Products of Farey Fractions

Jeff Lagarias University of Michigan Ann Arbor, MI, USA

August 6, 2016

MAA Mathfest 2016

Numbers, Geometries and Games: A Centenarian of Mathematics

(Steve Butler and Barbara Faires, Organizers)

Topics Covered

- 0. Richard Guy
- 1. Farey Fractions
- 2. Products of Farey Fractions-1
- 3. Interlude: Products of Unreduced Farey Fractions
- 4. Products of Farey Fractions-2

0. Richard K. Guy

Quotations from Richard Guy:

• "Problems are the lifeblood of any mathematical discipline."

On the other hand:

- "R. K. Guy, **Don't try to solve these problems!**, American Math. Monthly *90* (1983), 35–41.
- Exordium: "Some of you are already scribbling, in spite of the warning...."

1. Farey Fractions

• The Farey fractions \mathcal{F}_n of order n are fractions $0 \leq \frac{h}{k} \leq 1$ with gcd(h,k) = 1. Thus

$$\mathcal{F}_4 = \{\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\}.$$

The non-zero Farey fractions are

$$\mathcal{F}_4^* := \{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\}.$$

• The number $|\mathcal{F}_n^*|$ of nonzero Farey fractions of order n is

$$\Phi(n) := \phi(1) + \phi(2) + \cdots + \phi(n).$$

Here $\phi(n)$ is Euler totient function. One has

$$\Phi(n) = \frac{3}{\pi^2} N^2 + O(N \log N).$$

4

Farey Fractions-2

- The Farey fractions have a limit distribution as $N \to \infty$. They approach the uniform distribution on [0, 1].
- **Theorem.** The distribution of Farey fractions described by sum of (scaled) delta measures at members of \mathcal{F}_n , weighted by $\frac{1}{\Phi(n)}$. Let

$$\mu_n := \frac{1}{\Phi(n)} \sum_{j=1}^{\Phi(n)} \delta(\rho_j)$$

Then these measures μ_n converge weakly as $n \to \infty$ to the uniform (Lebesgue) measure on [0, 1].

Farey Fractions-3

- The rate at which Farey fractions approach the uniform distribution is related to the Riemann hypothesis!
- Theorem. (Franel's Theorem (1924)) Consider the statistic

$$S_n = \sum_{j=1}^{\Phi(n)} (\rho_j - \frac{j}{\Phi(n)})^2$$

Then as $n \to \infty$

$$S_n = O(n^{-1+\epsilon})$$

for each $\epsilon > 0$ if and only if the Riemann hypothesis is true.

• One knows unconditionally that $S_n \to 0$ as $n \to \infty$. This fact is equivalent to the Prime Number Theorem.

2. Products of Farey Fractions

• Motivation. There is a mismatch in scales between *addition* and *multiplication* in the rationals Q, which in some way influences the distribution of prime numbers. To understand this better one might study (new) *arithmetic statistics* that mix addition and multiplication in an interesting way.

• The Farey fractions \mathcal{F}_n encode data that seems "additive". So why not study the **product** of the Farey fractions? (We exclude the Farey fraction $\frac{0}{1}$ in the product!)

• Define the Farey product $F_n := \prod_{j=1}^{\Phi(n)} \rho_j$, where ρ_j runs over the nonzero Farey fractions in increasing order.

Products of Farey Fractions-2

• It turns out convenient to study instead the reciprocal Farey product $\overline{F}_n := 1/F_n$.

• Studying Farey products seems interesting because will be a lot of cancellation in the resulting fractions. There are about $\frac{3}{\pi^2}n^2$ terms in the product, but all numerators and denominators of ρ_j contain only primes $\leq n$, and there are certainly at most n of these. So there **must be** enormous cancellation in product numerator and denominator! How much? And what is left over afterwards?

• (History) This research project was done with REU student Harsh Mehta (now grad student at Univ. South Carolina).

Products of Farey Fractions-3

• Question. The products of all (nonzero) Farey fractions

$$F_n := \prod_{\rho_r \in \mathcal{F}_n^*} \rho_r.$$

give a single statistic for each n. Is the Riemann hypothesis encoded in its behavior?

- Amazing answer: Yes!
- Theorem. (Mikolás (1952)- rephrased) Let $\overline{F}_n = 1/F_n$. The Riemann hypothesis is equivalent to the assertion that

$$\log(\overline{F}_n) = \Phi(n) - \frac{1}{2}n + O(n^{1/2 + \epsilon}).$$

(Here $\Phi(n) \sim \frac{3}{\pi^2}n^2$ counts the number of Farey fractions.) The RH is encoded in the size of the remainder term.

Products of Farey Fractions-4

• For Farey products we can ask some *new questions*: what is the behavior of the **divisibility** of \overline{F}_n by a fixed prime p: What power of p divides \overline{F}_n ? Call if

$$f_p(n) := \operatorname{ord}_p(\overline{F}_n)$$

This value can be positive or negative, because \overline{F}_n is a rational number.

• Question. Could some information about RH be encoded in the individual functions $f_p(n)$ for a single prime p?

• Approach. Study this question experimentally by computation for small n and small primes.

• But first-a simpler problem: **unreduced Farey fractions.**

3. Products of Unreduced Farey Fractions

- Idea. Study a simpler "toy model", products of unreduced Farey fractions.
- The (nonzero) unreduced Farey fractions G^{*}_n of order n are all fractions 0 < ^h/_k ≤ 1 with 1 ≤ h ≤ k ≤ n (no gcd condition imposed).

$$\mathcal{G}_4^* := \{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{4}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}, \frac{2}{2}, \frac{3}{3}, \frac{4}{4}\}.$$

• The number of unreduced Farey fractions is

$$|\mathcal{G}_n^*| = \Phi^*(n) := 1 + 2 + 3 + \dots + n = \binom{n+1}{2} = \frac{1}{2}n(n+1).$$

Unreduced Farey Products are Binomial Products

• Fact. The reciprocal unreduced Farey product $\overline{G}_n := 1/G_n$ is always an integer.

(Harm Derksen and L, MONTHLY problem 11594 (2011))

• **Proposition.** The reciprocal product \overline{G}_n of unreduced Farey fractions is the product of binomial coefficients in the *n*-th row of Pascal's triangle.

$$\overline{G}_n := \prod_{k=0}^n \binom{n}{k}$$

Data: $\overline{G}_1 = 1$, $\overline{G}_2 = 2$, $\overline{G}_3 = 9$, $\overline{G}_4 = 96$, $\overline{G}_5 = 2500$, $, \overline{G}_6 = 162000$, $\overline{G}_7 = 26471025$. (On-Line Encylopedia of Integer Sequences (OEIS): Sequence *A001142*.)

Binomial Products: Questions

• What is the growth of \overline{G}_n as real number? Measure size by

$$g_{\infty}(n) := \log(\overline{G}_n).$$

• What is the behavior of their prime factorizations? At a prime p, measure size by divisibility exponent

$$g_p(n) := \operatorname{ord}_p(\overline{G}_n).$$

Prime factorization is:

$$\overline{G}_n = \prod_p p^{g_p(n)}$$

Here $g_p(n) \ge 0$ since \overline{G}_n is an integer.

"Unreduced Farey" Riemann hypothesis

• **Theorem** ("Unreduced Farey" Riemann hypothesis) The reciprocal unreduced Farey products \overline{G}_n satisfy

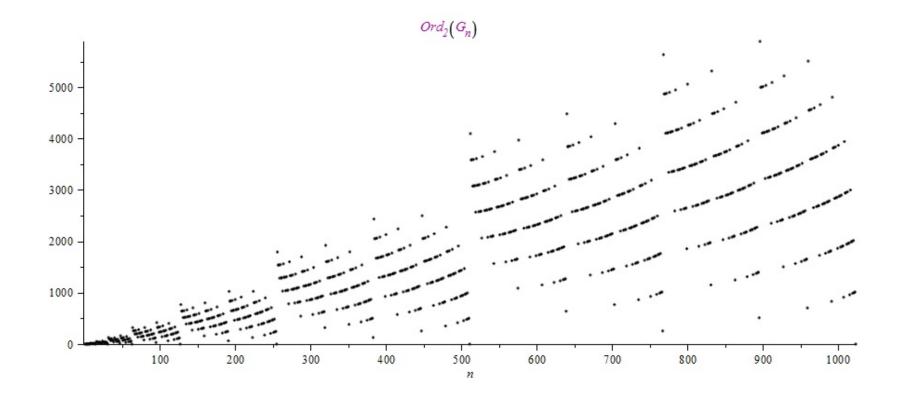
$$\log(\overline{G}_n) = \Phi^*(n) - \frac{1}{2}n\log n + \left(\frac{1}{2} - \frac{1}{2}\log(2\pi)\right)n + O(\log n).$$

Here $\frac{1}{2} - \frac{1}{2}\log(2\pi) \approx -0.41894$ and $\Phi^*(n) = \frac{1}{2}n(n+1)$.

• This is "unreduced Farey product" analogy with Mikoläs's formula, where RH says error term $O(n^{1/2+\epsilon})$. But here we get instead a tiny error term: $O(\log n)$.

• Question. Does this error term $O(\log n)$ mean: there are no "zeros" in the critical strip all the way to Re(s) = 0 (of some function)?

Prime p = 2 divisibility



15

Binomial Products-Prime Factorization Patterns

- Graph of $g_2(n)$ shows the function is increasing on average. It exhibits a regular series of stripes.
- Stripe patterns are grouped by powers of 2: Self-similar behavior?
- Function $g_2(n)$ must be highly oscillatory, needed to produce the stripes. Fractal behavior?
- Harder to see: The number of stripes increases by 1 at each power of 2.

Binomial Products-3

• All patterns above can be proved (unconditionally).

• Method: We obtained an explicit formula for $\operatorname{ord}_p(\overline{G}_n)$ in terms of the base p radix expansion of n. This formula started from Kummer's formula giving the power of p that divides the binomial coefficient.

• **Theorem** (Kummer (1852)) Given a prime p, the exact power of divisibility p^e of binomial coefficient $\binom{n}{t}$ by a power of p is found by writing t, n - t and n in base p arithmetic: the power e is the number of carries that occur when adding n - tto t in base p arithmetic, using digits $\{0, 1, 2, \dots, p-1\}$, working from the least significant digit upward.

Binomial Products-4

• Theorem (L-Mehta 2015)

$$\operatorname{ord}_p(\overline{G}_n) = \frac{1}{p-1} \Big(2S_p(n) - (n-1)d_p(n) \Big).$$

where $d_p(n)$ is the sum of the base p digits of n, and $S_p(n)$ is the running sum of all base p digits of the first n-1 integers.

• One can now apply a ("well-known") result of Delange (1975):

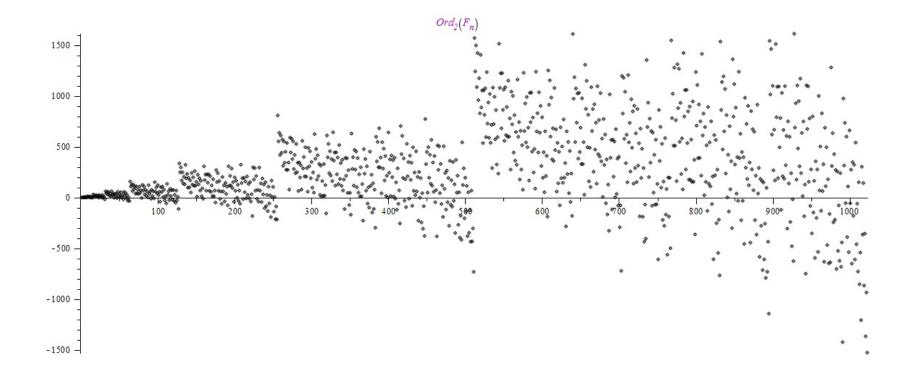
$$S_p(n) = \left(\frac{p-1}{2}\right) n \log_p n + F_p(\log_p n) n, \tag{1}$$

in which $F_p(x)$ is a continuous real-valued function which is periodic of period 1. The function $F_p(x)$ is everywhere non-differentiable. Its Fourier expansion is given in terms of the Riemann zeta function on the line Re(s) = 0 at $s_k = \frac{2\pi i k}{\log n}$.

4. Products of Farey Fractions-2

- We return to products of Farey fractions \overline{F}_n .
- The asymptotic behavior of (the logarithm of) Farey products encodes the Riemann hypothesis.
- What about divisibility patterns by a fixed prime?
- The next slide presents data on distribution of divisibility for p = 2. (Other small primes behave similarly).

Farey products- $\operatorname{ord}_2(\overline{F}_n)$ data to n=1023



20

Observations on Farey Product $\operatorname{ord}_2(\overline{F}_n)$ data

- Negative values of $f_2(n)$ seem to occur often, perhaps a positive fraction of the time. (**UNPROVED!**)
- Just before each (small) power of 2, at $n = 2^k 1$, we observe $f_2(n) \le 0$, while at $n = 2^k$ a big jump occurs (of size $\gg n \log_2 n$, leading to $f_2(n + 1) > 0$. -see next slide-(UNPROVED!)
- For small primes the quantity $f_p(n)$ appears to be both positive and negative on each interval p^k to p^{k+1} . (UNPROVED!)

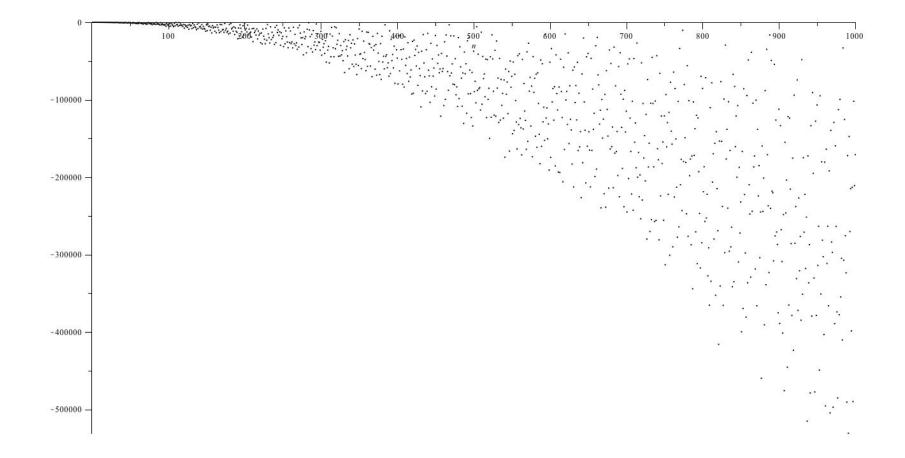
Power r	$N = 2^{r} - 1$	$\operatorname{ord}_2(\overline{F}_{2^r-1})$	$-\frac{\operatorname{ord}_2(F_{2^r-1})}{N}$	$-\frac{\operatorname{ord}_2(F_{2^r-1})}{N}$
1	1	0	<u>N</u>	$\frac{N\log_2 N}{0.0000}$
		C		
2	3	0	0.0000	0.0000
3	7	-1	0.1429	0.0509
4	15	-2	0.1333	0.0341
5	31	-19	0.6129	0.0586
6	63	-35	0.5555	0.0929
7	127	-113	0.8898	0.1273
8	255	-216	0.8471	0.1095
9	511	-733	1.4344	0.1594
10	1023	-1529	1.4946	0.1495
11	2047	-3830	1.8710	0.1701
12	4095	-7352	1.7953	0.1496
13	8191	-20348	2.4842	0.1910
14	16383	-41750	2.5484	0.1820
15	32767	-89956	2.7453	0.1830

Simplest Case: $n = p^2 - 1$

• A very special case of sign changes:

Experimentally $\operatorname{ord}_p(\overline{F}_{p^2-1}) \leq 0$ for all primes $p \leq 2000$. (UNPROVED!)

Simplest Case: $n = p^2 - 1$ data



Relating Unreduced and Reduced Farey Products:

• One can study Farey products $\operatorname{ord}_p(\overline{F}_n)$ using $\operatorname{ord}_p(\overline{G}_n)$ using Möbius inversion: We have

$$\overline{G}_n = \prod_{k=1}^n \overline{F}_{\lfloor n/k \rfloor},$$

which implies

$$\overline{F}_n = \prod_{k=1}^n (\overline{G}_{\lfloor n/k} \rfloor)^{\mu(k)}.$$

• Idea. Combine this identity with ideas from the Dirichlet hyperbola method, to get new formulation of Riemann hypothesis having (possible) *p*-adic analogues.

Relating Unreduced and Reduced Farey Products-2

• Möbius inversion gives:

$$\log(\overline{F}_n) = \sum_{k=1}^n \mu(k) \log(\overline{G}_{\lfloor n/k \rfloor})$$

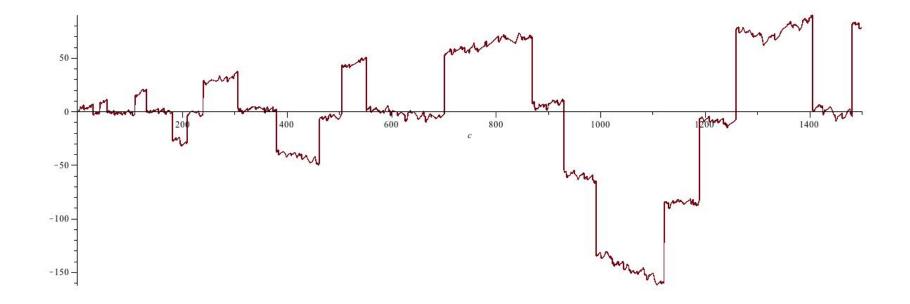
• Main Term. (concocted starting from above formula)

$$\Phi_{\infty}(\overline{F}_n) := \sum_{k=1}^{\lfloor \sqrt{n} \rfloor} \mu(k) \left(\log(\overline{G}_{\lfloor n/k \rfloor}) - \frac{1}{2} \lfloor \frac{n}{k} \rfloor^2 \right) + \sum_{k=1}^n \mu(k) \left(\frac{1}{2} \lfloor \frac{n}{k} \rfloor^2 \right),$$

• Remainder Term. (definition)

$$\overline{R}_{\infty}(n) := \log \overline{F}_n - \Phi_{\infty}(\overline{F}_n)$$

Plot of $\overline{R}_{\infty}(n)$



27

Relating Unreduced and Reduced Farey Products-2

- The term $\Phi_{\infty}(n)$ was constructed to reproduce the main term $\Phi(n) \frac{1}{2}n$ in the formula of Mikolás.
- **Theorem** (L-Mehta (2016)) If the Riemann hypothesis is true, then the remainder term has

$$\overline{R}_{\infty}(n) = O(n^{3/4 + \epsilon})$$

• Followup: A converse assertion holds: The bound

$$\overline{R}_{\infty}(n) = O(n^{3/4 + \epsilon})$$

implies the Riemann hypothesis.

Relating Unreduced and Reduced Farey Products-3

• *p*-adic analogue: Replace $\log \overline{G}_n$ with $\operatorname{ord}_p(\overline{G}_n)$. $(d_p(n) = \operatorname{sum} of base p$ arithmetic digits of n, cf. Kummer's theorem.)

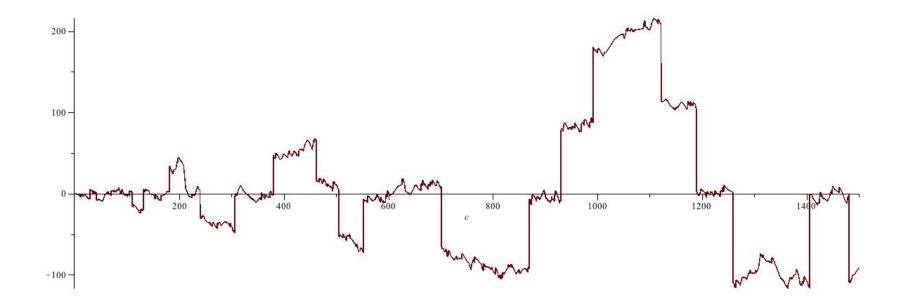
• Main Term. Set:

$$\Phi_{p,1}(\overline{F}_n) := -\frac{n+1}{p-1} \Big(\sum_{k=1}^n \mu(k) d_p(\lfloor \frac{n}{k} \rfloor) \Big) \\ + \sum_{k=1}^{\sqrt{n}} \mu(k) \left(\operatorname{ord}_p(\overline{G}_{\lfloor n/k \rfloor}) + \frac{n+1}{p-1} d_p(\lfloor \frac{n}{k} \rfloor) \right)$$

• Remainder Term. (definition)

$$R_{p,1}(n) := \operatorname{ord}_p(\overline{F}_n) - \Phi_{p,1}(\overline{F}_n)$$

Plot of 3-adic remainder term $R_{3,1}(n)$



Relating Unreduced and Reduced Farey Products-4

- The 3-adic plot, if turned upside down, has an *amazingly* similar appearance to the plot for $\overline{R}_{\infty}(n)$. (But it is slightly different.)
- Very similar appearance of the plots turns out to be related to the hyperbola method, not related to the Riemann hypothesis.
- Is the growth rate of this error term $R_{p,1}(n)$ related to the Riemann hypothesis? We don't know. (But it might be!)

Conclusion

• Since many of these problems relate to the Riemann hypothesis, proving even simple looking things may turn out to be very difficult!

• So — start scribbling...

The Last Slide...

Thank you for your attention!

Credits and References

• H. Mehta and J. C. Lagarias,

Products of binomial coefficients and unreduced Farey fractions, Intl. J. Number Theory, **12** (2016), No. 1, 57–91.

H. Mehta and J. C. Lagarias,

Products of Farey fractions, Experimental Math., (2016), to appear. (arXiv:1503.00199)

• Work of J. C. Lagarias partially supported by NSF grants DMS-1101373 and DMS-1401224.

Don't Listen to This Talk

Jeff Lagarias University of Michigan Ann Arbor, MI, USA

August 2016