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Part 0. Introduction

The integers Z = {· · · ,�2,�1,0,1,2 · · · }.

• The natural numbers are

N = {: 0,1,2. · · · }.

N>0 = {1,2,3. · · · } = N r {0}.

• (N,0,+} is an additive semigroup with unit 0.

(N>0,1, ·) is a multiplicative semigroup with unit 1.
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The Question

Vague Question. “Do addition and multiplication get along?”

Intent of Question. There is some incompatibility between the
two arithmetic operations. They act on di↵erent scales. Can
one quantify this incompatability?

• Irreducible elements of additive semigroup: there is a
unique one: namely, {1}.

• Irreducible elements of multiplicative semigroup: there are
infinitely many: prime numbers

• “1 is not a prime.”
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Answers

• Answer 0. Asked a colleague, got this answer:

“They get along, using the distributive law.”

• Answer 1. They don’t get along, in terms of a mismatch of
additive and multiplicative structures.

• Answer 2. They sort of get along: a detente.
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Part 1. Logic and Complexity Theory

• The first order theory Th(N,=,+,0,1) is called Presburger
arithmetic.

Theorem (Presburger 1929)
Presburger arithmetic is a decidable theory.

[Proof by quantifier elimination, one adds 0,1, <n .]

• The first order theory Th(N>0,=,⇥,1, pj) is called Skolem
arithmetic.

Theorem (Skolem 1930; Mostowski 1952)
Skolem arithmetic is a decidable theory.

[Proof by quantifier elimination.]
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Logic-2

First order theory Th(N,+,⇥,0,1) (with distributive laws),
both addition and multiplication, is Peano arithmetic.

Theorem (Gödel 1931) Peano arithmetic is incomplete theory

(if it is consistent). That is, certain sentences and their

negations are not provable in the theory. Also it is undecidable

to recognize which statements are theorems.

Gödel’s original incompleteness formulation was much more
general. It applies to a large class of theories.

Conclusion from LOGIC: Addition and multiplication do not
completely get along.
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Complexity Theory -1

Theorem. (Fischer and Rabin 1974 )
(1) (Upper Bound) There is a decision procedure for

Presburger arithmetic that takes (deterministic)

double exponential space complexity O
✓
exp(exp cn))

◆

to decide if a formula of length n is a theorem.

(2) (Lower Bound) Any decision procedure for Presburger

arithmetic requires at least double exponential time complexity.

There is a similar complexity result for Skolem arithmetic:
upper bound: triple exponential space complexity
lower bound: triple exponential time complexity.
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Complexity Theory-2

• The order relation < is definable in Presburger arithmetic.
(Not so for Skolem arithmetic !)

• The definable sets in Presburger arithmetic have a nice
description found by Kevin Woods (2005, 2012)
[Student of A. Barvinok ( Michigan)].

• The description of definable sets is in terms of sets of
lattice points in cones and polyhedra in Rn, n varying.

There is a nice connection with linear and integer
programming!
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Complexity Theory-3

“Finite Complexity theory”: This topic is being investigated by
my graduate student Harry Altman.

• The integer complexity of n is the smallest number of 1’s
needed to represent n using the operations of addition,
multiplication, with parentheses. Denote it: ||n||.

• Computation tree is a binary tree with operations + or ⇥ at
each vertex, and with 1’s at the leaf nodes. Convention:
Leaf nodes can be combined using + operation only.

There are finitely many trees for each n. Here ||n|| is
minimal number of leaves across all such trees.
(The maximum number is n leaves.)
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Complexity Theory-4

• Theorem. (K. Mahler & J. Popken 1953) The maximum
number m representable using exactly n 10s depends on
n (mod 3) and this m = 3n if n ⌘ 0 (mod 3).

• Their result implies: For all n � 1,

||n|| � 3 log3 n,

and equality holds , n = 3j, j � 1.

• It is easy to show that

||n||  3 log2 n.
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Complexity Theory-5

• Definition: The complexity defect of an integer is

�(n) := ||n||� 3 log3(n).

• Mahler-Popken bound implies

�(n) � 0.

Here �(3k) = 0, all k � 1.

Here �(2) = 2� 3 log3 2 ⇡ 0.107.

Here �(1) = 1.

Here �(56) = 29� 18 log3 5 ⇡ 2.6304....
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Complexity Theory-6

• It seems hard to compute ||n||; known algorithms take time
exponential in the input size: log2 n+1 in binary (bits).

• Theorem. (Mahler) ||3n|| = 3n.

• Conjecture. ||2n|| = 2n.

It is immediate that ||2n||  2n.

[Equality in Conjecture has been verified by Altman and
Zelinsky for all n  21. This problem is seriously hard.]
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Complexity Theory-7

• The defect value set D is the set of allowable values for the
defect: D := {�(n) : n � 1}

The defect value partitions N>0 into equivalence classes.
Two numbers can have the same defect only if one of them
is a power of 3 times the other (This is necessary but not
su�cient ).

• Well-Ordering Theorem. (Altman 2012+)
The defect value set D ⇢ R�0 is well-ordered with respect to
the real number ordering. It has order type the ordinal !!.

For each n � 1 the set of values in the defect set having
� < n is of order type the ordinal !n.
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Part 2: Measure Theory and Ergodic
Theory

Measure theory: Ongoing work with V. Bergelson.

Starting point: The semigroup (N,+) does not have any
translation-invariant probability measure.
Similarly, the semigroup (N, ·) has no translation-invariant
probability measure.

But both semigroups are amenable. That is, they have
(a lot of) translation-invariant finitely additive measures. These
measures are called invariant means.

An invariant mean can be constructed using a family of
exhausting sequences (Følner sets), along with a choice of
ultrafilter. There are 22

@0 such invariant means.
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Measure Theory-2

• Question. How orthogonal are additive and multiplicative
structures with respect to these invariant means?

• The upper (additive) Banach density d⇤(S) of any set S ⇢ N
is

d⇤(S) := lim sup
N!1

✓
sup
M�N

1

N
|S \ [M,M +N � 1]|.

◆

• Proposition. The upper (additive) Banach density d⇤(S)
is the supremum of m(S) taken over all additive invariant
means m. It is a translation-invariant quantity, but is not a
finitely-additive measure.
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Measure Theory -3

• Theorem. For any ✏ > 0 exists a subset S1 ⇢ N>0 having
upper additive Banach density at least 1� ✏ and with upper
multiplicative Banach density 0.

• Theorem. For any ✏ > 0 there exists a subset S2 ⇢ N>0
having upper multiplicative Banach density 1 and with
upper additive Banach density at most ✏.

• Sets above can be chosen to be universal: all invariant
means agree on their density (for + and ⇥, respectively).

Moral: Additive and Multiplicative structures are fairly
orthogonal in this weak measure theory sense.
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Ergodic Theory -1

(Joint work with Sergey Neshveyev (Oslo); on arXiv:1211.3256)

This work relates to the program of Alain Connes to understand
the Riemann hypothesis in terms of noncommutative geometry.

Connes studies a peculiar space, the quotient space AQ/Q⇤ of
the adeles by the multiplicative group Q⇤.

The space of adeles AQ over the number field Q is an additive
construction. It is the restricted direct product over the real
place and all nonarchimedean (prime) places of the completion
of Q at these places. The field Q embeds additively on the
diagonal in AQ as a discrete subgroup of the form
r = p/q 7! (r, r, r, r, ...) and the quotient AQ/Q is compact.
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Ergodic Theory -2

The multiplicative action of r 2 Q⇤also acts on the diagonal.
Multiplication by r acts by sending

↵ = (a1, a2, a3, a5, · · · ) 7! r↵ := (ra1, ra2, ra3, · · · )

The quotient is not compact.

Theorem. (Connes 1995) The action of Q⇤ on AQ is ergodic.
That is, if ⌦ is a Borel measurable subset of the space AQ that
is invariant under the Q⇤-action, i.e. r⌦ = ⌦ for all r 2 Q⇤, then
one of ⌦ and AQ r⌦ has additive Haar measure 0.

This result says that measure-theoretically the space AQ/Q⇤

acts like a point. In this sense additive and multiplicative
structures don’t match.
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Ergodic Theory -3

Theorem. (L-Neshveyev) The ergodicity result is valid for

adeles AK over an arbitrary global field K, acted on by K⇤.

A global field K is a number field or an algebraic function field
over a finite field.

This result gives a new proof of ergodicity even for K = Q.

This proof uses averaging over all Hecke characters
(grössencharacters) including the infinite order characters. On
the analytic level, this proof essentially seems equivalent to
existence of no zeros on the line Re(s) = 1 for all the Hecke
L-functions.
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Part 3: Diophantine Equations:
ABC and XYZ equations

Consider the ABC equation A+B = C. It is sometimes written

A+B + C = 0.

It is a homogeneous linear Diophantine equation.
This equation imposes an additive restriction on A,B,C.

Heuristic. Constraint imposed by linear equation imposes
conditions on the multiplicative properties of the allowed
solutions (A,B,C). The prime factorizations of (A,B,C)
cannot be arbitrary, but are restricted in some fashion.

Various di�cult conjectures in number theory make this
assertion quantitative.
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Part 3: Diophantine Equations-2

Some measures of multiplicative complexity of (A,B,C):

• The height of a triple (A,B,C) is

H := H(A,B,C) = max{|A|, |B|, |C|}

• The radical of a triple (A,B,C)

R := R(A,B,C) =
Y

p|ABC

p

• The smoothness of a triple (A,B,C) is

S := S(A,B,C) = max{p : p divides ABC}.
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Diophantine Equations-3

• Example. (A,B,C) = (2401,�2400,�1)

• 2401 = 74

2400 = 25 · 3 · 52
1 = 1

• The height is H = 2401.

• The radical is R = 2 · 3 · 5 · 7 = 210.

• The smoothness is S = 7.
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Diophantine Equations-4

The ABC Conjecture concerns the relation of the height and
the radical of relatively prime triples (A,B,C)
(That is, we require gcd(A,B,C) = 1.)

ABC Conjecture. For each ✏ > 0 there are only finitely many
relatively prime solutions (A,B,C) with radical

R  H1�✏.

Shinichi Mochizuki (RIMS-Kyoto) has announced a proof of the
ABC Conjecture. If his proof holds up, this will be the theorem
of the century! (It implies results of several previous Fields
Medal winners.) Current status of proof: unclear.
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Diophantine Equations-5

• ABC measure of inverse quality is:

Q�1(A,B,C) :=
logR(A,B,C)

logH(A,B,C)

• ABC Conjecture says for each ✏ > 0 only finitely many
(relatively prime) triples (A,B,C) have inverse quality
Q�1(A,B,C) < 1� ✏.

• Current World Record for smallest inverse quality:

2 + 310 · 109 = 235.

It has Q�1(2,310 · 109,�235) = 0.6135...
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Diophantine Equations-6

(Joint work with K. Soundararajan (Stanford)).

Consider a di↵erent problem: the relation of the height and the
smoothness of relatively prime triples.

Basic Problem. How small can be the smoothness S be as a
function of the height H,

so that:

There are (still) infinitely many relatively prime triples (A,B,C)
with these values satisfying A+B + C = 0?

We formulate the XYZ Conjecture concerning this relation.
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Diophantine Equations-7

• To avoid confusion with ABC Conjecture, we define the
XY Z equation to be:

X + Y + Z = 0.

• XYZ Conjecture. There is a positive constant ↵0 such that
for any positive ✏ the XY Z equation X + Y + Z = 0 has
finitely many solutions to

S  (logH)↵0�✏.

and infinitely many solutions to

S  (logH)↵0+✏.
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Diophantine Equations-8

• Definition. Given a (primitive) solution (X,Y, Z) to the
XY Z equation, assign it the smoothness exponent

↵0(X,Y, Z) :=
logS(X,Y, Z)

log logH(X,Y, Z)
.

This is the XY Z analogue of inverse quality Q�1(X,Y, Z).

• The limiting exponent in the XY Z Conjecture is:

↵0 := lim inf
H(X,Y,Z)!1

↵0(X,Y, Z)

• The XY Z Conjecture asserts that ↵0 is positive and finite.
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Diophantine Equations-9

• Probabilistic Heuristic: Best constant is ↵0 = 3/2.

• This prediction is based on the distribution of numbers
having only small prime factors. Counting function for this
is :  (x, y), which counts numbers below x having all prime
factors below y.

The study of this function is called  (x, y)-ology.
This leads to expect solutions to the XY Z equation when

 (x, y)3 � x.

One finds that the minimal y is

y = (logx)3/2+o(1).
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Diophantine Equations-10

Example Revisited: (X,Y, Z) = (2401,�2400,�1).

height H(X,Y, Z) = 2401

smoothness S(X,Y, Z) = 7

The smoothness exponent is:

↵0(X,Y, Z) :=
logS(X,Y, Z)

log logH(X,Y, Z)
=

log7

log log2401
= 0.94828...

This is an “unusually lucky” example. The heuristic for
X + Y = 1 predicts limiting value ↵⇤

0 = 2.
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Diophantine Equations -11

• Alphabet Soup Theorem (L.-Soundararajan 2011, 2012)
ABC + GRH implies XY Z.

This is a conditional result:

• Lower Bound Theorem
ABC Conjecture =) the XY Z constant ↵0 � 1.

• Upper Bound Theorem
Generalized Riemann Hypothesis (GRH) =)
the XY Z constant ↵0  8.
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Diophantine Equations-12

• The exact constant ↵0 is not determined by the
Alphabet Soup Theorem, only its existence is asserted.

• Lower Bound Theorem assuming ABC Conjecture: This is
Easy Part.

• Upper Bound Theorem assuming GRH:
This is Harder Part.

Stronger result: Get asymptotic formula for number of
primitive solutions, valid for ↵0 > 8. Proof uses
Hardy-Littlewood method (circle method).
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Diophantine Equations-13

Mysterious XY Z Examples: Singular moduli (of elliptic curves)

• Let ⌧ = x+ iy 2 C lie in the upper half plane H. Set
q = e2⇡i⌧ so that |q| < 1 lies in the unit disk.

• The elliptic modular function j(⌧) generates the field of
rational functions on the modular surface H/PSL(2,Z). It
has a Fourier expansion

j(⌧) =
1

q
+744+ 196884q +21493760q2 + · · ·
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Diophantine Equations-14

Definition. A singular modulus is a value ⌧ that is an algebraic
integer in an imaginary quadratic field Q(

p
�d) that falls in the

upper half plane Im(⌧) > 0.

H/PSL(2,Z) is moduli space parametrizing elliptic cuves.
A singular modulus ⌧ corresponds to an elliptic curve having
complex multiplication (CM) by an order Z[1, ⌧ ] in Q(

p
�d).

CM Theorem. (Kronecker, Fueter, Weber, ...)
The value j(⌧) of a singular modulus ⌧ is an algebraic integer
generating a field that is an abelian extension of the number
field Q(

p
�d). When ⌧ corresponds to CM by the full ring of

integers in Q(
p
�d), then this field is the Hilbert class field of

Q(
p
�d).
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Diophantine Equations-15

• If Q(
p
�d) has class number one, which happens exactly for

d = 3,4,7,8,11,19,43,67,163, then:
j(⌧) is an ordinary integer.

• The di↵erences of singular moduli j(⌧1)� j(⌧2) have
remarkable properties!

• Gross and Zagier (1985) showed that the di↵erences of
singular moduli have norms (as algebraic integers) that
factorize completely into products of small primes. They
gave an explicit formula for the factorization.
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Diophantine Equations-16

• We obtain an XYZ equation using di↵erences of three
singular moduli:

(j(⌧1)� j(⌧2)) + (j(⌧2)� j(⌧3)) + (j(⌧3)� j(⌧1)) = 0.

If these come from imaginary quadratic fields of class
number one, get integers!

• Example Take

⌧1 =
1+

p
�3

2
, ⌧2 =

1+
p
�67

2
, ⌧3 =

1+
p
�163

2
.
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Diophantine Equations-17

• Then

j(⌧1)� j(⌧2) = 215 · 33 · 53 · 113

j(⌧2)� j(⌧3) = 215 · 35 · 53 · 72 · 13 · 139 · 331

j(⌧3)� j(⌧1) = �218 · 33 · 53 · 233 · 293

• Removing the common factor 215 · 33 · 53, we get a
smooth solution

(X,Y, Z) = (1331,2373926373,�2373927704)

to X + Y + Z = 0.
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Diophantine Equations-18

This solution has height H = 2373927704, smoothness
S = 331.

Its smoothness exponent is:

↵0(X,Y, Z) =
log331

log log2373927704
⇡ 1.88863.

This example has radical

R = 184312146018,

which is rather larger than H. Not a good example for the
ABC Conjecture.
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Diophantine Equations-19

• Ongoing work: Reformulation of XY Z Conjecture in terms
of elliptic curves over Q. (with J. Weigandt )

• Definition: The smoothness of an elliptic curve (over Q) is
the largest prime at which it has bad reduction.
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Conclusion-1

The primes are the generators of the semigroup (N>0,⇥).

Fact. The density of primes, and their location, is influenced
by the additive structure. Namely, each arithmetic progression

P (a, b) = {an+ b : n 2 Z}

for which greatest common divisor (a, b) > 1, can contain
at most one prime, and this occurs only when gcd(a, b) = p.

Heuristic. To avoid all these arithmetic progressions,
the set of primes is forced to be thin (density ⇠ x/ logx),
and also to have irregular fluctuations.
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Conclusion-2

This avoidance of arithmetic progressions is the basis of sieve
methods in number theory.

Question. Does this avoidance encode the essential di�culty

behind the Riemann hypothesis?

Summary. Addition and multiplication do not quite get along.
In some remarkable way addition forces irregular behavior in
multiplication. This talk has described their interaction across
several di↵erent fields.

Thank You!
40



References

• H. Altman and J. Zelinsky, Numbers with integer
complexity close to the lower bound, INTEGERS,
Volume 12A (John Selfridge Memorial Volume) (2012),
No.1.

• J. Lagarias and S. Neshveyev , Ergodicity of the action of
K⇤ on AK, arXiv:1211.3256

• J. Lagarias and K. Soundararajan, Smooth solutions to the
abc equation: the xyz conjecture, J. Theor. Nombres
Bordeaux 23 (2011), No. 1, 209–234.

41



• J. Lagarias and K. Soundararajan, Counting smooth
solutions to the equation A+B = C, Proc. London Math.
Soc. 104 (2012), 770–798.

• P. Kurlberg, J. Lagarias, C. Pomerance, The maximal
density of product-free sets in Z/nZ, IMRN,
Online access Feb. 14, 2012, doi:10.1093/imrn/rns014.

• Work partially supported by NSF grants DMS-0801029 and
DMS-1101373


