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0. Richard K. Guy

Quotations from Richard Guy:
e “Problems are the lifeblood of any mathematical discipline.”
On the other hand:

o "R. K. Guy, Don’t try to solve these problems!,
American Math. Monthly 90 (1983), 35—41.

e Exordium: “Some of you are already scribbling, in spite of
the warning...."”



1. Farey Fractions

< 1 with

xS

e [ he Farey fractions F, of order n are fractions 0 <
ged(h,k) = 1. Thus

e The number |F*| of nonzero Farey fractions of order n is

P(n) := (1) + ¢(2) + - + ¢(n).
Here ¢(n) is Euler totient function. One has
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d(n) = ﬁNQ + O(N log N).



Farey Fractions-2

e [ he Farey fractions have a limit distribution as N — oco. They
approach the uniform distribution on [0, 1].

e Theorem. The distribution of Farey fractions described by
sum of (scaled) delta measures at members of Fy, weighted by

1
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T hen these measures un, converge weakly as n — oo to the
uniform (Lebesgue) measure on [0, 1].



Farey Fractions-3

e T he rate at which Farey fractions approach the uniform
distribution is related to the Riemann hypothesis!

e Theorem. (Franel's Theorem (1924)) Consider the statistic

Then as n — oo
Sy, = O(n~ 179

for each ¢ > O if and only if the Riemann hypothesis is true.

e One knows unconditionally that S,, — 0 as n — oo. This fact
IS equivalent to the Prime Number Theorem.



2. Products of Farey Fractions

e Motivation. There is a mismatch in scales between addition
and multiplication in the rationals @, which in some way
influences the distribution of prime numbers. To understand
this better one might study (new) arithmetic statistics that mix
addition and multiplication in an interesting way.

e [ he Farey fractions F, encode data that seems “additive”.
So why not study the product of the Farey fractions?
(We exclude the Farey fraction % in the product!)

e Define the Farey product F, = H;';(?) pj, where p; runs over

the nonzero Farey fractions in increasing order.



Products of Farey Fractions-2

e It turns out convenient to study instead the reciprocal Farey
product Fp, := 1/F}.

e Studying Farey products seems interesting because will be a
lot of cancellation in the resulting fractions. There are about
%nQ terms in the product, but all numerators and
denominators of Pj contain only primes < n, and there are
certainly at most n of these. So there must be enormous
cancellation in product numerator and denominator! How
much? And what is left over afterwards?

e (History) This research project was done with REU student
Harsh Mehta (now grad student at Univ. South Carolina).
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Products of Farey Fractions-3

e Question. The products of all (nonzero) Farey fractions

prEF)

give a single statistic for each n. Is the Riemann hypothesis
encoded in its behavior?

e Amazing answer: Yes!

e Theorem. (Mikolas (1952)- rephrased) Let Fy, = 1/F,.
The Riemann hypothesis is equivalent to the assertion that

09(Fn) = D(n) — on+ O(n!/2+),

(Here ®(n) ~ %nz counts the number of Farey fractions.)
The RH is encoded in the size of the remainder term.



Products of Farey Fractions-4

e For Farey products we can ask some new questions. what is
the behavior of the divisibility of F,, by a fixed prime p: What
power of p divides F,? Call if

fp(n) :=ordy(Fp)
This value can be positive or negative, because F,, is a rational
number.

e Question. Could some information about RH be encoded in
the individual functions f,(n) for a single prime p?

e Approach. Study this question experimentally by
computation for small n and small primes.

e But first—a simpler problem: unreduced Farey fractions.
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3. Products of Unreduced Farey Fractions

e Idea. Study a simpler “toy model”’, products of unreduced
Farey fractions.

e The (nonzero) unreduced Farey fractions G of order n are
all fraction50<%§1 with 1< h<k<n
( no gcd condition imposed).

1112231234

. _ ¢ - - - =-—- = - =
g4 S {473727473747 1727374}'

e [ he number of unreduced Farey fractions is

n—+1

Gal =®*(n) :=14+2434-+n=( ;

) = %n(n + 1).
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Unreduced Farey Products are Binomial
Products

e Fact. The reciprocal unreduced Farey product G, := 1/Gp is
always an integer.
(Harm Derksen and L, MONTHLY problem 11594 (2011))

e Proposition. The reciprocal product G, of unreduced Farey
fractions is the product of binomial coefficients in the n-th row
of Pascal’s triangle.

Data: Gl =1, 62 = 2, 63 = 9, é4 = 90,

Gs = 2500, ,Gg = 162000, G7 = 26471025. (On-Line

Encylopedia of Integer Sequences (OEIS): Sequence A001142.)
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Binomial Products: Questions

e What is the growth of G,, as real number?
Measure size by

goo(n) = 109(Gr).

e What is the behavior of their prime factorizations?
At a prime p, measure size by divisibility exponent

Prime factorization is:

én — Hpgp(n).
p

Here gp(n) > 0 since Gy, is an integer.
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“Unreduced Farey” Riemann hypothesis

e Theorem (“Unreduced Farey” Riemann hypothesis)
The reciprocal unreduced Farey products G,, satisfy

_ ) 1 1 1
log(Gr) = P (n) — S logn + (5 ~5 Iog(27r)) n +
+O(logn).
Here 3 — 21og(2m) ~ —0.41894 and ®*(n) = 3n(n + 1).

e This is “unreduced Farey product” analogy with Mikolas’s
formula, where RH says error term O(nl/2%t¢€).
But here we get instead a tiny error term: O(logn).

e Question. Does this error term O(logn) mean: there are no
“zeros" in the critical strip all the way to Re(s) = 0 (of some
function)?
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Prime p = 2 divisibility
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Binomial Products-Prime Factorization
Patterns

e Graph of g>(n) shows the function is increasing on average.
It exhibits a regular series of stripes.

e Stripe patterns are grouped by powers of 2:
Self-similar behavior?

e Function g>(n) must be highly oscillatory, needed to
produce the stripes. Fractal behavior?

e Harder to see: The number of stripes increases by 1 at
each power of 2.
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Binomial Products-3

e All patterns above can be proved (unconditionally).

e Method: We obtained an explicit formula for ord,(Gr) in
terms of the base p radix expansion of n. This formula started
from Kummer’'s formula giving the power of p that divides the
binomial coefficient.

e Theorem (Kummer (1852)) Given a prime p, the exact
power of divisibility p¢ of binomial coefficient (?) by a power of
p Is found by writing t, n —t and n in base p arithmetic: the
power e is the number of carries that occur when adding n — t
to t in base p arithmetic, using digits {0,1,2,--- ;p— 1}, working
from the least significant digit upward.
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Binomial Products-4

e Theorem (L-Mehta 2015)

ordy(Gn) = Ll(zsp(n) ~(n— 1)dp(n)>.

where dy(n) is the sum of the base p digits of n, and Sp(n) is
the running sum of all base p digits of the first n — 1 integers.

e One can now apply a (“well-known') result of Delange
(1975):

Sp(n) = (©

in which F,(zx) is a continuous real-valued function which is
periodic of period 1. The function F,(x) is everywhere
non-differentiable. Its Fourier expansion is given in terms of the

Riemann zeta function on the line Re(s) =0 at s, = %g]";.
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4. Products of Farey Fractions-2
e We return to products of Farey fractions F,.

e The asymptotic behavior of (the logarithm of) Farey
products encodes the Riemann hypothesis.

e \What about divisibility patterns by a fixed prime?

e [ he next slide presents data on distribution of divisibility
for p = 2. (Other small primes behave similarly).
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Farey products- ord>(F',,) data to n=1023
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Observations on Farey Product ord>(Fyp)
data

e Negative values of f>(n) seem to occur often, perhaps a
positive fraction of the time. (UNPROVED!)

e Just before each (small) power of 2, at n = 2k _ 1. we
observe f»(n) < 0, while at n = 2% a big jump occurs

(of size > nlogsn, leading to fo(n+ 1) > 0. —see next slide—
(UNPROVED!)

e For small primes the quantity fp(n) appears to be both
positive and negative on each interval p* to pFt1.
(UNPROVED!)
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_orda(For_1)

_OrdQ(FQT‘_l)

Power r | N =2" —1 | ords(For_1) N NTogo N
1 1 0 0.0000 0.0000
2 3 0 0.0000 0.0000
3 4 —1 0.1429 0.0509
4 15 —2 0.1333 0.0341
5 31 —19 0.6129 0.0586
6 63 —35 0.5555 0.0929
{ 127 —113 0.8898 0.1273
8 255 —216 0.8471 0.1095
O] 511 —733 1.4344 0.1594

10 1023 —1529 1.4946 0.1495
11 2047 —3830 1.8710 0.1701
12 4095 — 7352 1.7953 0.1496
13 8191 —20348 2.4842 0.1910
14 16383 —41750 2.5484 0.1820
15 32767 —89956 2.7453 0.1830
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Simplest Case: n = p? — 1
e A very special case of sign changes:

Experimentally ordp(Fpg_l) < 0 for all primes p < 2000.
(UNPROVED!)
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Simplest Case: n = p? — 1 data
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Relating Unreduced and Reduced Farey
Products:

e One can study Farey products ord,(F',) using ord,(Gp) using
MoODbius inversion: We have

which implies

e Idea. Combine this identity with ideas from the Dirichlet
hyperbola method, to get new formulation of Riemann

hypothesis having (possible) p-adic analogues.
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Relating Unreduced and Reduced Farey
Products-2

e MoODbius inversion gives:

n

l0g(Fpn) = ) u(k)109(G\, k)
k=1

e Main Term. (concocted starting from above formula )

(P = 3 ) (100@ ) — 3 112) + 3wk (51013),
k=1 2k k=1 2k

¢ Remainder Term. (definition)
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Relating Unreduced and Reduced Farey
Products-2

e The term ®d(n) was constructed to reproduce the main
term ®(n) — 3n in the formula of Mikolas.

e Theorem (L-Mehta (2016)) If the Riemann hypothesis is

true, then the remainder term has

Roo(n) = O(n3/41¢)

e Followup: A converse assertion holds: The bound
Roo(n) = O(n3/471¢)

implies the Riemann hypothesis.
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Relating Unreduced and Reduced Farey
Products-3

e p-adic analogue: Replace log Gy, with ordy(Gr). (dp(n) =
sum of base p arithmetic digits of n, cf. Kummer's theorem.)

e Main Term. Set:
_ n + 1
®p1(Fn) = 7 ( IPIOLAED)

>
+ 3 k) (0rdp(@ )+
k=1

(D)

e Remainder Term. (definition)
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Plot of 3-adic remainder term Rz 1(n)
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Relating Unreduced and Reduced Farey
Products-4

e [ he 3-adic plot, if turned upside down, has an amazingly
similar appearance to the plot for Roo(n). (But it is slightly
different.)

e \Very similar appearance of the plots turns out to be related to
the hyperbola method, not related to the Riemann hypothesis.

e Is the growth rate of this error term R, 1(n) related to the
Riemann hypothesis? We don’t know. (But it might be!)
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Conclusion

e Since many of these problems relate to the Riemann

hypothesis, proving even simple looking things may turn out to
be very difficult!

e SO — start scribbling...
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T he Last Slide...

Thank you for your attention!
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