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Topics Covered

• Part I. Ternary expansions of powers of 2

• Part II. A 3-Adic generalization

• Part III. p-Adic path set fractals

• Part IV. Intersections of translates of 3-adic Cantor sets
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Credits-1

• Part I : P. Erdős,
Some Unconventional Problems in Number Theory,
Math. Mag. 52 (1979), 67–70.

• Philip J. Davis, The Thread-A Mathematical Yarn,
Birkhäuser, Basel, 1983. (Second Edition. Harcourt, 1989.)

• “The Thread” follows a quest of the author to find out the
first name and its origins of the Russian mathematician and
number theorist: P. L. Chebyshev (1821–1894),

[This quest was done before Google (published in 14 B.G.).
Now a mouse click does it. ]
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Credits-2

• Part II:
J. C. Lagarias, Ternary Expansions of Powers of 2,
J. London Math. Soc. 79 (2009), 562–588.

• Part III:
W. C. Abram and J. C. Lagarias,
Path sets and their symbolic dynamics,
Adv. Applied Math. 56 (2014), 109–134.

W. C. Abram and J. C. Lagarias,
p-adic path set fractals,
J. Fractal Geom. 1 (2014), 45–81.
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Credits-3

• Part IV:
W. C. Abram and J. C. Lagarias, Intersections of
Multiplicative Translates of 3-adic Cantor sets,
J. Fractal Geom. 1 (2014), 349–390.

W. C. Abram, A. Bolshakov and J. C. Lagarias,
Intersections of Multiplicative Translates of 3-adic Cantor
sets II, preprint.

• Work of J.C.Lagarias supported by NSF grants
DMS-1101373 and DMS-1401224.
Work by W. C. Abram supported by an NSF Fellowship and
Hillsdale College.
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Part I. Erdős Ternary Digit Problem

• Problem. Let (M)3 denote the integer M written in ternary
(base 3). How many powers 2n of 2 omit the digit 2 in
their ternary expansion?

•
Examples Non-examples
(20)3 = 1 (23)3 = 22
(22)3 = 11 (24)3 = 121
(28)3 = 100111 (26)3 = 2101

• Conjecture. (Erdős 1979) There are no solutions for n � 9.
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Erdős Ternary Digit Problem: Binomial
Coe�cient Motivation

• Motivation. 3 does not divide the binomial coe�cient⇣
2k+1

2k
⌘
if and only if the ternary expansion of 2k omits the

digit 2.
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Heuristic for Erdős Ternary Problem

• The ternary expansion (2n)3 has about

↵0n digits

where

↵0 := log3 2 =
log2

log3
⇡ 0.63091

• Heuristic. If ternary digits were picked randomly and
independently from {0,1,2}, then the probability of
avoiding the digit 2 would be ⇡

⇣
2
3

⌘↵0n
.

• These probabilities decrease exponentially in n, so their sum
converges. Thus expect only finitely many n to have
expansion [2n]3 that avoids the digit 2.
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Part II. 3-Adic Dynamical System
Generalizations of Erdős Ternary Digit
Problem

• Approach: View the set {1,2,4, ...} as a forward orbit of the
discrete dynamical system T : x 7! 2x.

• The forward orbit O(x0) of x0 is

O(x0) := {x0, T (x0), T
(2)(x0) = T (T (x0)), · · · }

Thus: O(1) = {1,2,4,8, · · · }.

• Changed Problem. Study the forward orbit O(�) of an
arbitrary initial starting value �. How big can its
intersection with the “Cantor set” be?
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3-adic Integer Dynamical System-1

• View the integers Z as contained in the set of 3-adic
integers Z3.

• The 3-adic integers Z3 are the set of all formal expansions

� = d0 + d1 · 3+ d2 · 32 + ...

where di 2 {0,1,2}. Call this the 3-adic expansion of �.

• Set ord3(0) := +1 and ord3(�) := min{j : dj 6= 0}.
The 3-adic size of � 2 Q3 is:

||�||3 = 3�ord3(�)
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3-adic Integer Dynamical System-2

• Now view {1,2,4,8, ...} as a subset of the 3-adic integers.

• The modified 3-adic Cantor set ⌃̃3,2̄ is the set of all 3-adic
integers whose 3-adic expansion omits the digit 2. The
Hausdor↵ dimension of ⌃̃3,2̄ is log3 2 ⇡ 0.630929.

• We impose the condition: avoid the digit 2 on all 3-adic
digits.

• Define for � 2 Z3 the complete intersection set

N⇤(�;Z3) := {n � 1 : the full 3-adic expansion
(�2n)3 omits the digit 2}
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Complete 3-adic Exceptional Set-2

• The 3-adic exceptional set is

E⇤1(Z3) := {� > 0 : the complete intersection set

N⇤(�;Z3) is infinite.}

• The set E⇤1(Z3) ought to be very small. Conceivably it is
just one point {0}. (If it is larger, then it must be infinite.)
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Exceptional Set Conjecture

• Exceptional Set Conjecture.

The 3-adic exceptional set E⇤1(Z3) has
Hausdor↵ dimension zero.

• This is our quest: a totally disconnected thread.

• The problem seems approachable because it has nice
symbolic dynamics. Hausdor↵ dimensions of finite
intersections can be computed exactly, in principle.
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Family of Subproblems

• The Level k exceptional set E⇤
k(Z3) has those � that have at

least k distinct powers of 2 with �2k in the Cantor set, i.e.

E⇤
k(Z3) := {� > 0 : the set N⇤(�;Z3) � k.}

• Level k exceptional sets are nested by increasing k:

E⇤1(Z3) ⇢ · · · ⇢ E⇤
3(Z3) ⇢ E⇤

2(Z3) ⇢ E⇤
1(Z3)

• Subproblem: Study the Hausdor↵ dimension of E⇤
k(Z3);

it gives an upper bound on dimH(E⇤(Z3)).
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Upper Bounds on Hausdor↵ Dimension

• Theorem. (Upper Bound Theorem)

(1). dimH(E⇤
1(Z3)) = ↵0 ⇡ 0.63092.

(2). dimH(E⇤
2(Z3))  0.5.

• Remark. However there is a lower bound:

dimH(E⇤
2(Z3)) � log3(

1 +
p
5

2
) ⇡ 0.438
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Upper Bounds on Hausdor↵ Dimension

• Question. Could it be true that

lim
k!1

dimH(E⇤
k(Z3)) = 0?

• If so, this would imply that the complete exceptional set
E⇤(Z3) has Hausdor↵ dimension 0.
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Upper Bound Theorem: Proof Idea

• The set E⇤
k(Z3) is a countable union of closed sets

E⇤
k(Z3) =

[

r1<r2<...<rk

C(2r1,2r2, ...,2rk),

given by

C(2r1,2r2, ...,2rk) := {� : (2ri�)3 omits digit 2}.

• We have

dimH(E⇤
k(Z3)) = sup{dimH (C(2r1,2r2, ...,2rk))}

• Proof for k = 1,2: obtain upper bounds on Hausdor↵
dimension of all the sets C(2r1,2r2, ...,2rk).
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Part III. Path Sets and p-adic Path Set
Fractals

• Definition Consider sets S of all p-adic integers whose
p-adic expansions are describable as the set of edge label
vectors of any infinite legal path in a finite directed graph )
with labeled edges (finite nondeterministic automaton)
starting from a fixed origin node.

• Call any such set S a p-adic path set fractal.

• Generalized Problem. Investigate the structure and
properties p-adic path set fractals.
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Path Sets-1

• Further Abstraction. Keep only the symbolic dynamics and
forget the p-adic embedding: regard S as embedded in a
symbol space AN of an alphabet A with N symbols. Call
the resulting symbolic object a path set.

• If we allowed only S which are unions of paths starting from
any vertex, then the allowable S are a known dynamical
object: a one-sided sofic shift.

• But path sets are a more general concept. They are not

closed under the action of the one-sided shift map.

�(a0a1a2a3 · · · ) = a1a2a3a4
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Path Sets-2

• Path sets are closed under several operations.

1. Finite unions and intersections of path sets are path sets.

2. A “decimation” operation that saves only symbols in
arithmetic progressions takes path sets to path sets

• The topological entropy of a path set is computable from
the incidence matrix for a finite directed graph representing
the path set (that is in a suitable normal form).

It is the logarithm to base N of the largest eigenvalue of
the incidence matrix.
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P-adic path set fractals-1

• p-adic path set fractals are the image of a path set under a
map of the symbol space into the p-adic integers. This
embedding can be non-trivial because it uses an mapping of
the alphabet A ! {0,1,2, ..., p� 1}. In particular many
symbols in A may get mapped to the same p-adic digit.

• If the alphabet mapping is one-to-one,then the topological
entropy of the path set and the Hausdor↵ dimension of the
p-adic path set fractal are proportional, otherwise not.

• The p-adic topology imposes a geometry on the image.
The appearance of the image is dependent on the digit
assignment map.
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p-adic arithmetic on p-adic path set
fractals-1

• Theorem. Suppose S1 and S2 are p-adic path set fractals.
Define the Minkowski sum

S1 + S2 := {s1 + s2 : s1 2 S1 s2 2 S2}
where the sum is p-adic addition. Then S1 + S2 is a p-adic
path set fractal.

• Theorem. Suppose ↵ 2 Zp is a rational number ↵ = m
n with

m,n 2 Z. If S is a p-adic path set fractal then so is the
mulitplicative dilation ↵S, using p-adic multiplication.
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p-adic arithmetic on p-adic path set
fractals-2

• 1. There are e↵ectively computable algorithms which given
an automaton representing S1 and S2, reap. ↵, can
compute an automaton representing S1 + S2, resp. ↵S1.

2. From these automata Hausdor↵ dimensions can be
directly computed.

• The behavior of Hausdor↵ dimension under Minkowski sum
and under intersection of p-adic path set fractals is
complicated and mysterious. It depends on arithmetic! But
the operation of dilation preserves Hausdor↵ dimension.
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Part IV. Intersections of Translates of
3-adic Cantor sets

• New Problem. For positive integers r1 < r2 < · · · < rk set

C(2r1,2r2, ...,2rk) := {� : (2ri�)3 omits the digit 2}
Determine the Hausdor↵ dimension of C(2r1,2r2, ...,2rk).

• More generally, allow arbitrary positive integers
N1, N2, ..., Nk. Determine the Hausdor↵ dimension of:

C(N1, N2, · · · , Nk) := {� : all (Ni�)3 omit the digit 2}
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Discovery and Experimentation

• The Hausdor↵ dimension of sets C(N1, N2, ..., Nk) can in
principle be determined exactly. (Structure of these sets
describable by finite automata.)

• Mainly discuss special case C(1, N), for simplicity.

• This special case already has a complicated and intricate
structure!
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Basic Structure of the answer-1

• The 3-adic expansions of members of sets C(N1, N2, ..., Nk)
are describable dynamically as having the symbolic dynamics
of a sofic shift, given as the set of allowable infinite paths
in a suitable labelled graph (finite automaton).

• The sequence of allowable paths is characterized by the
topological entropy of the dynamical system. This is the
growth rate ⇢ of the number of allowed label sequences of
length n. It is the maximal (Perron-Frobenius) eigenvalue ⇢

of the weight matrix of the labelled graph, a non-negative
integer matrix. (Adler-Konheim-McAndrew (1965))
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Basic Structure of the answer-2

• The Hausdor↵ dimension of the associated ”fractal set”
C(N1, ..., Nk) is given as the base 3 logarithm of the
topological entropy of the dynamical system.

• This is log3 ⇢ where ⇢ is the Perron-Frobenius eigenvalue of
the symbol weight matrix of the labelled graph.

• Remark. These sets are 3-adic analogs of “self-similar
fractals” in sense of Hutchinson (1981), as extended in
Mauldin-Williams (1985). Such a set is a fixed point of a
system of set-valued functional equations.

26



Basic Structure of the answer-3

• If some Nj ⌘ 2 (mod 3) occurs, then Hausdor↵ dimension
C(N1, N2, ..., Nk) will be 0.

• If one replaces Nj with 3kNj then the Hausdor↵ dimension
does not change.

• Can therefore reduce to case: All Nj ⌘ 1 (mod 3).
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Graph: N = 22 = 4
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Associated Matrix N = 4

• Weight matrix is:

state 0 state 1

state 0 [ 0 1 ]
state 1 [ 1 1 ]

• This is Fibonacci shift. Perron-Frobenius eigenvalue is:

⇢ =
1+

p
5

2
= 1.6180...

• Hausdor↵ Dimension = log3 ⇢ ⇡ 0.438.
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Graph: N = 7 = (21)3
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Associated Matrix N = 7

• Weight matrix is:

state 0 state 2 state 10 state 1

state 0 [ 1 1 0 0 ]
state 2 [ 0 0 1 0 ]
state 10 [ 0 0 1 1 ]
state 1 [ 1 0 0 0 ]

• Perron-Frobenius eigenvalue is : ⇢ = 1+
p
5

2 = 1.6180...

• Hausdor↵ Dimension = log3 ⇢ ⇡ 0.438.
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Graphs for N = (10k1)3

• Theorem. (“Fibonacci Graphs”)
For N = (10k1)3, (i.e. N = 3k+1 + 1)

dimH(C(1, N)) := dimH(⌃3,2̄\
1

N
⌃3,2̄) = log3(

1 +
p
5

2
) ⇡ 0.438

• Remark. The finite graph associated to N = 3k+1 + 1
has 2k states! The symbolic dynamics depend on k!

• The eigenvector for the maximal eigenvalue
(Perron-Frobenius eigenvalue) of the adjacency matrix of
this graph is explicitly describable. It has a self-similar
structure, and has all entries in Q(

p
5).
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Graphs for N = (20k1)3

• Empirical Results. Take N = 2 · 3k+1 + 1 = (20k1)3. For
1  k  7, the graphs have increasing numbers of strongly
connected components.

• There is an outer component with about k states, whose
Hausdor↵ dimension goes rapidly to 0 as k increases. (This
is provable for all k � 1).

• There is also an strongly connected inner component, which
appears to have exponentially many states, and whose
Hausdor↵ dimension monotonically increases for small k,
and eventually exceeds that of the outer component.
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Graph: N = 19 = (201)3
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Graph for N = 139 = (12011)3

• This value N=139 is a value of N ⌘ 1 (mod 3) where the
associated set has Hausdor↵ dimension 0.

• The corresponding graph has 5 strongly connected
components; each one separately has Perron-Frobenius
eigenvalue 1, giving Hausdor↵ dimension 0!
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General Graphs-Some Properties of C(1, N)

• The states in the graph can be labelled with integers k

satisfying 0  k  bN6 c (if entering edge label is 0) and
bN3 c  k  bN2 c (if entering edge label is 1).

• The paths in the graph starting from given state k describe
the symbolic dynamics of numbers in the intersection of
shifted multiplicatively translated 3-adic Cantor sets

Ck := ⌃3,2̄ \ 1

N

⇣
⌃3,2̄ + k

⌘
.

• The Hausdor↵ dimension of “shifted intersection set” is the
maximal Hausdor↵ dimension of a strongly connected
component of graph reachable from the state k.
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Lower Bound for Hausdor↵ Dimension

• Theorem. (Lower Bound Theorem) For any any k � 1
there exist

N1 < N2 < · · · < Nk, all Ni ⌘ 1 (mod 3)

such that

dimH(C(N1, N2, ..., Nk)) := dimH(
k\

i=1

1

Ni
⌃3,2̄) � 0.35.

Thus: the maximal Hausdor↵ dimension of intersection of
translates is uniformly bounded away from zero.

• Proof. Take suitable Ni of the form 3j +1 for various large
j. One can show the Hausdor↵ dimension of intersection
remains large (large overlap of symbolic dynamics).
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Conclusions: Part IV

(1) The graphs for C(1, N) exhibit a complicated structure
depending on an irregular way on the ternary digits of N . Their
Hausdor↵ dimensions vary irregularly.

(2) Conjecture of Part II is false if generalized from powers of 2
to all N ⌘ 1 (mod 3).
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Conclusions:

(3) Conjecture of Part II that

lim
k!1

dimH(E⇤
k(Z3)) = 0

could still be true, but...

(4) Lower bound theorem suggests: analyzing the special case
where all Ni = 2ri may not be easy!
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Conclusions

• Our quest has failed! ( So far)

• Perhaps a di↵erent approach using abstract ergodic theory
should be tried.

Thank you for your attention!
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