
dimension 1.
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Flattened Takagi Function

• Restrict the Takagi function to ⌦L. On every open interval
that was removed to construct ⌦L, linearly interpolate this
function between the two endpoints.

• Call the resulting function ⌧L(x) the flattened Takagi
function.

• Amazing Fact. (Or Trivial Fact.) All the linear
interpolations have slope �1.
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Graph of Flattened Takagi Function
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Flattened Takagi Function-2

• Claim. The flattened Takagi function has much less
oscillation than the Takagi function. Namely...

• Theorem F.
(1) The flattened Takagi function ⌧L(x) is
a function of bounded variation. That is, it is the sum of
an increasing function (means: nondecreasing) and a
decreasing function (means: nonincreasing).
(This is called: Jordan decomposition of BV function.)

(2) ⌧L(x)has total variation V 1
0 (⌧L) = 2.

• This theorem follows from...
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Takagi Singular Function

• Theorem D. (1) The flattened Takagi function has a
Jordan decomposition

⌧L(x) = ⌧S(x) + (�x),

That is, it is the sum of an upward monotone function
⌧S(x) and a downward monotone function �x.

(2) The function ⌧L(x) is a singular continuous function; it
has derivative 0 o↵ the set ⌦L.
Call it the Takagi singular function.
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Graph of Takagi Singular Function
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Takagi Singular Function

• The Takagi singular function is the integral of a singular
measure:

⌧S(x) =
Z x

0
dµS(t)

Call µS the Takagi singular measure. It is supported on ⌦L,
which has area 0.

• The Takagi singular measure is obviously not
translation-invariant. But it satisfies various functional
equations coming from those of the Takagi function. It is
possible to compute with it. Used to prove results.
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Concluding Remarks.

• The Takagi function is a great example of many
phenomena in classical analysis and probability theory.

• Found interesting new internal structures: Local level sets
and Takagi singular function.

• Raised various open problems:

(1) Determine the structure of rational levels;

(2) Study Takagi function as a dynamical system under
iteration.
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Thank you for your attention!
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