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Topics Covered

• Part I. Erdős Problem on ternary expansions of powers of 2

• Part II. Real number generalization and a 3-Adic
generalization

• Part III. Intersections of translates of 3-adic Cantor sets
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Part I. Erdős Ternary Digit Problem

• Problem. Let (M)3 denote the integer M written in ternary
(base 3). How many powers 2n of 2 omit the digit 2 in
their ternary expansion?

•
Examples Non-examples
(20)3 = 1 (23)3 = 22
(22)3 = 11 (24)3 = 121
(28)3 = 100111 (26)3 = 2101

• Conjecture. (Erdős 1979) There are no solutions for n � 9.
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Paul Erdős
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Heuristic for Erdős Ternary Problem

• The ternary expansion (2n)3 has about

↵0n digits

where

↵0 := log3 2 =
log2

log3
⇡ 0.63091

• Heuristic. If ternary digits were picked randomly and
independently from {0,1,2}, then the probability of
avoiding the digit 2 would be ⇡

⇣
2
3

⌘↵0n
.

• These probabilities decrease exponentially in n, so their sum
converges. Thus expect only finitely many n to have
expansion [2n]3 that avoids the digit 2.
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Original Erdős (et al.) Problem

• Problem When is the binomial coe�cient
⇣
2n
n

⌘
squarefree?

• Known squarefree solutions:
⇣
2
1

⌘
= 2

✓4

2

◆
= 6

✓8

4

◆
= 70

• Conjecture (Erdős, Graham, Rusza and Straus (1975))
There are no squarefree solutions for n � 5.
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Original Erdős Problem-2

• Lucas’s theorem (1878) gives a criterion for a prime p to
divide a binomial coe�cient

⇣
k
l

⌘
in terms of the digits in the

base p expansion of k and l.

• Lucas’s theorem shows the prime 2 always divides
⇣
2n
n

⌘
, for

n � 1.

• Question: When does 22 = 4 NOT divide
⇣
2n
n

⌘
?

• Answer: This happens only when n = 2k for some k � 0.
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Original Erdős et al Problem-3

• Erdős then asked: What happens for the prime 3?

• Answer: Lucas’s theorem shows 3 does not divide
✓

2k+1

2k

◆
if

and only if the base 3 expansion of 2k omits the digit 2.

• This observation motivated Erdős’s 1979 ternary digit
conjecture.
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Original Erdős et al Problem-4

• One needs more than the ternary digit conjecture to settle
squarefree binomial coe�cient problem. One needs a

criterion for 32 = 9 to divide
✓

2k+1

2k

◆
!

• Su�cient condition for 32 to divide
⇣
2n
n

⌘
: at least two 20s

in the ternary number (2n)3.

• Thus: should determine all powers (2n)3 with: at most one
2 in their ternary expansion.
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Original Erdős et al Problem-5

• Don’t bother! The squarefree binomial coe�cient
conjecture is completely solved!

• This was shown for all su�ciently large n by Sarkozy
(1985). Later shown for all n � 5, independently, by
Velammal (1995) and Granville and Ramaré (1996).

• However: Erdős ternary expansion conjecture is unsolved!

• Assertion: Ternary expansion conjecture appears very hard!
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Narkiewicz’s Result

• Definition. The Erdős intersection set is

N(1) := {n � 1 : ternary expansion (2n)3
omits the digit 2}

• Theorem (Narkiewicz (1980)) (Count Bound) The set of
integers in the Erdős intersection set N(1) satisfies

#({n  x : n 2 N(1)})  1.62 x↵0

where ↵0 = log3 2 ⇠ 0.63092

• This result does not exclude the set N(1) being infinite, but
shows there are not too many integers in it.
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Wladyslaw Narkiewicz
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Part II. Dynamical System Generalizations
of Erdős Ternary Digit Problem

• Approach: View the set {1,2,4, ...} as a forward orbit of the
discrete dynamical system T : x 7! 2x.

• The forward orbit O(x0) of x0 is

O(x0) := {x0, T (x0), T
(2)(x0) = T (T (x0), · · · }

Thus: O(1) = {1,2,4,8, · · · }.

• New Problem. Study the forward orbit O(�) of an arbitrary
initial starting value �. How big can its intersection be,
with the “Cantor set”?
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General Framework-2

• There are two di↵erent places where the dynamical system
can live:

• Model 1. Dynamical system lives on positive real numbers
R+.

• Model 2. Dynamical system lives on the 3-adic integers Z3.
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General Framework-3

• Key Fact: (i) The ternary expansion of 2n is identical to
the 3-adic expansion of 2n.
(However the dynamical system x 7! 2x acts di↵erently in
the two models.)

• Key Fact: (ii) The Cantor set makes sense in both models!
It also has a dynamical systems interpretation.

It has the same size: Hausdor↵ dimension

↵0 = log3 2 =
log2

log3
⇡ 0.63092.
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Real Number Dynamical System-1

• Regard {1,2,4,8, ...} as a subset of the positive real
numbers.

• The (usual) ternary Cantor set ⌃3 is the set of all real
numbers whose ternary expansion has digits 0 and 2 (omits
1)

• The (modified)ternary Cantor set ⌃3,2̄ is the set of all
positive real numbers whose ternary expansion omits 2. It
satisfies

⌃3,2̄ =
1

2
⌃3.
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Real Number Dynamical System-2

• If �2n belongs to the Cantor set ⌃3 , then �2n�1 belongs to
the modified Cantor set ⌃3,2̄, and vice versa.

• From now on: We consider: intersections of orbits with
⌃3,2̄ (i.e., ternary expansions that omit the digit 2).
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Real Number Dynamical System-3

• The real intersection set for � 2 R is:

N(�;R) := {n � 1 : ([�2n])3 omits the digit 2}
Here: [x] is “greatest integer function.”

• N(1;R) = N(1) is the Erdős intersection set.

• The real truncated exceptional set is

Et(R) := {� > 0 : real intersection set N(�, R) is infinite.}

18



Real Number Model: Intersection set Size-1

• Theorem. (Real Model Count Bound) For all � > 0 the real
intersection set N(�;R) satisfies, for all su�ciently large x,

#({n  x : n 2 N(�;R)})  25 x↵0

where ↵0 = log3 2 ⇠ 0.63092

• The result is the same strength as that of Narkiewicz, but
applies to all initial values.
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Real Number Model: Intersection set Size-2

• Remarks on proof: Study the O(logx) highest order ternary
digits of ([�2n])3. Knock out all those that contain a 2.

• Set f(n) := log(�2n)
log3 = n↵0 + log3 �.

• Study f(n) (modulo 1), show it is close to uniformly
distributed. If so: it spends most of its time in subintervals
whose ternary expansion has a 2 in first logx digits.
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Real Number Model: Intersection set Size-3

• To establish uniform distribution:

• Use Diophantine approximation estimates to the number
↵0 = log3 2. Linear forms in logarithms estimates,
(due to G. Rhin) show that

|↵0 �
p

q
| � c

q13.3

with c = 0.0001, for all q � 1.
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Georges Rhin
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Real Number Model: Hausdor↵ Dimension

• Theorem. (Truncated Exceptional Set Dimension)
The Hausdor↵ dimension of the (truncated) exceptional set
Et(R) is exactly ↵0 = log3 2 ⇡ 0.63092.

• Corollary: There exist � 2 R where infinitely many of
([�2n])3 omit the digit 2.

• Remark: The infinite sets N(�;R) so constructed are
extremely sparse, with counting function growing like log⇤ x!

(log⇤ x counts the number of iterations of taking logarithm
to get x smaller than 1.)
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Hausdor↵ Dimension-1

• Defn. Let X ⇢ Rn. The s-dimensonal Hausdor↵ content of
X is:

V ols(S) := lim inf
�!0

{X

i

(ri)
s}

where the infimum runs over all coverings of X with a
collection of balls having radii ri > 0, and with allri  �.

• Defn. The Hausdor↵ dimension of X is

dimH(X) := inf{s � 0 : V ols(X) = 0},
equivalently,

dimH(X) := sup{s � 0 : V ols(X) = +1}.
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Hausdor↵ Dimension-2

• The definition makes sense on any metric space.

• In the critical dimension, the Hausdor↵ measure V ols(X)
can be 0, finite, or +1.

• Example. The Cantor set ⌃3 (inside [0,1]) has Hausdor↵
dimension log3 2 = log2

log3 ⇡ 0.63092. It has positive finite
Hausdor↵ measure.
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Hausdor↵ Dimension-3

• Getting an Upper Bound. Find a good family of coverings.
For example, one can cover ⌃3 (in [0,1]) with 2k intervals
of length 1

3k each. using all ternary expansions of length k
with digits 0 and 2.

Taking s = (log3 2 + ✏), this covering has content, as
k !1,

X

i

(ri)
log3 2+✏ = 2k(3�k)log3 2+✏ = 3�✏k �! 0.

thus dimH(⌃3)  log3 2.

• Getting a Lower Bound. Usually harder to show; must
consider all coverings!
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Hausdor↵ Dimension Theorem: Proof Idea

• (Upper Bound) By construction. One actually finds a large
Hausdor↵ dimension set with a fixed infinite set
r1 < r2 < r3 < ... with all (b�2rkc)3 omitting digit 2.

• (Lower Bound) Uses a fill-in-levels argument, modifying the
covering to a standard form.
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3-adic Integer Dynamical System-1

• View the integers Z as contained in the set of 3-adic
integers Z3. The quotient field of the 3-adic integers is the
3-adic numbers Q3

• The 3-adic integers Z3 are the set of all formal expansions

� = d0 + d1 · 3 + d2 · 32 + ...

where di 2 {0,1,2}. Call this the 3-adic expansion of �.

• Set ord3(0) := +1 and ord3(�) := min{j : dj 6= 0}.
The 3-adic size of � 2 Q3 is:

||�||3 = 3�ord3(�)
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3-adic Integer Dynamical System-2

• Now view {1,2,4,8, ...} as a subset of the 3-adic integers.

• The (usual) 3-adic Cantor set ⌃̃ is the set of all 3-adic
integers whose 3-adic expansion omits the digit 1.

• The modified 3-adic Cantor set ⌃̃3,2̄ is the set of all 3-adic
integers whose 3-adic expansion omits the digit 2.

• The Hausdor↵ dimension of ⌃̃3,2̄ is log3 2.
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3-adic Integers versus Real Numbers-1

• The map j : Z3 ! [0,1] ⇢ R that maps a 3-adic integer to
the real number whose ternary digit expansion matches the
3-adic expansion, has the properties:

• (1) This map is continuous, and almost invertible: every
number has one preimage except dyadic rationals, which
have two preimages.

• (2) It is a Lipschitz map

|j(x)� j(y)|  3||x� y||3.
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3-adic Integers versus Real Numbers-2

• The map j : Z3 ! [0,1] preserves Hausdor↵ dimension.

• The 3-adic Cantor set maps under j to the real Cantor sets
in [0,1].
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General Framework: 3-adic Model-1

• A general 3-adic number ↵ 2 Qp has “Laurent expansion”:

↵ = b�j
1

3j
+ · · · + b�1 · 1

3
+ b0 + b1 · 3 + · · · .

• The polar part of the number ↵ is:

PP (↵) := b�j3
�j + · · · + b�1 · 3�1.
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General Framework: 3-adic Model-2

• The 3-adic (truncated) intersection set for � 2 Z3 is:

N(�;Z3) := {n � 1 : The polar part

PP (�2n/3b↵0nc) omits the digit 2}
Again N(1;Z3) recovers the Erdős intersection set.

• The 3-adic truncated exceptional set is

Et(Z3) := {� > 0 : intersection set N(�;Z3) is infinite.}
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3-adic model: Intersection set size

• Theorem. (3-adic Model Count Bound) For all nonzero
3-adic integers � the general intersection set N(�;Z3)
satisfies, for all su�ciently large x,

#({n  x : n 2 N(�;Z3)})  2.5 x↵0

where ↵0 = log3 2 ⇠ 0.63092

• Narkiewicz’s theorem had a 3-adic proof. His proof extends
to all initial values.
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Punchline-1

• Both the real number model and the 3-adic model give
restrictions on the set of integers in the Erdős intersection
set N(1).

• The models give restrictions of roughly equal strength on
N(1), cutting the number of possible integers down to
O(x↵0).

• The real number information on N(1;R) excludes 20s in the
top O(logn) ternary digits of (2n)3. The 3-adic information
on N(1;Z3) excludes 20s in the bottom O(logn) 3-adic
digits of (2n)3.
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Punchline-2

• Heuristic: The top O(logn) ternary digits ought to be
“independent” of the bottom O(logn) ternary digits!

• Thus: the information in the two models ought to
non-trivially combine to give a better result. But we
observe...
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Punchline-3

• Observation: No one knows how to combine the
information in the two methods to do better than either
one separately!

• Observation: No one knows how to estimate the number of
20s in the ↵n�O(logn) middle ternary digits in (2n)3!

• I bring these puzzling observations to your attention!
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Part III. Complete 3-adic Exceptional Set

• We revisit the problem, imposing a stronger condition:
avoid the digit 2 on an infinite set of digits.

• Define the complete (i.e. non-truncated) intersection set

N⇤(�;Z3) := {n � 1 : the complete 3-adic expansion

(�2n)3 omits the digit 2}
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Complete 3-adic Exceptional Set-2

• The 3-adic complete exceptional set is

E⇤(Z3) := {� > 0 : the complete intersection set

N⇤(�;Z3) is infinite.}

• The set E⇤(Z3) ought to be “much smaller” than the
truncated exceptional set Et(Z3). Concievably it is just one
point {0}. If it is larger, then it must be infinite!
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Complete Exceptional Set Conjecture

• Complete Exceptional Set Conjecture.
The 3-adic complete exceptional set E⇤(Z3) has
Hausdor↵ dimension 0.

• A similar conjecture can be made for the real complete
exceptional set, E⇤(R), defined analogously.

• The 3-adic version of the conjecture is approachable, due
to nice symbolic dynamics!
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Some subproblems

• The Level k exceptional set E⇤k(Z3) has those � that have at
least k distinct powers of 2 with �2k in the Cantor set, i.e.

E⇤k(Z3) := {� > 0 : the set N⇤(�;Z3) � k.}

• Level k exceptional sets are nested by increasing k:

E⇤(Z3) ⇢ · · · ⇢ E⇤3(Z3) ⇢ E⇤2(Z3) ⇢ E⇤1(Z3)

• Goal: Study the Hausdor↵ dimension of E⇤k(Z3); it gives an
upper bound on dimH(E⇤(Z3)).
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Upper Bounds on Hausdor↵ Dimension

• Theorem. (Upper Bound Theorem)

(1). dimH(E⇤1(Z3)) = ↵0 ⇡ 0.63092.

(2). dimH(E⇤2(Z3))  0.5.

• Remark. There is a lower bound:

dimH(E⇤2(Z3)) � log3(
1 +

p
5

2
) ⇡ 0.438
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Upper Bounds on Hausdor↵ Dimension

• Question. Could it be true that

lim
k!1

dimH(E⇤k(Z3)) = 0?

• If so, this would imply that the complete exceptional set
E⇤(Z3) has Hausdor↵ dimension 0.
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Upper Bound Theorem: Proof Idea

• The set E⇤k(Z3) is a countable union of closed sets

E⇤k(Z3) =
[

r1<r2<...<rk

C(2r1,2r2, ...,2rk),

given by

C(2r1,2r2, ...,2rk) := {� : (2ri�)3 omits digit 2}.

• We have

dimH(E⇤k(Z3)) = sup{dimH (C(2r1,2r2, ...,2rk))}

• Proof for k = 1,2: obtain upper bounds on Hausdor↵
dimension of all the sets C(2r1,2r2, ...,2rk).
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Discovery and Experimentation-1

• New Problem. For positive integers r1 < r2 < · · · < rk set

C(2r1,2r2, ...,2rk) := {� : (2ri�)3 omits the digit 2}
Determine the Hausdor↵ dimension of C(2r1,2r2, ...,2rk).

• More generally, allow arbitrary positive integers
N1, N2, ..., Nk. Determine the Hausdor↵ dimension of:

C(N1, N2, · · · , Nk) := {� : all (Ni�)3 omit the digit 2}
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Discovery and Experimentation-2

• The Hausdor↵ dimension of sets C(N1, N2, ..., Nk) can in
principle be determined exactly!

• Mainly discuss special case C(1, N), for simplicity.

• This special case already has a complicated and intricate
structure!
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Basic Structure of the answer-1

• The 3-adic expansions of members of sets C(N1, N2, ..., Nk)
are describable dynamically as having the symbolic dynamics
of a sofic shift, given as the set of allowable infinite paths
in a suitable labelled graph (finite automaton).

• The sequence of allowable paths is characterized by the
topological entropy of the dynamical system. This is the
growth rate ⇢ of the number of allowed label sequences of
length n. It is the maximal (Perron-Frobenius) eigenvalue ⇢

of the weight matrix of the labelled graph, a non-negative
integer matrix. (Adler-Konheim-McAndrew (1965))
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Basic Structure of the answer-2

• The Hausdor↵ dimension of the associated ”fractal set”
C(N1, ..., Nk) is given as the base 3 logarithm of the
topological entropy of the dynamical system.

• This is log3 ⇢ where ⇢ is the Perron-Frobenius eigenvalue of
the symbol weight matrix of the labelled graph.

• Remark. These sets are “self-similar fractals” in sense of
Hutchinson (1981), as extended in Mauldin-Williams
(1985). It is given as a fixed point of a system of
set-valued functional equations.
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Basic Structure of the answer-3

• If some Nj ⌘ 2 (mod 3) occurs, then Hausdor↵ dimension
C(N1, N2, ..., Nk) will be 0.

• If one replaces Nj with 3kNj then the Hausdor↵ dimension
does not change.

• Can therefore reduce to case: All Nj ⌘ 1 (mod 3).
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Graph: N = 22 = 4

0

1

0

10
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Associated Matrix N = 4

• Weight matrix is:

state 0 state 1

state 0 [ 1 1 ]
state 1 [ 0 1 ]

• This is Fibonacci shift. Perron-Frobenius eigenvalue is:

⇢ =
1 +

p
5

2
= 1.6180...

• Hausdor↵ Dimension = log3 ⇢ ⇡ 0.438.
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Graph: N = 7 = (21)3
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0
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Associated Matrix N = 7

• Weight matrix is:

state 0 state 2 state 10 state 1

state 0 [ 1 1 0 0 ]
state 2 [ 0 0 1 0 ]
state 10 [ 0 0 1 1 ]
state 1 [ 1 0 0 0 ]

• Perron-Frobenius eigenvalue is : ⇢ = 1+
p

5
2 = 1.6180...

• Hausdor↵ Dimension = log3 ⇢ ⇡ 0.438.
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Graphs for N = (10k1)3

• Theorem. (“Fibonacci Graphs”)
For N = (10k1)3, (i.e. N = 3k+1 + 1)

dimH(C(1, N)) := dimH(⌃3,2̄\
1

N
⌃3,2̄) = log3(

1 +
p

5

2
) ⇡ 0.438

• Remark. The finite graph associated to N = 3k+1 + 1
has 2k states! The symbolic dynamics depend on k!

• The eigenvector for the maximal eigenvalue
(Perron-Frobenius eigenvalue) of the adjacency matrix of
this graph is explicitly describable. It has a self-similar
structure, and has all entries in Q(

p
5).
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Graphs for N = (20k1)3

• Empirical Results. Take N = 2 · 3k+1 + 1 = (20k1)3. For
1  k  4, the graphs have exactly two strongly connected
components.

• There is an outer component with about k states, whose
Hausdor↵ dimension goes rapidly to 0 as k increases. (This
is provable for all k � 1).

• There is also an strongly connected inner component, which
appears to have exponentially many states, and whose
Hausdor↵ dimension monotonically increases for small k,
and eventually exceeds that of the outer component.
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Graph: N = 19 = (201)3
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Graph for N = 139 = (12011)3

• This value N=139 is a value of N ⌘ 1 (mod 3) where the
associated set has Hausdor↵ dimension 0.

• The corresponding graph has 5 strongly connected
components; each one separately has Perron-Frobenius
eigenvalue 1, giving Hausdor↵ dimension 0!
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General Graphs-Some Properties of C(1, N)

• The states in the graph can be labelled with integers k
satisfying 0  k  bN6 c (if entering edge label is 0) and
bN3 c  k  bN2 c (if entering edge label is 1).

• The paths in the graph starting from given state k describe
the symbolic dynamics of numbers in the intersection of
shifted multiplicatively translated 3-adic Cantor sets

Ck := ⌃3,2̄ \
1

N

⇣
⌃3,2̄ + k

⌘
.

• The Hausdor↵ dimension of “shifted intersection set” is the
maximal Hausdor↵ dimension of a strongly connected
component of graph reachable from the state k.
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Lower Bound for Hausdor↵ Dimension

• Theorem. (Lower Bound Theorem) For any any k � 1 there
exist

N1 < N2 < · · · < Nk, all Ni ⌘ 1 (mod 3)

such that

dimH(C(N1, N2, ..., Nk)) := dimH(
k\

i=1

1

Ni
⌃3,2̄) � 0.35.

Thus: the maximal Hausdor↵ dimension of intersection of
translates is uniformly bounded away from zero.

• Proof. Take suitable Ni of the form 3j + 1 for various large
j. One can show the Hausdor↵ dimension of intersection
remains large (large overlap of symbolic dynamics).
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Conclusions: Part III

• (1) The graphs for C(1, N) exhibit a complicated structure
depending on an irregular way on the ternary digits of N .
Their Hausdor↵ dimensions vary irregularly.

• (2) It might still be true that

↵k := sup
r1<r2<···<rk

dimH (C(2r1, ...2rk))

has ↵k ! 0 as k !1. But ...

• (3) Lower bound theorem suggests: analyzing the special
case where all Ni = 2ri may not be easy!
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Paul Erdős says:
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“As far as I can see there is no method at our disposal to
attack this conjecture.”

(Ref. P. Erdős, Some unconventional problems in number
theory, Math. Mag. 52 (1979), 67–70.)

62


