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Part I. Introduction and History

• Definition The distance to nearest integer function

⌧ x�= dist(x, Z)

• The map T (x) = 2⌧ x� is sometimes called the
symmetric tent map, when restricted to [0,1].
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The Takagi Function

• The Takagi Function ⌧(x) : [0,1]! [0,1] is

⌧(x) =
1X

j=0

1

2j
⌧ 2jx�

• This function was introduced by Teiji Takagi in 1903.

• Motivated by Weierstrass nondi↵erentiable function.
(Visit to Germany 1897-1901.)
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Graph of Takagi Function
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Main Property: Everywhere
Non-di↵erentiability

• Theorem (Takagi 1903) The function ⌧(x) is continuous on
[0,1] and has no derivative at each point x 2 [0,1] on either
side.

• Base 10 variant function independently discovered by van
der Waerden (1930), same theorem.

• Takagi function also rediscovered by de Rham (1956).
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Generalizations

• For g(x) periodic of period one, and a, b > 1, set

Fa,b,g(x) :=
1X

j=0

1

aj
g(bjx)

• This class includes Weierstrass nondi↵erentiable function.
Properties of functions depend sensitively on a, b and the
function g(x).

• Smooth function example (Hata and Yamaguti (1984))

F (x) =
1X

j=0

1

4j
⌧ 2jx�= 2x(1� x).
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Recursive Construction

• The n-th approximant

⌧n(x) :=
nX

j=0

1

2j
⌧ 2jx�

• This is a piecewise linear function, with breaks at the
dyadic integers k

2n, 1  k  2n � 1.

• All segments have integer slopes, in range between �n and
+n. The maximal slope +n is attained in [0, 1

2n] and the
minimal slope �n in [1� 1

2n,1].
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Takagi Approximants-⌧2
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Takagi Approximants-⌧3
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Takagi Approximants-⌧4
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Properties of Approximants

• The n-th approximant

⌧n(x) :=
nX

j=0

1

2j
⌧ 2jx�

agrees with ⌧(x) at all dyadic rationals k
2n.

These values then freeze, i.e. ⌧n( k
2n) = ⌧n+j(

k
2n).

• The approximants are nondecreasing at each step, They
approximate Takagi function ⌧(x) from below.
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Symmetry

• Local symmetry

⌧n(x) = ⌧n(1� x).

• Thus

⌧(x) = ⌧(1� x).
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Functional Equations

• Fact. The Takagi function, satisfies, for 0  x  1, two
functional equations:

⌧(
x

2
) =

1

2
⌧(x) +

1

2
x

⌧(
x + 1

2
) =

1

2
⌧(x) +

1

2
(1� x).

• These are a kind of dilation equation, relating function on
two di↵erent scales.
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Takagi Function Formula

• Takagi’s Formula (1903): Let x 2 [0,1] have binary
expansion

x = .b1b2b3... =
1X

j=1

bj

2j

Then

⌧(x) =
1X

n=1

ln(x)

2n
.

with

ln(x) = b1 + b2 + · · · + bn�1 if digit bn = 0.

= n� 1� (b1 + b2 + · · · + bn�1) if digit bn = 1.
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Fourier Series

• Theorem. The Takagi function ⌧(x) has period 1, and is an
even function. It has Fourier series

⌧(x) :=
1X

n=0
cne2⇡inx

in which

c0 =
Z 1

0
⌧(x)dx =

1

2
and for n > 0 there holds

cn = c�n =
1

2m+1(2k + 1)2
·

1

⇡2, where n = 2m(2k + 1).
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Takagi Function as a Boundary Value

• Theorem. Let {cn : n 2 Z} be the Fourier coe�cients of the
Takagi function, and define the power series

f(z) =
1

2
c0 +

1X

n=1
cnzn.

It converges on unit disk and defines a continuous function
on the boundary of the unit disk,

f(e2⇡i✓) =
1

2
(T (✓) + iU(✓))

in which T (✓) = ⌧(✓) is the Takagi function, and U(✓) is a
function which we call the conjugate Takagi function.

• Open Problem. Study properties of U(x).
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History

• The Takagi function ⌧(x) has been extensively studied in all
sorts of ways, during its 100 year history, often in more
general contexts.

• It has some surprising connections with number theory and
(less surprising) with probability theory.

• It has showed up as a “toy model” in study of chaotic
dynamics, as a fractal, and it has connections with wavelets.

19



Part II. Number Theory: Counting Binary
Digits

• Consider the integers 1,2,3, ... represented in binary
notation. Let S2(N) denote the sum of the binary digits of
0,1, ..., N � 1, i.e. it counts the total number of 10s in these
expansions.

• Bellman and Shapiro (1940) showed S2(N) ⇠ 1
2N log2 N .

Mirsky (1949) showed S2(N) ⇠ 1
2N log2 N + O(N).

• Trollope (1968) showed S2(N) = 1
2N log2 N + N E2(N)

where E2(N) is an oscillatory function. He gave an exact
combinatorial formula for NE2(N) involving the Takagi
function.
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Counting Binary Digits-2

• Delange (1975) gave an elegant reformulation and
sharpening of Trollope’s result...

• Theorem. (Delange 1975) There is a continuous function
F (x) of period 1 such that, for all integer N ,

1

N
S2(N) =

1

2
log2 N + F (log2 N).

Here

F (x) =
1

2
(1� {x})� 2�{x}⌧(2{x}�1)

where ⌧(x) is the Takagi function, and {x} := x� [x].
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Counting Binary Digits-3

• The function F (x)  0, with F (0) = 0.

• The function F (x) has an explicit Fourier expansion whose
coe�cients involve the values of the Riemann zeta function
on the line Re(s) = 0, at ⇣(2k⇡i

log 2), k 2 Z.
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Counting Binary Digits-4

• Flajolet, Grabner, Kirchenhofer, Prodinger and Tichy
(1994) gave a direct proof of Delange’s theorem using
Dirichlet series and Mellin transforms.

• Identity 1. Let e2(n) sum the binary digits in n. Then

1X

n=1

e2(n)

ns
= 2�s(1� 2�s)�1⇣(s).
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Counting Binary Digits-5

• Identity 2: Special case of Perron’s Formula. Let

H(x) :=
1

2⇡i

Z 2+i1

2�i1

⇣(s)

2s � 1
xs ds

s(s� 1)
.

Then for integer N have an exact formula

H(N) =
1

N
S2(N)�

N � 1

2
.

• Proof. Shift the contour to Re(s) = �1
4. Pick up

contributions of a double pole at s = 0 and simple poles at
s = 2⇡ik

log 2, k 2 Z, k 6= 0. Miracle occurs: The shifted contour
integral vanishes for all integer values x = N . (It is a kind
of step function, and does not vanish identically.)
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Part III. Probability Theory: Singular
Functions

•  Lomnicki and Ulam (1934) constructed singular functions
as solutions to various functional equations.

• Draw binary digits of a number, at random:
0 with probability ↵

1 with probability 1� ↵.
Let L↵(x) be the cumulative distribution function of
resulting distribution µ↵. Call this the Lebesgue function
with parameter ↵.
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Singular Functions-2

• These functions satisfy the functional equations (0  x  1),

L↵(
x

2
) = ↵ L↵(x),

L↵(
x + 1

2
) = ↵ + (1� ↵)L↵(x).

• Claim. The measure µ↵(x) = dL↵(x) is a (singular) measure
supported on a set of Hausdor↵ dimension

H2(↵) = �↵ log2 ↵� (1� ↵) log2(1� ↵).

(binary entropy function)
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Singular Functions-3

• Salem (1943) determined the Fourier series of L↵(x). He
obtained it using

Z 1

0
e2⇡itxdL↵(x) =

1Y

k=1

 

↵ + (1� ↵)e
2⇡it
2k

!

.

• Product formulas like this occur in wavelet theory (solutions
of dilation equations), see Daubechies and Lagarias (1991),
(1992).
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Singular Functions-4

• Theorem (Hata and Yamaguti 1984) For fixed x the
Lebesgue function L↵(x) extends in the variable ↵ to an
analytic function on the lens-shaped region

{↵ 2 C : |↵| < 1 and |1� ↵| < 1}.

The Takagi function appears as:

2 ⌧(x) =
d

d↵
L↵(x) |

↵=1
2

• Hata and Yamaguti, Japan J. Applied Math. 1 (1984),
183-199. A very interesting paper!
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Open Problem: Invariant Measure

• Observation The absolutely continuous measure
µT := 2⌧(x)dx is a probability measure on [0,1].
Call it the Takagi measure.

• General Query. Are there any interesting maps of the
interval f : [0,1]! [0,1] for which the Takagi measure
µT (x) is an invariant measure?
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Part IV. Analysis: Fluctuation Properties

• The Takagi function oscillates rapidly. It is an analysis
problem to understand the size of its fluctuations on various
scales.

• These problems have been completely answered, as
follows...
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Fluctuation Properties: Single Fixed Scale

• The maximal oscillations at scale h are of
order: h log2

1
h.

• Proposition. For all 0 < h < 1 the Takagi function satisfies

|⌧(x + h)� ⌧(x)|  2h log2
1

h
.

• This bound is sharp within a multiplicative factor of 2.
Kôno (1987) showed that as h! 0 the constant goes to 1.
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Maximal Asymptotic Fluctuation Size

• The asymptotic maximal fluctuations at scale h! 0 are of
order: h

q
2 log2

1
h log log log2

1
h in the following sense.

• Theorem (Kôno 1987) Let �l(h) =
q

log2
1
h. Then for all

x 2 (0,1),

lim sup
h!0+

⌧(x + h)� ⌧(x)

h �l(h)
q

2 log log�l(h)
= 1,

and

lim inf
h!0+

⌧(x + h)� ⌧(x)

h �l(h)
q

2 log log�l(h)
= �1.
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Average Scaled Fluctuation Size

• Average Fluctuation size at scale h is Gaussian,
proportional to h

q
log2

1
h.

• Theorem (Gamkrelidze 1990) Let �l(h) =
q

log2
1
h. Then

for each real y,

lim
h!0+

Meas {x :
⌧(x + h)� ⌧(x)

h �l(h)
 y} =

1p
2⇡

Z y

�1
e�

1
2t2dt.

• Kôno’s result on maximum asymptotic fluctuation size is
analogous to the law of the iterated logarithm.
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Part V. Rational Values

• Easy Fact.

(1) The Takagi function maps dyadic rational numbers k
2n

to dyadic rational numbers ⌧( k
2n) = k0

2n0 , where n0  n.

(2) The Takagi function maps rational numbers r = p
q to

rational numbers ⌧(r) = p0
q0. Here the denominator of ⌧(r)

may sometimes be larger than that of r.

• Next formulate three (hard?) unsolved problems...
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Rational Values: Pre-Image Problems

• Problem 1. Determine whether a rational r0 has some
rational preimage r with ⌧(r) = r0.

• Problem 2. Determine which rationals r0 have an
uncountable level set L(r0).

• Problem 2 was raised by Donald Knuth (2004) in Volume 4
of the Art of Mathematical Programming (Fascicle 3,
Problem 83 in 7.2.1.3) He says:
“WARNING: This problem can be addictive.”
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Rational Values: Iteration Problems

• Problems 3 and 4. Determine the behavior of ⌧(x) under
iteration, restricted to dyadic rational numbers, resp. all
rational numbers.

• Remarks. (1) For dyadic rationals the denominators are
nonincreasing, so all iterates go into periodic orbits. But
figuring out orbit structure could be an interesting problem.

(2) For general rational numbers it is not clear what
happens. Denominators could potentially increase to +1.
(Any invariant measure will be supported in [12, 2

3].)
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Part VI. Level Sets of the Takagi Function

• Definition. The level set L(y) = {x : ⌧(x) = y}.

• Problem. How large are the level sets of the Takagi
function?

• Quantitative Problem. determine exact count if finite;
determine Hausdor↵ dimension if infinite.

• Answer depends on sampling method: Could choose
random x-values (abscissas) or random y-values (ordinates)
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Size of Level Sets: Cardinality

• Fact. There exist levels y such that L(y) is finite,
countable, or uncountable.

• L(1
5) is finite, containing two elements.

Knuth (2005) showed that L(1
5) = { 3459

87040, 83581
87040}.

• L(1
2) is countably infinite.

• L(2
3) is uncountably infinite.

Baba (1984) observed this holds...because...
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Size of Level Sets: Hausdor↵ Dimension

• Theorem (Baba 1984) The set L(2
3) has Hausdor↵

dimension 1
2.

• This result followed up by...

• Theorem (Maddock 2010) All level sets L(y) have
Hausdor↵ dimension at most 0.699.

• Conjecture (Maddock 2010) All level sets L(y) have
Hausdor↵ dimension at most 1

2.
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Local Level Sets-1

• Approach to understand level sets: break them into local
level sets, which are easier to understand.

• The local level set containing x is described completely
in terms of the binary expansion of x =

P
n�1 bn2�n.

• Definition. The deficient digit function Dn(x) counts the
excess of 0’s over 1’s in the first n digits of the binary
expansion of x.

• For random x the values (D1(x), D2(x), D3(x), ...) are sums
of a simple random walk, taking steps +1 or �1.
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Local Level Sets-2

• Given x, look at all the breakpoint values

0 = c0 < c1 < c2 < ...

where Dcj(x) = 0, i.e. values n where the random walk
returns to the origin. Call this set the breakpoint set Z(x).

• The binary expansion of x is broken into blocks of digits
with position cj < n  cj+1. The flip operation exchanges
digits 0 and 1 inside a block.

• Definition. The local level set Lloc
x consists of all numbers

x0 ⇠ x by a (finite or infinite) set of flip operations. All
numbers in Lloc

x have the same breakpoint set Z(x) = Z(x0).
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Propeties of Local Level Sets

• Property 1. Lloc
x is a closed set.

• Property 2. Lloc
x is either a finite set of cardinality 2Z(x), if

there are finitely many blocks in Z(x), or is a Cantor set
if there are infinitely many blocks in Z(x).

• Property 3. Each level set partitions into a disjoint union of
local level sets.
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Level Sets-Abscissa Viewpoint

• Problem. Draw a random point x uniformly with respect to
Lebesgue measure. How large is the level set L(⌧(x))?

• Partial Answer. At least as large as the local level set Lloc
x .

• Theorem A. For a randomly drawn point x, with probability
one the local level set Lloc

x is an uncountable (Cantor) set ,
of Hausdor↵ dimension 0.
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Proof of Theorem A

(1) With probability one, the set of breakpoints Z(x) is infinite:
the one-dimensional random walk Dn(x) returns to the
origin infinitely often almost surely. This makes Lloc

x a
Cantor set.

(2) With probability one, the expected time for the random
walk Dn(x) to return to the origin is infinite. This “implies”
that Lloc

x has Hausdor↵ dimension 0.
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Number of Local Level Sets per Level

• Fact. The number of local level sets on a level can take an
arbitrary integer value and also can be countably infinite.

• Theorem. There are a dense set of levels y such that L(y)
contains a countably infinite number of local level sets.

• Known such levels all have y a dyadic rational, including
y = 1

2.
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Level Sets-Abscissa View

• Problem.What is the average size of full level set L(⌧(x))
where x is picked at random?

• This problem is unsolved. Expect the same answer as
Theorem A: Most L(⌧(x)) uncountable of Hausdor↵ dim. 0.

• Di�culty. The mysterious problem is to understand how
many local level sets there are on a given level, when
(abscissa) x is picked at random.
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Expected Number of Local Level Sets:
Ordinate View

• We are able to estimate the number of local level sets when
the ordinate y is picked at random:

• Theorem B. The expected number of local level sets for an
(ordinate) y drawn uniformly from 0  y  2/3 is finite.
This number is exactly 3/2.
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Level Sets-Ordinate view

• We can compute the expected size of a level set L(y) for a
random (ordinate) level y...

• Theorem C.
(1) (Buczolich (2008)) The expected size of a level set
L(y) for y drawn at random (Lebesgue measure) is finite.

(2) The expected number of elements in a level set L(y) for
y drawn at random (Lebesgue measure) is infinite.

• Our proof of (1) di↵ers from the proof of Buczolich.
It gives extra information, namely (2).
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Local Level Sets: Size Paradox?

• Ordinate View: Level sets L(y) are finite with probability 1.

• Abscissa View: Level sets L(⌧(x)) are uncountably infinite
with probability 1.

• Reconciliation Mechanism: x-values preferentially select
level sets that are “large”.
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Reconciling Size of Local Level Sets

• Theorem D. The set Big of levels y such that the level set
L(y) has positive Hausdor↵ dimension, is itself a set of full
Hausdor↵ dimension 1.

• Proof Idea. Explicit construction of local level sets giving
distinct y values having Hausdor↵ dimension > 1� ✏, for any
given ✏ > 0.
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Approach to Results

• We study the left hand endpoints of local level sets...

• Definition. The deficient digit set ⌦L is the set of left-hand
endpoints of all local level sets.

• Fact. The set ⌦L consists of all real numbers x whose
binary expansions have at least as many 0’s as 1’s after n

steps. That is, all Dn(x) � 0.
(There is a unique choice of flips to achieve this.)
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Approach to Results-cont’d.

• Key point. ⌦L keeps track of all local level sets. It is a
closed set obtained by removing a countable set of open
intervals from [0,1]. It has has a Cantor set structure.

• Theorem E. ⌦L has Lebesgue measure 0 and has Hausdor↵
dimension 1.

• This holds because...
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Proof of Theorem E

• Heuristic Argument: Count the number of allowable strings
in expansions in ⌦L. There are about n�3/22n strings of
length n. The fact that

P
n�3/2 <1 implies Lebesgue

measure 0. The fact that allowed number exceeds 2(1�✏)n

“implies” deficient digit set ⌦L has Hausdor↵ dimension 1.
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Flattened Takagi Function

• Restrict the Takagi function to ⌦L. On every open interval
that was removed to construct ⌦L, linearly interpolate this
function between the two endpoints.

• Call the resulting function ⌧L(x) the flattened Takagi
function.

• Amazing Fact. (Or Trivial Fact.) All the linear
interpolations have slope �1.
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Graph of Flattened Takagi Function
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Flattened Takagi Function-2

• Claim. The flattened Takagi function has much less
oscillation than the Takagi function. Namely...

• Theorem F.
(1) The flattened Takagi function ⌧L(x) is
a function of bounded variation. That is, it is the sum of
an increasing function (means: nondecreasing) and a
decreasing function (means: nonincreasing).
(This is called: Jordan decomposition of BV function.)

(2) ⌧L(x)has total variation V 1
0 (⌧L) = 2.

• This theorem follows from...
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Takagi Singular Function

• Theorem. (1) The flattened Takagi function has a minimal
Jordan decomposition

⌧L(x) = ⌧S(x) + (�x),

in which the function

⌧S(x) := ⌧L(x) + x

is nondecreasing, and the function �x is strictly decreasing.

(2) The function ⌧L(x) is a nondecreasing singular
continuous function; it has derivative 0 o↵ the set ⌦L.
Call it the Takagi singular function.
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Graph of Takagi Singular Function
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Takagi Singular Function

• The Takagi singular function is the integral of a singular
measure:

⌧S(x) =
Z x

0
dµS(t)

Call µS the Takagi singular measure. It is supported on ⌦L.

• The Takagi singular measure is obviously not
translation-invariant. But it satisfies various functional
equations coming from those of the Takagi function. It is
possible to compute with it.
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Proof of Theorem B

• Compute expected value of number of local level sets at
random level y using the co-Area formula for BV-functions,
applied to ⌧L(x).

• This counts the expected number of points of the function
on each level. Exactly half of these endpoints correspond to
left hand endpoint of a level set. End up with answer 3

2.
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Proof of Theorem C

(1) Compute the Takagi singular measure of various subsets of
⌦L, those for which the breakpoint set Z(x) takes a finite
value m � 1. Show that summing over 1  m <1 accounts
for all of the Takagi singular measure. This shows that, on
⌦L only, drawing x with respect to Takagi singular
measure, the number of points of ⌧L(x) = ⌧(x) is finite on
a full measure set of ⌦L. Then carry this over to Lebesgue
measure on ordinates.

(2) Explicit computation of average value shows that these
subsets also shows that the expected number of points is
infinite. QED
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Concluding Remarks.

• Found interesting new internal structures: Takagi singular
measure. Relation to random walks.

• Raised various open problems: Study the Conjugate Takagi
function U(✓). Study rational levels. Study Takagi function
as dynamical system (map of interval [0,1]).
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The End
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