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Part I. The Harmony of the Spheres

Pythagoras (c. 570–c. 495 BCE)

• To Pythagoras and followers is attributed: pitch of note of
vibrating string related to length and tension of string
producing the tone. Small integer ratios give pleasing
harmonics.

• Pythagoras or his mentor Thales had the idea to explain
phenomena by mathematical relationships. “All is number.”

• A fly in the ointment: Irrational numbers, for example
p
2.
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Harmony of the Spheres-2

• Q. “Why did the Gods create us?”
A. “To study the heavens.”.

• Celestial Sphere: The universe is spherical: Celestial
spheres. There are concentric spheres of objects in the sky;
some move, some do not.

• Harmony of the Spheres. Each planet emits its own unique
(musical) tone based on the period of its orbital revolution.

Also: These tones, imperceptible to our hearing, a↵ect the
quality of life on earth.
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Democritus (c. 460–c. 370 BCE)

Democritus was a pre-Socratic philosopher, some say a disciple
of Leucippus. Born in Abdera, Thrace.

• Everything consists of moving atoms. These are
geometrically indivisible and indestructible.

• Between lies empty space: the void.

• Evidence for the void: Irreversible decay of things over a long
time, things get mixed up. (But other processes purify things!)

• “By convention hot, by convention cold, but in reality atoms
and void, and also in reality we know nothing, since the truth is
at bottom.”

• Summary: everything is a dynamical system!
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Democritus-2

• The earth is round (spherical). The universe started as
atoms churning in chaos till collided into larger units, like
the earth.

• There are many worlds. Every world has a beginning and an
end.

• Democritus wrote mathematical books, of which we know
titles (all lost): On Numbers, On Tangencies, On
Irrationals.
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Plato (428–348 BCE)

Ideal education. The seven liberal arts:

• Trivium: (“the three roads”) Grammar, logic (dialectic), and
rhetoric.

• Quadrivium: (“the four roads”) arithmetic, geometry, music
and astronomy

Liberal arts were codified in the classical world:
• Marcus Terentius Varro (116 BCE- 27 BCE, Rome)
• Martianus Capella, (fl. 410-420 CE, Carthage)
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Proclus (417–485 CE)

Neoplatonist philosopher, born in Constantinople, wrote a
commentary on the Elements of Euclid (fl. c. 300 BCE,
Alexandria). He said:

• The Pythagoreans considered all mathematical science to
be divided into four parts: one half they marked o↵ as
concerned with quantity, the other half with magnitude;
and each of these they posited as twofold.

• A quantity can be considered in regard to its character by
itself or in its relation to another quantity, magnitudes as
either stationary or in motion.
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Proclus : Quadrivium

• Arithmetic, then, studies quantities as such,

• Music, the relations between quantities,

• Geometry, magnitude at rest,

• Spherics, [Astronomy] magnitude inherently moving.
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Johannes Kepler(1571–1630)

Looking for patterns in the heavens:

• Mysterium Cosmographium (1596) [“The Cosmographic
Mystery”] Orbital sizes of the five planets determined by
inscribed regular polyhedra [He follows a Platonist cosmology,
using polyhedra and spheres]

• Astronomia Nova (1609) [“A New Astronomy”]
First two Kepler laws:
1. planets have elliptic orbits with sun at one locus,
2. line segment joining planet and sun sweeps out equal areas
in equal times.

• Made nearly 40 attempts for orbit of Mars, elliptic orbit was
final try.
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Johannes Kepler-3

• Astronomia Nova, (1609) Introduction

“Advice for idiots. But whoever is too stupid to understand
astronomical science, or too weak to believe Copernicus
without [it] a↵ecting his faith, I would advise him that, having
dismissed astronomical studies, and having damned whatever
philosophical studies he pleases, he mind his own business and
betake himself home to scratch in his own dirt patch.”

• Translation: W. H. Donaghue, Johannes Kepler-New
Astronomy, Cambridge U. Press 1992, page 65.
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Johannes Kepler-4

• Epitome astronomiae Copernicanae (1615–1621) [“Epitome
of Copernican Astronomy”]
Made improvements on Copernican theory.

• Harmonicis Mundi (1619) [“Harmony of the World”]
Discusses “music of the spheres”, regular solids, their relation
to music.

Book V applies to planetary motion, Kepler’s third law:
3. square of periodic times proportional to cube of planetary
mean distances.

In this book, Kepler computed many statistics, comparing
orbital periods of various kinds. For some statistics he found no
harmony, and said so.
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Kepler’s Third Law-Modern Data

Planet a (A. U.) T (years) T2/a3

Mercury 0.38710 0.24085 1.0001
Venus 0.72333 0.61521 0.9999
Earth 1.00000 1.00000 1.00000
Mars 1.52369 1.88809 1.0079

Jupiter 5.2028 11.8622 1.001
Saturn 9.540 29.4577 1.001

TABLE Modern Values for Orbital Data: a= average of
perihelion+ apehelion

• Source: Stephen Weinberg, To Explain the World,
Harper-Collins: New York 2015, page 171.
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Johannes Kepler’s Dream-
“Somnium”(1634)

• Kepler’s original conversion to Copernican theory: “What
would the motion of the planets in the sky look like if one were
looking from the moon?”

• This thought experiment turned out fruitful.

• Moral. Examining the consequences of looking at old data
from a new viewpoint can lead to new research discoveries.
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Part 2. Lester Ford and Ford Circles

Lester R. Ford (1888-1967) grew up in Missouri. Graduated M.
A. from Univ. of Missouri-Columbia 1912 [Discontinuous
functions]. Another M. A. from Harvard (1913) [Maxime
Bôcher, advisor]
Then Univ. of Edinburgh, Scotland 1915–1917.

• L. R. Ford, Introduction to the theory of automorphic
functions, Edinburgh Math. Tract. No. 6, 1915.

• L. R. Ford, Rational approximations to irrational complex
numbers, Transactions of the AMS 19 (1918), 1–42.

• L. R. Ford, Elementary Mathematics for Field Artillery,
Field Artillery O�cer’s Training School, Camp Zachary Taylor,
Kentucky, 1919.
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Lester Ford-2

• L. R. Ford, Automorphic Functions, McGraw-Hill 1929.

• L. R. Ford, Fractions, American Math. Monthly 45 (1938),
586–601.

• Editor, American Mathematical Monthly 1942–1946.

• President of MAA, 1947–1948.

• His son Lester R. Ford, Jr. is known for network flow
algorithms (Ford-Fulkerson algorithm).
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Ford Circles

Lester Ford, Fractions, American Math. Monthly 45 (1938),
586–601.

“The idea of representing a fraction by a circle is one which the
author arrived at by an exceedingly circuitous journey. It began
with the Group of Picard. In the treatment of this group as
carried on by Bianchi, in accordance with the general ideas of
Poincaré, certain invariant families of spheres appear. These
spheres, which are found at the complex rational fractions, [...]
suggest analogous known invariant families of circles at real
rational points in the the theory of the Elliptic Modular Group
in the complex plane. Finally it became plain that this intricate
sca↵olding of group theory could be dispensed with and the
whole subject be built up in a completely elementary fashion.”
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Ford Spheres- Picard Group SL2(Z[i])
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Ford Circles-2

• The Ford circle C(pq) attached to rational p
q

(in lowest terms gcd(p, q) = 1) is the circle tangent to the
x-axis having radius 1

2q2
.

• All Ford circles are disjoint.

• The neighboring Ford circles are those Ford circles C(p
0

q0)
that are tangent to it. They form a singly infinite chain...
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Farey Sum-1

• Two touching Ford cycles at p1
q1

and p2
q2

define a third Ford
circle touching each of them and the x-axis. It has value

p3
q3

:=
p1 + q1
p2 + q2

.

• We call this combination

p1
q1

�
p2
q2

:=
p1 + p2
q1 + q2

the Farey sum operation.
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p1
q1

p2
q2

p1 + p2
q1 +q2

Farey Sum
p1
q1

�
p2
q2

�
p1 + p2
q1 +q2
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Ford Circles-Geodesic Flow and Continued
Fractions

• A vertical line L going to a value x = ✓ on the x-axis, it is a
geodesic in the hyperbolic metric on the upper half plane.

• The “geodesic flow” of a point along the line L defines an
orbit of a dynamical system, described by the sequence of
Ford cycles it cuts through. It is closely related to the
continued fraction algorithm.

• Each new circle cut along the line produces a good rational
approximation to ✓, satisfying

|✓ �
p

q
| 

1

q2
.
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Geodesic

1
t θ �t - 1

t �
0 t

z

θ z � θ + ⅈ
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Ford Circles- Horocycle Flow and Farey
Fractions

• When L is a horizontal line at a vertical height y, it is called
a horocycle. The flow of a point along a horizontal line also
defines an orbit of a dynamical system, called the
“horocycle flow”.

• The Ford circles cut through by such a horocycle L are
related to Farey fractions at value N ⇡ p

y.
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Horocycle

1 t
0 1 z

z � � y
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Apollonian Circle Packing: Strip Packing
(0,0, 1,1)
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Apollonian Circle Packing: (-1,2,2,3)
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Part 3. Farey Tree

The Farey tree is an infinite tree of rational numbers connected
by the Farey sum operation.

It is related to:

(1) Stern’s diatomic sequence,

(2) Geodesic Flow;

(3) The continued fraction algorithm.
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Farey Tree-1

30



Farey Tree-2

• The Farey tree computes values at each level using the
Farey sum (mediant) of two adjacent at earlier levels:
a
c �

b
d = a+b

c+d.

• The leaves of the Farey tree at levels below a given k

respect the ordering < on the real line.

• The Farey tree forms “half” of a larger tree that
enumerates all positive rationals. The other “half” gives
the rationals larger than one. The new root node is 1

1.
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Full Farey Tree: Positive Rationals
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Stern’s Diatomic Sequence

Moritz A. Stern, Ueber eine zahlentheoretische Funktion,
J. reine Angew Math. 55 (1858), 193–220.

• The sequence an begins

0,1; 1,2; 1,3,2,3; 1,4,3,5,2,5,3,4; 1,5,4,7,3,8, ...

• It is determined by the initial conditions

a0 = 0 a1 = 1

and the recursion rules

a2n = an

a2n+1 = an + an+1
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Stern’s Diatomic Sequence-2

A very useful reference:

Sam Northshield, Stern’s Diatomic Sequence
0,1,1,2,1,3,2,3,1,4, ..., Amer. Math. Monthly 117 (2010),
581–598.

• The sequence an breaks into blocks of length 2k (indicated
by semicolons) which give the sequence of denominators of
the Farey tree at the k-th level.

• Sequence of numerators of the Farey tree can also be
understood.
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Stern’s Diatomic Sequence: Plot
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Calkin-Wilf Tree

A di↵erent, related ordering of positive rationals is the
Calkin-Wilf tree. See: Neil Calkin and Herb Wilf, Recounting
the rationals, Amer. Math. Monthly 107 (2000), 360–363

• This tree lists all positive rationals in a di↵erent order than
in the full Farey tree. The totality of elements on each level
also are same (as a set), and the denominators are in same
order. However the numerators appear in a di↵erent order;

• The order of tree elements from left to right (below a fixed
level) are fractions an/an+1 with an being Stern’s diatomic
sequence.
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Calkin-Wilf Tree
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Farey Tree and Question-Mark Function

Theorem. (1) A uniform delta function measure (equally
weighted point masses) on the values of the Farey tree at levels
below k converge (weakly) as k ! 1 to a limit probability
measure µ on [0,1].

(2) The limit measure µ is purely singular measure. It is
supported on a set S of Hausdor↵ dimension less than 1. (It is
between 0.8746 and 0.8749)

(3) The cumulative distribution function F (x) =
R x
0 dµ(t) is the

Minkowski question-mark function.
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Minkowski Question-Mark Function-1
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Minkowski Question-Mark Function-2

• Hermann Minkowski (1904) introduced this function for a
di↵erent reason. He showed it maps rational numbers to
rationals or to real-quadratic irrational numbers.

• Suppose 0 < ✓ < 1 has continued fraction expansion

✓ = [0, a1, a2, a3, ....] =
1

a1 +
1

a2 +
1

a3 + · · ·

.

Then

?(✓) := 21�a1 � 21�a1�a2 + 21�a1�a2�a3 � 21�a1�a2�a3�a4 + · · ·
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Continued Fractions and Astronomical
Dynamics

• Some dissipative dynamical processes seem to exhibit
behavior with a series of bifurcations at small rational numbers
following the Farey tree structure.

• These occur in “mode-locking” processes in astronomy,
leading to “harmony of spheres” where certain orbital
parameters of di↵erent objects satisfy linear dependencies with
small rational numbers.

• Resonances given by small rational numbers can also lead to
certain orbit parameters being unstable and to regions being
cleared of objects. Saturn’s rings exhibit various gaps perhaps
explainable by such mechanisms.
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Saturn’s Rings
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Part 4. Farey Fractions

• The Farey fractions Fn of order n are fractions 0  h
k  1 with

gcd(h, k) = 1. Thus

F4 = {
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1
}.

The non-zero Farey fractions are

F⇤
4 := {

1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1
}.

• The number |F⇤
n| of nonzero Farey fractions of order n is

�(n) := �(1) + �(2) + · · ·+ �(n).

Here �(n) is Euler totient function. One has

�(n) =
3

⇡2N
2 +O(N logN).

43



Farey Fractions-2

• The Farey fractions have a limit distribution as N ! 1. They
approach the uniform distribution on [0,1].

• Theorem. The distribution of Farey fractions described by
sum of (scaled) delta measures at members of Fn, weighted by

1
�(n). Let

µn :=
1

�(n)

�(n)X

r=1
�(⇢r)

Then these measures µn converge weakly as n ! 1 to the
uniform (Lebesgue) measure on [0,1].
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Farey Fractions-3

• The rate at which Farey fractions approach the uniform
distribution is related to the Riemann hypothesis!

• Theorem. (Franel’s Theorem (1924)) Consider the statistic

Sn =
�(n)X

j=1
(⇢j �

j

�(n)
)2

Then as n ! 1

Sn = O(n�1+✏)

for each ✏ > 0 if and only if the Riemann hypothesis is true.

• One knows unconditionally that Sn ! 0 as n ! 1. This fact
is equivalent to the Prime Number Theorem.
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Part 5. Products of Farey Fractions

• There is a mismatch in scales between addition and
multiplication in the rationals Q, which in some way influences
the distribution of prime numbers. To understand this better
one might study (new) arithmetic statistics that mix addition
and multiplication in an interesting way.

• The Farey fractions Fn encode data that seems “additive”.
So why not study the product of the Farey fractions?
(We exclude the Farey fraction 0

1 in the product!)

• Define the Farey product Fn :=
Q�(n)
r=1 ⇢r, where ⇢r runs over

the nonzero Farey fractions in increasing order.
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Products of Farey Fractions-2

• It turns out convenient to study instead the reciprocal Farey
product Fn := 1/Fn.

• Studying Farey products seems interesting because will be a
lot of cancellation in the resulting fractions. There are about
3
⇡2n

2 terms in the product, but all numerators and
denominators of ⇢r contain only primes  n, and there are
certainly at most n of these. So there must be enormous
cancellation in product numerator and denominator!

• This research project was done with REU student Harsh
Mehta (now grad student at U. South Carolina). Questions
about Farey products arose in discussion with Harm Derksen
(Michigan) some years ago.
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Products of Farey Fractions-3

• Idea. The products of all (nonzero) Farey fractions

Fn :=
Y

⇢r2F⇤
n

⇢r.

give a single statistic for each n. Is the Riemann hypothesis
encoded in its behavior?

• Amazing answer: Mikolás (1952) Yes!

• Theorem. (Mikolás (1952)- rephrased) Let Fn = 1/Fn.
The Riemann hypothesis is equivalent to the assertion that

log(Fn) = �(n)�
1

2
n+O(n1/2+✏).

(Here �(n) ⇠ 3
⇡2n

2 counts the number of Farey fractions.) The
RH concerns the size of the remainder term.
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Products of Farey Fractions-4

• For Farey products we can ask some new questions: what is
the behavior of the divisibility of Fn by a fixed prime p: What
power of p divides Fn? Call if

fp(n) := ordp(Fn)

This value can be positive or negative, because Fn is a rational
number in general.

• Could some information about RH be encoded in the
individual functions fp(n) for a single prime p?

• Study this question experimentally by computation for small n
and small primes.
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Farey products- ord2(Fn) data to n=1023
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Observations on ord2(Fn) data

• Negative values of f2(n) occur often, perhaps a positive
fraction of the time.

• Just before each (small) power of 2, at n = 2k � 1, we
observe f2(n)  0, while at n = 2k a big jump occurs
(of size � n log2 n, leading to f2(n+1) > 0.

• For small primes discover an interesting fractal-like pattern of
oscillations. The quantity fp(n) appears to be both positive
and negative on each interval pk to pk+1.
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Power r N = 2r � 1 ord2(F2r�1) �ord2(F2r�1)
N �ord2(F2r�1)

N log2N
1 1 0 0.0000 0.0000
2 3 0 0.0000 0.0000
3 7 �1 0.1429 0.0509
4 15 �2 0.1333 0.0341
5 31 �19 0.6129 0.0586
6 63 �35 0.5555 0.0929
7 127 �113 0.8898 0.1273
8 255 �216 0.8471 0.1095
9 511 �733 1.4344 0.1594

10 1023 �1529 1.4946 0.1495
11 2047 �3830 1.8710 0.1701
12 4095 �7352 1.7953 0.1496
13 8191 �20348 2.4842 0.1910
14 16383 �41750 2.5484 0.1820
15 32767 �89956 2.7453 0.1830
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More Observations

• A very special case:

Experimentally ordp(Fp2�1)  0 for all primes p  2000.

• We cannot prove this holds in general!

• Since some of these problems relate to the Riemann
hypothesis, even simple looking things may turn out very
di�cult!
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Toy Model: Products of Unreduced Farey
Fractions

• Idea. Why not study a simpler “toy model”, products of
unreduced Farey fractions?

• The (nonzero) unreduced Farey fractions G⇤
n of order n are

all fractions 0  h
k  1 with 1  h  k  n

( no gcd condition imposed).

G⇤
4 := {

1

4
,
1

3
,
1

2
,
2

4
,
2

3
,
3

4
,
1

1
,
2

2
,
3

3
,
4

4
}.

• The number of unreduced Farey fractions is

|G⇤
n| = �⇤(n) := 1+ 2+ 3+ · · ·+ n =

⇣n+1

2

⌘
=

1

2
n(n+1).
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Unreduced Farey Products are Binomial
Products

• The reciprocal unreduced Farey product Gn := 1/Gn is always
an integer.

• Proposition. The reciprocal product Gn of unreduced Farey
fractions is the product of binomial coe�cients in the n-th row
of Pascal’s triangle.

Gn :=
nY

k=0

⇣n
k

⌘

Data: G1 = 1, G2 = 2, G3 = 9, G4 = 96,
G5 = 2500, , G6 = 162000, G7 = 26471025. (On-Line
Encylopedia of Integer Sequences (OEIS): Sequence A001142.)
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Binomial Products

• Can now ask same questions as for Farey products.

• We consider the size of Gn as real numbers.
Measure size by

g1(n) := log(Gn).

• We consider behavior of their prime factorizations.
At a prime p, measure size by divisibility exponent

gp(n) := ordp(Gn).

Factorization is: Gn =
Q
p p

gp(n).
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“Unreduced Farey” Riemann hypothesis

• Theorem (“Unreduced Farey” Riemann hypothesis)
The reciprocal unreduced Farey products Gn satisfy

log(Gn) = �⇤(n)�
1

2
n logn+

✓1
2
�

1

2
log(2⇡)

◆
n+

+O(logn).

Here 1
2 � 1

2 log(2⇡) ⇡ �0.41894.

• This is “Unreduced Farey” analogy with Mikoläs formula,
where RH says error term O(n1/2+✏). In fact: O(logn).

• This error term O(logn) says: there are no “zeros” in the
critical strip all the way to Re(s) = 0! (of some function)
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Prime p = 2
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Binomial Products-Prime Factorization
Patterns

• Graph of g2(n) shows the function is increasing on average.
It exhibits a regular series of stripes.

• Stripe patterns are grouped by powers of 2:
Self-similar behavior?

• Function g2(n) must be highly oscillatory, needed to
produce the stripes. Fractal behavior?

• Harder to see: The number of stripes increases by 1 at
each power of 2.
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Binomial Products-3

• We obtained an explicit formula for ordp(Gn) in terms of the
base p radix expansion of n. This formula started from
Kummer’s formula giving the power of p that divides the
binomial coe�cient.

• Theorem (Kummer (1852)) Given a prime p, the exact
divisibility pe of

⇣
n
t

⌘
by a power of p is found by writing t, n� t

and n in base p arithmetic. Then e is the number of carries
that occur when adding n� t to t in base p arithmetic, using
digits {0,1,2, · · · , p� 1}, working from the least significant digit
upward.
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Binomial Products-4

• Theorem (L.- Mehta 2015)

ordp(Gn) =
1

p� 1

✓
2Sp(n)� (n� 1)dp(n)

◆
.

where dp(n) is the sum of the base p digits of n, and Sp(n) is
the running sum of the base p digits of the first n� 1 integers.

• One can now apply a result of Delange (1975):

Sp(n) =
⇣p� 1

2

⌘
n logp n+ Fp(logp n)n, (1)

in which Fp(x) is a continuous real-valued function which is
periodic of period 1. The function Fp(x) is continuous but
everywhere non-di↵erentiable. Its Fourier expansion is given in
terms of the Riemann zeta function on the line Re(s) = 0.
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Binomial Products-5

• Further work: One can study Farey products ordp(Fn) using
ordp(Gn) using Möbius inversion: We have

Gn =
nY

k=1
F bn/kc,

which implies

Fn =
nY

k=1
(Gbn/kc)

µ(k).

• By combining this identity with ideas from the Dirichlet
hyperbola method, we obtained some striking experimental
empirical results, possibly relating ordp(Fn) for a single prime p

(e.g. p = 2) to the Riemann hypothesis.
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The Last Slide...

Thank you for your attention!
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Calkin-Wilf Tree: All Positive Rationals
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Xenophanes (c. 570- c. 478 BCE)

Xenophanes was a pre-Socratic philosopher.

• “The substance of God is spherical, in no way resembling
man. He is all eye and all ear, but does not breathe; he is
the totality of mind and thought, and is eternal.”

• Empedocles said: “It is impossible to find a wise man.”

Xenophanes replied: “Naturally, for it takes a wise man to
recognize a wise man!”

• Source: Diogenes Laertius, Lives of the Philosophers, Book
IX, 18–20. [Second century ACE]
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