Polynomial Splitting Measures and Cohomology of the Pure Braid Group

Jeff Lagarias, University of Michigan Ann Arbor, MI, USA

(November 19, 2016)

14-th Triangle Lectures on Combinatorics 2016

- Triangle Lectures on Combinatorics
- Saturday, Nov. 19, 2016
- North Carolina State University
- Raleigh, North Carolina.
- Work of J. C. Lagarias partially supported by NSF grant DMS-1401224.

Topics Covered

- Part I. Factorization of Monic Polynomials: Probabilities
- Part II. Polynomial Splitting Measures
- Part III. \mathbb{F}_1 -splitting measures
- Part IV. Splitting Measure Coefficients and Representation Theory
- Part V. Applications/Consequences

 Benjamin L. Weiss, Probabilistic Galois Theory over *p*-adic fields, J. Number Theory 133 (2013), 1537–1563.

• J. C. Lagarias and Benjamin L. Weiss, Splitting Behavior of S_n -Polynomials. Research in Number Theory (2015), 1:7, 30 pages.

• J. C. Lagarias,

A family of measures on symmetric groups and the field with one element, J. Number Theory 161 (2016), 311–342.

Trevor Hyde and J. C. Lagarias,

Polynomial splitting measures and cohomology of the pure braid group, eprint. arXiv:1604.05359

Part I. Factoring Polynomials over \mathbb{Q} and \mathbb{Q}_p

- Question. How do degree n monic polynomials factor over \mathbb{Q} ?
- Answer. Almost all of them are irreducible.

• Hilbert Irrreducibility Theorem (1892). Let f(x) be a monic polynomial f(X) in X which is irreducible in the ring K[x] where K is the rational function field $K = \mathbb{Q}(a_1, ..., a_n)$. Then one can specialize the parameters $(a_0, ..., a_{n-1})$ to rational values \mathbb{Q}^n so that the resulting polynomial is irreducible over $\mathbb{Q}[X]$.

Factorization of Polynomials -2

• Parametric Version. Consider the generic polynomial

$$f(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{0}$$

Restrict the parameters a_i to be *integers* and bound their *height*). Put them in a box $|a_i| \leq B$, then let $B \to \infty$.

• Another improvement. Control the Galois group in the Hilbert irreducibility theorem,

van der Waerden Theorem

Theorem (van der Waerden (1934)) Given the polynomial

$$f(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}.$$

Consider the coefficients as integers in a box $-B < a_j \le B$, drawn randomly (uniform distribution) Then as *B* goes to infinity:

(1) With probability one, the resulting polynomial is irreducible over \mathbb{Q} .

Moreover, can make the Galois group "maximal":

(2) With probability one, the splitting field (adjoining all roots) of f(x) has Galois group the full symmetric group S_n .

Quantitative Version of van der Waerden theorem

• Theorem (Gallagher (1978)) Given the polynomial

$$f(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}$$

with all $|a_i| \leq B$, Then of the $(2B + 1)^n$ such polynomials at most

$$\ll B^{n-\frac{1}{2}}$$

of them are "exceptional", either :

- (1) f(x) not irreducible over \mathbb{Q} , or,
- (2) Galois group of splitting field of f(x) is not S_n .

Factorization of polynomials: *p*-adic case

- Motivating Question. What is the analogue of Hilbert irreduciblity theorem over a *p*-adic field \mathbb{Q}_p ?
- **Comment.** The answer must be *different*, because:

All Galois groups over a *p*-adic field \mathbb{Q}_p are *solvable*.

Factorization of polynomials: *p*-adic case-2

- Answer 1. The splitting probabilities of a monic polynomial of degree n with coefficients in \mathbb{Z}_p , the *p*-adic integers, depends on n and p. There is a positive probability of not being irreducible. There is a positive probability of splitting completely into linear factors, These depend on n and p. (They go to 0 as $p \to \infty$).
- Answer 2. The answer is nice if one restricts to polynomials in \mathbb{Z}_p having polynomial discriminant *prime to* p.

In that case it matches the distribution of factorizations of a random polynomial with coefficients in the finite field \mathbb{F}_p . This answer depends on p. It has a nice limit as $p \to \infty$.

Factorization of polynomials: *p*-adic case-3

• Theorem. (B. L Weiss (2013)) As $p \to \infty$:

(1) A random monic polynomial f(x) of degree n with \mathbb{Z}_p coefficients has with probability one a splitting field whose Galois group is **cyclic**. The order of this cyclic group is a random variable which equals the order of a random element of S_n drawn with the uniform distribution.

(2) The factorization type of the monic polynomial with probability one has the cycle structure of that of a randomly drawn element of S_n (uniform distribution).

• This answer is inherited from the finite residue field \mathbb{F}_p . The cyclic Galois extension of \mathbb{Q}_p found is **unramified** with probability one.

Part II. Polynomial Splitting Measures

- **Problem.** Describe the distribution of factorizations of monic random polynomials over \mathbb{F}_p .
- Factorizations are describable by the number of factors and the degree of each factor. Such data summarized by a partition λ of n, interpretable as a *conjugacy class* C_λ of elements in S_n.

Polynomial Splitting Measures-2

- The *p*-splitting measures $\nu_{n,p}(C_{\lambda})$ describe the probability of factorization of a monic polynomial of degree n over \mathbb{F}_p having splitting type λ , conditioned on the polynomial being **squarefree**.
- The squarefree condition means: the discriminant of f(x) is not 0.
- **Proposition**. The probability of a monic polynomial over \mathbb{F}_p having discriminant 0 is exactly $\frac{1}{p}$.
- The probability of being squarefree is then $1 \frac{1}{p}$. As $p \to \infty$ this probability approaches 1. (As p varies, it is interpolatable by the Laurent polynomial $1 \frac{1}{z}$ in the variable z, taking z = p.)

Polynomial Splitting Measure-3

• Let z denote the interpolation variable, i.e. z = p recovers the splitting measure values. The interpolated measure is constant on conjugacy classes, and $\nu_{n,z}^*(C_\lambda)$ denotes the measure over a conjugacy class C_λ . That is

$$\nu_{n,z}^*(C_\lambda) = \sum_{g \in C_\lambda} \nu_{n,z}^*(g).$$

• The splitting measure on a conjugacy class is a rational function of z:

$$\nu_{n,z}^*(C_{\lambda}) := \frac{1}{z^n - z^{n-1}} N_{\lambda}(z)$$

where $N_{\lambda}(z)$ is the *cycle polynomial* associated to the partition λ (to be defined).

• $z^n - z^{n-1}$ interpolates at z = p the number of monic polynomials of degree n minus the number of such having discriminant 0 over \mathbb{F}_p .

Necklace Polynomial and Cycle Polynomial

• For $j \ge 1$, the *j*-th necklace polynomial $M_j(z) \in \frac{1}{j}\mathbb{Z}[z]$ is

$$M_j(z) := \frac{1}{j} \sum_{d|j} \mu(d) z^{j/d},$$

where $\mu(d)$ is the Möbius function. (At z = p it counts irreducible monic polynomials over \mathbb{F}_p)

• Given a partition λ of n, the cycle polynomial $N_{\lambda}(z) \in \frac{|C_{\lambda}|}{n!}\mathbb{Z}[z]$ is

$$N_{\lambda}(z) := \prod_{j \ge 1} {M_j(z) \choose m_j(\lambda)},$$

where $\binom{\alpha}{m} := \frac{1}{m!} \prod_{k=0}^{m-1} (\alpha - k)$ is extended binomial coefficient. Notation: $z_{\lambda} = \frac{n!}{|C_{\lambda}|}$.

Counting Polynomial Factorizations

• For a partition $\lambda = (1^{m_1}2^{m_2} \cdots n^{m_n})$ of n are counting the number of factorizations of f(x) into products of m_j distinct irreducibles of degree j over \mathbb{F}_p up to ordering. The value $\binom{M_j(z)}{m_j(\lambda)}$ for z = p counts this number.

• We normalize by the number of squarefree monic polynomials, which is $z^n - z^{n-1} = z^{n-1}(z-1)$ evaluated at z = p.

• Thus

$$\nu_{n,z}^*(C_{\lambda}) := \frac{1}{z^{n-1}(z-1)} \prod_{j \ge 1} \binom{M_j(z)}{m_j(\lambda)}$$

Polynomial splitting measures-4

- Proposition. For n ≥ 2 the z-splitting measures are rational functions of z. Moreover they are Laurent polynomials in z for each conjugacy class of S_n: their only poles as rational functions are at z = 0. (The (z − 1) factor in denominator cancels for every λ).
- At $z = \infty$ the *z*-splitting distribution on S_n is the uniform measure:
- The uniform measure is the probability distribution of the Chebotarev density theorem. It assigns total mass

$$\frac{|C|}{|G|} = \frac{|C_{\lambda}|}{|S_n|} = \frac{|C_{\lambda}|}{n!} = \frac{1}{z_{\lambda}}.$$

to each conjugacy class C_{λ} of S_n .

z-Splitting Measure when n = 4

λ	$ C_{\lambda} $	z_{λ}	$\nu_{4,z}^*(C_\lambda)$
[1, 1, 1, 1]	1	24	$\frac{1}{24}\left(1-\frac{5}{z}+\frac{6}{z^2}\right)$
[2, 1, 1]	6	4	$\frac{1}{4}\left(1-\frac{1}{z}\right)$
[2,2]	3	8	$\frac{1}{8}\left(1-\frac{1}{z}-\frac{2}{z^2}\right)$
[3,1]	8	3	$\frac{1}{3}\left(1+\frac{1}{z}\right)$
[4]	6	4	$\frac{1}{4}\left(1+\frac{1}{z}\right)$

Values of the *z*-splitting measures $\nu_{4,z}^*(C_\lambda)$ on partitions λ of n = 4.

z-Splitting Measure when n = 5

λ	$ C_{\lambda} $	z_λ	$\nu_{5,z}^*(C_{\lambda})$
[1, 1, 1, 1, 1]	1	120	$\frac{1}{120} \left(1 - \frac{9}{z} + \frac{26}{z^2} - \frac{24}{z^3} \right)$
[2, 1, 1, 1]	10	12	$\frac{1}{12}\left(1-\frac{3}{z}+\frac{2}{z^2}\right)$
[2, 2, 1]	15	8	$\frac{1}{8}\left(1-\frac{1}{z}-\frac{2}{z^2}\right)$
[3, 1, 1]	20	6	$\frac{1}{6}\left(1+\frac{0}{z}-\frac{1}{z^2}\right)$
[3,2]	20	6	$\frac{1}{6}\left(1+\frac{0}{z}-\frac{1}{z^2}\right)$
[4, 1]	30	4	$\frac{1}{4}\left(1+\frac{1}{z}\right)$
[5]	24	5	$\frac{1}{5}\left(1+\frac{1}{z}+\frac{1}{z^2}+\frac{1}{z^3}\right)$

Values of the z-splitting measures $\nu_{5,z}^*(C_{\lambda})$ on partitions λ of n = 5.

Integer Monic Polynomial Splitting Model

- An S_n -number field is a degree n (non-Galois) number field over \mathbb{Q} whose Galois closure has Galois group S_n .
- Random Monic Polynomial Model. Take monic integer polynomials f(X) of degree n with all coefficients in a box $|a_i| \leq B$. Take a prime p, and condition on Disc(f(x) being prime to p. Then study how the prime ideal (p) factorizes in the number field K_f obtained by adjoining one root of f(X) to \mathbb{Q} , as parameter $B \to \infty$.
- Theorem (B.L. Weiss- L (2015)) With probability one, as $B \to \infty$.

(1) The field K_f is an S_n -number field.

(2) For fixed p, the limiting splitting distribution of (p) over all K_f (as f(x) varies) is given by the z-splitting distribution at z = p.

Bhargava Random S_n -Number Field Model

• Random S_n -number field model For a fixed B let S(B) run over the finite set of all S_n -number fields having discriminant |Disc(K)| bounded by B.Then for a given prime p consider the subset of all such fields having (Disc(K)) prime to p.

• Conjecture (Bhargava (2007)) As $B \to \infty$:

(1) The limiting fraction of prime to p discriminants exists as $B \to \infty$ and is a rational function of p.

(2) Consider the fraction of this subset that has a given splitting type of the rational prime ideal (p), which is described by a partition of n. Then the limiting fraction exists as $B \to \infty$ and is the uniform distribution on S_n .

• Bhargava (2007) proved his conjecture for $n \leq 5$. It is open for $n \geq 6$.

Comparison of Random Polynomial and Random Field Models

• The *z*-splitting distribution deviates greatly from the uniform distribution for z = p small compared to *n*. Some probabilities become 0. For example for p = 2 all partitions λ containing 1³ have probability $\nu_{n,2}^*(C_{\lambda}) = 0$, because no monic polynomial can have 3 distinct linear factors over \mathbb{F}_2 .

• The Bhargava conjecture (uniform) distribution is the limit as $p \to \infty$ of the Random Monic Polynomial Model distribution.

• What features of the two models account for the mismatch between the predictions of the models? *We currently do not have a satisfactory answer.*

• This mismatch motivates further study of the *z*-splitting measures.

Part III. \mathbb{F}_1 -Splitting Distribution

- **Problem.** Study the splitting measure distribution at z = 1. (The extreme "bad case")
- The value z = 1 is the only integer point (excluding z = 0) where the distribution is a **signed** measure.
- (Counting points over 𝔽₁= "field with one element") The z = 1 probabilities are the "ghost of a departed quantity" since the probability of squarefreeness at p = 1 is 1 1/p = 0! ("Quantum" case: allow negative probabilities.)

\mathbb{F}_1 Splitting Measure-2

Theorem. The z = 1-splitting (signed) measures $\nu_{n,1}^*$ have the following properties:

(1) The support of the measure $\nu_{n,1}^*$ is exactly the set of conjugacy classes $[\lambda]$ such that λ is one of:

(i) Rectangular partitions $\lambda = [b^a]$ for ab = n.

(ii) Almost-rectangular partitions $\lambda = [d^c, 1]$ for cd = n - 1.

[Note: These partitions label the conjugacy classes of S_n that comprise the Springer regular elements of S_n .]

\mathbb{F}_1 Splitting Measure-3

Theorem. The z = 1-splitting (signed) measures $\nu_{n,1}^*$ have the following properties: (dontinued)

(2) The measure $\nu_{n,1}^*$ is a sum of two signed measures on S_n ,

$$\nu_{n,1}^* = \omega_n + \omega_{n-1}^*,$$

which are characterized for all $n \ge 1$ by the following two properties:

(P1) ω_n is supported on the rectangular partitions [b^a] of S_n ,

(P2) ω_{n-1}^* is supported on the almost-rectangular partitions of S_n , those of the form $[d^c, 1]$, and is obtained from the measure ω_{n-1} on S_{n-1} by a simple recipe.

\mathbb{F}_1 Splitting Measure-4

Theorem. The z = 1-splitting measures $\nu_{n,1}^*$ have the following properties.

(2) (continued) For $\lambda \vdash n$,

$$\omega_{n-1}^{*}(C_{\lambda}) := \begin{cases} \omega_{n-1}(C_{\lambda'}) & \text{if } \lambda = [\lambda', 1] \text{ with } \lambda' \vdash n-1, \\ 0 & \text{otherwise.} \end{cases}$$

(3) The supports of ω_n and ω_{n-1}^* overlap on the identity conjugacy class $\lambda = [1^n]$, viewing $[1^n]$ as being both rectangular and almost-rectangular.

Here for $n \geq 2$,

$$\nu_{n,1}^*(C_{[1^n]}) = \frac{(-1)^n}{n(n-1)}.$$

Auxiliary splitting measure ω_n

Theorem (Auxiliary measures ω_n) [Number Theory Properties]

(1) The measure ω_n for each $n \ge 1$ and each partition $\lambda \vdash n$, is:

$$\omega_n(C_{\lambda}) = \begin{cases} (-1)^{a+1} \frac{\phi(b)}{n} & \text{if } \lambda = [b^a] \text{ for the factorization } n = ab, \\ 0 & \text{otherwise.} \end{cases}$$

where $\phi(n)$ is Euler's totient function.

(2) The measure ω_n is supported on exactly d(n) conjugacy classes, where d(n) counts the number of positive divisors of n. It is a nonnegative measure for odd n and is a strictly signed measure for even n.

Auxiliary Splitting Measure- ω_n - 2

Theorem (Structure of auxiliary measures ω_n) [Support properties] The measures ω_n on S_n have the following properties.

(1) For all *n* the absolute value measure $|\omega_n|$ has total mass 1, so is a probability measure.

(2) For n = 2m + 1 the measure ω_{2m+1} is nonnegative and has total mass 1, so is a probability measure. Its support is on even permutations, and restricted to the alternating group A_n is a probability measure.

(3) For n = 2m the measure ω_{2m} is a signed measure having total signed mass 0. It is nonnegative on odd permutations and nonpositive on even permutations. The measure $-2\omega_{2m}|_{A_{2m}}$ restricted to the alternating group A_{2m} is a probability measure.

Auxiliary Splitting Measure- ω_n - 3

Theorem (Structure of auxiliary measures ω_n) [Multiplicative properties]

The measures ω_n on S_n have the following properties.

(4) (Conjugacy Class Multiplicativity) The family of all measures ω_n has an internal product structure compatible with multiplication of integers. Set $n = \prod_i p_i^{e_i}$.

Then for any factorization ab = n, there holds

$$\omega_n(C_{[b^a]}) = \prod_i \omega_{p_i^{e_i}}(C_{[(b_i)^{a_i}]}), \tag{1}$$

in which $b_i = p_i^{e_{i,2}}$ (resp. $a_i = p_i^{e_{i,1}}$) represent the maximal power of p_i dividing b (resp. a), so that $e_{i,1} + e_{i,2} = e_i$. We allow some or all values $e_{i,j} = 0$ for j = 1, 2, so that values b = 1 (resp. $a_i = 1$) are allowed.

$\boxed{n=4}$	C _[14]	C _[2²]	C[4]	C _[3,1]	Other
$ C_{\lambda} $	1	3	6	8	6
ω_4	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{2}$	0	0
ω_3^*	$\frac{1}{3}$	0	0	$\frac{2}{3}$	0
$\nu_{4,1}^{*}$	$\frac{1}{12}$	$-\frac{1}{4}$	$\frac{1}{2}$	$\frac{2}{3}$	0

TABLE: Symmetric group S_4 .

n = 5	C _[1⁵]	C _[5]	$C_{[2^2,1]}$	C[4,1]	Other
$ C_{\lambda} $	1	24	15	30	50
ω_5	$\frac{1}{5}$	$\frac{4}{5}$	0	0	0
ω_4^*	$-\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{2}$	0
$\nu_{5,1}^{*}$	$-\frac{1}{20}$	4 5	$-\frac{1}{4}$	$\frac{1}{2}$	0

TABLE A: Symmetric group S_5 .

n = 8	C _[18]	C _[2⁴]	C _[4²]	C _[8]	C _[7,1]	Other
$ C_{\lambda} $	1	105	1260	5040	5760	28154
ω_8	$-\frac{1}{8}$	$-\frac{1}{8}$	$-\frac{1}{4}$	$\frac{1}{2}$	0	0
ω_7^*	$\frac{1}{7}$	0	0	0	$\frac{6}{7}$	0
$ \nu_{8,1}^* $	$\frac{1}{56}$	$-\frac{1}{8}$	$-\frac{1}{4}$	$\frac{1}{2}$	$\frac{6}{7}$	0

TABLE A: Symmetric group S_8 .

n = 9	C _[19]	C _[3³]	C _[9]	C _[2⁴,1]	$C_{[4^2,1]}$	C _[8,1]	Other
$ C_{\lambda} $	1	2240	40320	945	11340	45360	262674
ω_9	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{2}{3}$	0	0	0	0
ω_8^*	$-\frac{1}{8}$	0	0	$-\frac{1}{8}$	$-\frac{1}{4}$	$\frac{1}{2}$	0
$\nu_{9,1}^{*}$	$-\frac{1}{72}$	29	2 3	$-\frac{1}{8}$	$-\frac{1}{4}$	$\frac{1}{2}$	0

TABLE : Symmetric group S_9 .

Observations on ω_n

- There is interesting number theoretic structure in the \mathbb{F}_1 distribution. It is visible in the rectangular conjugacy class support of ω_n .
- How does this number theory structure relate to the representation theory of S_n? The representation structure of S_{n+1} and S_n are quite different, and the measure relates conjugacy classes on different S_k with k|n (or k|(n - 1)) preserving rectangles.

Observations-2

- Motivating Question. Is there a representation-theoretic interpretation of these measures, viewing them not as conjugacy class functions but as characters of some (rational) representation of *S*_n?
- The measure is a class function, so it is automatically a rational linear combination of irreducible characters. But is it something understandable?
- Answer: Yes.

Nice answer at z = 1, and also at z = -1.

Representation-Theoretic Interpretation

• We must rescale the measure by the factor n!. Here n! is the minimal multiplier making its values on group elements integers.

• The discovery is: this rescaled measure is the character of a **virtual representation**, i.e. an integer linear combination of irreducible representations. Secondly, the multiplicities of the irreducible representations are "small".

Theorem ((Representation theory interpretation of $n! |\omega_n|$)

(1) For all $n \ge 1$ the class function $n! |\omega_n|(g)$ for $g \in S_n$ is the character of the induced representation

$$\rho_n^+ := Ind_{C_n}^{S_n}(\chi_{\mathsf{triv}}),$$

from the cyclic group C_n generated by an *n*-cycle of S_n , carrying the trivial representation χ_{triv} .

(2) The representation ρ_n^+ is of degree (n-1)! and is a (highly) reducible representation, for $n \ge 3$.

(3) The trivial representation occurs in ρ_n^+ with multiplicity 1. The sign representation χ_{sgn} occurs in ρ_n^+ if and only if n is odd, and then occurs with multiplicity 1.

Theorem. (Representation theory interpretation of $|\omega_n|$) (1) If n = 2m is even then the class function $-n!\omega_n$ is the character of the induced representation

$$\rho_{2m}^- := Ind_{C_{2m}}^{S_{2m}}(\chi_{\mathrm{sgn}})$$

from the cyclic group C_{2m} of a 2m-cycle in S_{2m} , carrying on it the sign representation χ_{sgn} .

(2) The representation ρ_{2m}^- is of degree (2m - 1)! and is a (highly) reducible representation for $m \ge 2$.

(3) The trivial representation χ_{triv} of S_{2m} occurs in ρ_{2m}^- with multiplicity 0 and the sign representation χ_{sgn} occurs with multiplicity 1.

Theorem. (Relation of ω_{n-1}^* and ω_{n-1})

(1) For each $n \ge 2$ the class function $(-1)^n n! \omega_{n-1}^*(g)$ for $g \in S_n$ is the character $\psi_n^{(L)}$ of the induced representation

$$p_n^{(L)} := \operatorname{Ind}_{C_{n-1}}^{S_n}((\chi_{\operatorname{sgn}})^n),$$

with cyclic group $C_{n-1} \subset S_n$ generated by an (n-1)-cycle that holds the symbol n fixed. The representation $\rho_n^{(L)}$ is of degree $n \cdot (n-2)!$.

(2) The representation $\rho_n^{(L)}$ is also given as the induced representation

$$\rho_n^{(L)} = \operatorname{Ind}_{S_{n-1}}^{S_n}(\rho_{n-1}^{\epsilon}),$$

in which the representation ρ_{n-1}^{ϵ} with $\epsilon = (-1)^n$ is the representation of S_{n-1} having character $(-1)^n (n-1)! \omega_{n-1}$, viewing S_{n-1} as the subset of S_n of all permutations holding the symbol n fixed.

Theorem. (1-Splitting measure as Character of Virtual Repn.)

The class function $(-1)^{n-1}n!\nu_{n,1}(g)$ for $g \in S_n$ of the rescaled 1-splitting measure $\nu_{n,1}^*(\cdot)$ is the character of a virtual representation $\rho_{n,1}$ of S_n .

(1) For even n = 2m, we have

$$\rho_{2m,1} = (\rho_{2m}^{-})^{-1} \oplus \rho_{2m-1}^{(L)}.$$

(2) For odd n = 2m + 1 we have

$$\rho_{2m+1,1} = \rho_{2m+1}^+ \oplus (\rho_{2m}^{(L)})^{-1}.$$

z-splitting measure for z = -1: conjugacy class data

Theorem. ((-1)-splitting measure, Conjugacy Class support)

(1) For $n \ge 2$ for z = -1 the splitting measure $\nu_{n,-1}^*$ is a nonnegative measure supported on the conjugacy classes C_{λ} with $\lambda = [1^n]$, the identity class, and $\lambda = [2, 1^{n-2}]$, the class of a 2-cycle.

(2) It has equal mass $\nu_{n,-1}(C_{\lambda}) = \frac{1}{2}$ on these two classes.

z-splitting measure for z = -1: character of a representation.

Theorem. ((-1)-splitting measure, representation theory interpretation)

(1) For $n \ge 2$ the rescaled (-1)-splitting measure $n!\nu_{n,-1}^*$ is the character of a representation $\tilde{\rho}_n$ of S_n .

(2) This representation is realized as a permutation representation, given as the induced representation $\operatorname{Ind}_{C_2}^{S_n}(\chi_{triv})$ where $C_2 = \{e, (12)\}$ is a group given by a 2-cycle.

Part IV: Splitting Measure Coefficients and Representation Theory

• Recall that the *z*-splitting measures

$$\nu_{n,z}^*(C_{\lambda}) = \sum_{k=0}^{n-1} \alpha_n^k(C_{\lambda}) \frac{1}{z^k}$$

on conjugacy classes C_{λ} of S_n are Laurent polynomials in z.

- **Consequence.** Each Laurent coefficient $\{\alpha_n^k(C_\lambda) : \lambda \vdash n\}$ defines a class function on S_n .
- **Question.** Is there a "nice" representation-theoretic interpretation of these class functions?

Splitting Measure Coefficients and Representation Theory-2

• Evidence. The k = 0 coefficient is the uniform measure, corresponds to the "trivial" representation.

The z = 1 and z = -1 cases give "nice" representations which are simple integer linear combinations of the α_n^k as k varies.

• Positive answer (next slide):

These measures are a constructed from conjugacy class data, dual to representation-theory data, so a positive answer is not obvious.

• As before, we rescale the splitting measures by the factor *n*!.

Splitting Measure Coefficients and Representation Theory-3

- Answer. (Hyde and L. (2016))The rescaled coefficients

 n!(-1)^jα^k_n(·) are characters of the S_n-action on a piece of the k-th cohomology group of the pure braid group P_n, carrying its S_n-action. This piece comes from the k-th cohomology group of a quotient manifold Y_n of the A_n-braid hyperplane arrangment.
- Elaboration of Answer. The cycle polyomials $N_{\lambda}(z)$ viewed as a function of λ have coefficients interpretable in terms of pure braid group cohomology characters. (Lehrer (1987)) The division by $\frac{1}{z^n z^{n-1}}$ is a unique new feature of the splitting measures that requires a splitting of the braid group cohomology into smaller pieces, explainable in terms of Y_n .

Pure Braid Cohomology Interpretation of Cycle Polynomials

Theorem. (Lehrer (1987))

(Character interpretation of cycle polynomial coefficients)

Let λ be a partition of n and $N_{\lambda}(z)$ be a cycle polynomial. Then

$$N_{\lambda}(z) = \frac{|C_{\lambda}|}{n!} \sum_{k=0}^{n} (-1)^k h_n^k(\lambda) z^{n-k}.$$

where h_n^k is the character of the *k*th cohomology of the pure braid group $H^k(P_n, \mathbb{Q})$, viewed as an S_n -representation.

• Lehrer's result is stated in a rather different form than above.

Cohomology Interpretation of Splitting Measure Coefficients

Theorem. (Hyde-L. (2016))

(Character interpretation of splitting measure coefficients)

For each $n \ge 1$ and $0 \le k \le n - 1$ there is an S_n -subrepresentation A_n^k of $H^k(P_n, \mathbb{Q})$ with character χ_n^k such that for each partition λ of n,

$$\nu_{n,z}^*(C_{\lambda}) = \frac{|C_{\lambda}|}{n!} \sum_{k=0}^{n-1} \chi_n^k(\lambda) \left(-\frac{1}{z}\right)^k.$$

Thus the splitting measure coefficient $\alpha_n^k(C_\lambda)$ is

$$\alpha_n^k(C_{\lambda}) = |C_{\lambda}| \, \alpha_n^k(\lambda) = (-1)^k \frac{|C_{\lambda}|}{n!} \chi_n^k(\lambda).$$

Arnold Theorem

Theorem (Arnold (1969)) The cohomology ring $H^{\bullet}(P_n, \mathbb{Q})$ of the pure braid group as an S_n -module is given by an isomorphism of graded S_n -algebras

$$H^{\bullet}(P_n, \mathbb{Q}) \cong \Lambda^{\bullet}[\omega_{i,j}]/\langle R_{i,j,k} \rangle,$$

where $1 \leq i, j, k \leq n$ are distinct, $\omega_{i,j} = \omega_{j,i}$ have degree 1, and

$$R_{i,j,k} = \omega_{i,j} \wedge \omega_{j,k} + \omega_{j,k} \wedge \omega_{k,i} + \omega_{k,i} \wedge \omega_{i,j}.$$

An element $\sigma \in S_n$ acts on $\omega_{i,j}$ by $\sigma \cdot \omega_{i,j} = \omega_{\sigma(i),\sigma(j)}$.

• The **pure braid group** P_n is the subgroup of the *n*-strand braid group B_n that acts as the identity permutation on the braid strands.

Pure Braid Cohomology Splitting-1

• $H^{\bullet}(P_n, \mathbb{Q})$ is the cohomology ring of the complement in \mathbb{C}^n of the A_n -braid arrangement of (complex) hyperplanes $\{H_{i,j} := (z_i = z_j) : 1 \le i < j \le n\}.$

• **Proposition.** The cup product with the S_n -equivariant 1-form $\omega = \sum_{1 \le i < j \le n} \omega_{i,j}$ leads to a splitting of cohomology as S_n -modules A_n^k :

$$H^k(P_n,\mathbb{Q})\cong A_n^{k-1}\oplus A_n^k.$$

for certain S_n -modules A_n^k .

Cohomology Dimensions

• The Betti numbers

dim
$$\left(H^k(P_n,\mathbb{Q})\right) = \begin{bmatrix}n\\n-k\end{bmatrix},$$

are *unsigned Stirling numbers (of the first kind)*. They are given by the rising factorial identity

$$\prod_{k=0}^{n-1} (x+k) = \sum_{k=0}^{n-1} {n \choose k} x^k.$$

• The Betti numbers

dim
$$(A_n^k) = \sum_{j=0}^k (-1)^j {n \choose n-k+j}$$

Betti Number Table: Pure Braid Group Cohomology

$n\setminus k$	0	1	2	3	4	5	6	7	8
1	1	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	3	2	0	0	0	0	0	0
4	1	6	11	6	0	0	0	0	0
5	1	10	35	50	24	0	0	0	0
6	1	15	85	225	274	120	0	0	0
7	1	21	175	735	1624	1764	720	0	0
8	1	28	322	1960	6769	13132	13068	5040	0
9	1	36	546	4536	22449	67284	118124	109584	40320

Betti numbers of pure braid group cohomology $H^k(P_n, \mathbb{Q})$.

Betti Number Table: A_n^k as Cohomology

$\boxed{n\setminus k}$	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0
3	1	2	0	0	0	0	0	0
4	1	5	6	0	0	0	0	0
5	1	9	26	24	0	0	0	0
6	1	14	71	154	120	0	0	0
7	1	20	155	580	1044	720	0	0
8	1	27	295	1665	5104	8028	5040	0
9	1	35	511	4025	18424	48860	69264	40320
	$\dim(A^k)$							

 $\dim(A_n^{\kappa})$

A_n^k as Cohomology of Quotient Space Y_n

Theorem.

Let $Y_n = \mathsf{PConf}_n(\mathbb{C})/\mathbb{C}^{\times}$ be the quotient of pure configuration space by the free \mathbb{C}^{\times} action. The symmetric group S_n acts on $\mathsf{PConf}_n(\mathbb{C})/\mathbb{C}^{\times}$ by permuting coordinates. Then for each $k \ge 0$ we have an isomorphism of S_n -modules

$$H^k(\mathsf{PConf}_n(\mathbb{C})/\mathbb{C}^{\times},\mathbb{Q})\cong A_n^k.$$

Part V: Consequences/Applications

The explanation of the splitting measure coefficients α_n^k in terms of braid group cohomology representations has several consequences:

(1) It gives a "nice" representation theory interpretation for splitting measures at values $z = \pm \frac{1}{m}$ for all integers $m \ge 1$.

(2) It gives (possibly new) information on the internal structure of the pure braid group cohomology ring.

(3) The individual α_n^k exhibit representation stability as *n* varies for *k* fixed.

(4) \mathbb{F}_1 -splitting measure as S_n -equivariant Euler characteristic of Y_n

Consequence 1: z-Splitting measures at $z = \pm \frac{1}{m}$

• Theorem.

(1) The *z*-splitting measures for $z = -\frac{1}{m}$ (rescaled by the factor *n*!) are the characters of (reducible) representation of S_n .

(2) The *z*-splitting measures for $z = -\frac{1}{m}$ (rescaled by the factor *n*!) are the difference of two characters of (reducible) representation of S_n .

 This result explains that representation-theory structure exists at z = ±1. But it does not explain the *small support* and the *number theory internal structure* in the 1-splitting measure.

Reconstruct *z*-Splitting measures by interpolation

• **Dichotomy.** We can recover the *z*-splitting data for all *n* simultaneously by interpolation in two independent ways:

(i) By interpolation of measure data at z = p for all primes p.

(ii) By interpolation of representation data at all $z = -\frac{1}{m}$, $m \ge 1$ (alternatively by data at all $z = \frac{1}{m}$, $m \ge 1$).

• **Problem.** Find a direct interpretation of the data at $z = \pm \frac{1}{m}$.

Consequence 2: Structure of Pure Braid Group Cohomology Ring

Theorem. (Hyde-L (2016))

(Pure Braid Cohomology = Twisted Regular Representation of S_n)

Let $triv_n$, sgn_n , and $\mathbb{Q}[S_n]$ be the trivial, sign, and regular representations of S_n respectively. Then there is an isomorphism of S_n -representations,

$$\bigoplus_{k=0}^{n} H^{k}(P_{n},\mathbb{Q}) \otimes \operatorname{sgn}_{n}^{\otimes k} \cong \mathbb{Q}[S_{n}].$$

Here $\operatorname{sgn}_n^{\otimes k} \cong \operatorname{triv}_n$ or sgn_n according to whether k is even or odd.

• Here $\mathbb{Q}[S_n]$ is the regular representation of S_n . The proof uses $H^k(P_n, \mathbb{Q}) \simeq A_n^{k-1} \oplus A_n^k$.

Consequence 3: Representation Stability for A_n^k

Theorem. (Hersh-Reiner (2015)) (Representation stability for A_n^k)

For each fixed $k \ge 1$, the sequence of S_n -representations A_n^k with characters χ_n^k are representation stable, and stabilizes sharply at n = 3k + 1.

• Hersh-Reiner (2015) study a different cohomology, which one shows is isormorphic to A_n^k as an S_n -module.

Representation Stabilization of $H^1(P_n, \mathbb{Q})$

n	dim H^1	$H^1(P_n, \mathbb{Q})$	dim A_n^1	A_n^1
2	1	[2]	0	0
3	3	[3] \oplus [2, 1]	2	[2,1]
4	6	$[4] \oplus [3,1] \oplus [2,2]$	5	$[3,1]\oplus [2,2]$
5	10	$[5] \oplus [4,1] \oplus [3,2]$	9	$\textbf{[4,1]} \oplus \textbf{[3,2]}$
n	$\begin{bmatrix} n\\ n-1 \end{bmatrix}$	$[n]\oplus [n-1,1]$	$\begin{bmatrix} n\\ n-1 \end{bmatrix} - 1$	$[n-1,1]\oplus[n-2,2]$
		$\oplus [n-2,2]$		

Irreducible decompositions for $H^1(P_n, \mathbb{Q})$ and A_n^1 .

(Here λ abbreviates the irreducible representation S^{λ} .)

Representation Stabilization of $H^2(P_n, \mathbb{Q})$

n	dim H^2	$H^2(P_n, \mathbb{Q})$
3	2	[2,1]
4	11	$2[3,1] \oplus [2,2] \oplus [2,1,1]$
5	35	$2[4,1]\oplus 2[3,2]\oplus 2[3,1,1]\oplus [2,2,1]$
6	85	$2[5,1] \oplus 2[4,2] \oplus 2[4,1,1] \oplus [3,3] \oplus 2[3,2,1]$
7	175	$2[6,1] \oplus 2[5,2] \oplus 2[5,1,1] \oplus [4,3] \oplus 2[4,2,1] \oplus [3,3,1]$
8	322	$2[7,1] \oplus 2[6,2] \oplus 2[6,1,1] \oplus [5,3] \oplus 2[5,2,1] \oplus [4,3,1]$
n	$\begin{bmatrix} n\\ n-2 \end{bmatrix}$	$2[n-1,1]\oplus 2[n-2,2]\oplus 2[n-2,1,1]\oplus [n-3,3]$
		$\oplus 2[n-3,2,1]\oplus [n-4,3,1]$

Irreducible decomposition for $H^2(P_n, \mathbb{Q})$

Representation Stabilization of A_n^2

n	dim A_n^2	A_n^2
3	0	0
4	6	$[3,1] \oplus [2,1,1]$
5	26	$[4,1] \oplus [3,2] \oplus 2[3,1,1] \oplus [2,2,1]$
6	71	$[5,1] \oplus [4,2] \oplus 2[4,1,1] \oplus [3,3] \oplus 2[3,2,1]$
7	155	$[6,1] \oplus [5,2] \oplus 2[5,1,1] \oplus [4,3]$
		\oplus 2[4,2,1] \oplus [3,3,1]
8	295	$[7,1] \oplus [6,2] \oplus 2[6,1,1] \oplus [5,3]$
		\oplus 2[5,2,1] \oplus [4,3,1]
n	$\begin{bmatrix} n\\ n-2 \end{bmatrix} - \begin{bmatrix} n\\ n-1 \end{bmatrix} + 1$	$[n-1,1] \oplus [n-2,2] \oplus 2[n-2,1,1]$
		$ig \oplus [n-3,3]\oplus 2[n-3,2,1]\oplus [n-4,3,1]$

Irreducible decomposition for A_n^2

Consequence 4: \mathbb{F}_1 -splitting as an equivariant Euler Characteristic

• General result:

Proposition. Let X be an (algebraic) variety defined over a ring of algebraic integers. Denote by $X_{\mathbb{C}}$ (resp. $X_{\mathbb{F}_q}$) the set of \mathbb{C} -points (resp. \mathbb{F}_q -points) of X. Suppose that there exists a polynomial $P(X) \in \mathbb{Z}[X]$ such that $|X_{\mathbb{F}_q}| = P(q)$ for infinitely many prime powers q. Then the Euler-Poincaré characteristic (with compact support) of $X_{\mathbb{C}}$ in $H^{\bullet}(X, \mathbb{C})$ is given by $\chi(X_{\mathbb{C}}) = P(1)$.

• ("classical" result) Caldero and Chapoton [Comm. Math. Helv. **81** (2006), Lemma 3.5], Reinecke [IMRN 2006, ID 70456, 1–19] (Representations of quivers)

• Our framework has Laurent polynomials.

Equivariant Cohomology Interpretation

Theorem. (*z-splitting measures as equivariant Poincaré polynomials*)

Let $Y_n = \mathsf{PConf}_n(\mathbb{C})/\mathbb{C}^{\times}$. Setting $w = -\frac{1}{z}$, then for each $g \in S_n$ the *z*-splitting measure is given by the scaled equivariant Poincaré polynomial

$$\nu_{n,z}^*(g) = \frac{1}{n!} \sum_{k=0}^{n-1} Trace(g|H^k(Y_n, \mathbb{Q}))w^k,$$

attached to the complex manifold Y_n , where g acts as a permutation of the coordinates.

1-Splitting Measure as an Equivariant Euler Characteristic

 Conclusion: The rescaled 𝔽₁-splitting measure is the value at z = 1 (so that w = −1), yielding:

Corollary. The rescaled 1-splitting measure $\frac{n!}{|C_{\lambda}|}\nu_{n,1}^{*}(C_{\lambda})$ is the equivariant Euler characteristic of the space $Y_{n}(\mathbb{C})$ with respect to its S_{n} -action.

Conclusion

- There is still some mystery in the 1-splitting measure, concerning its small support and number-theoretic values.
- The 1-splitting measure for each *n* combines stable and unstable cohomology. It is not entirely explained by representation stability. (Perhaps one can go to a stable limit and ask what that measure is.)
- Representation stability is now being extended outside the stable range to a theory of secondary stability of unstable cohomology (under development) by others. (Jeremy Miller and Jennifer Wilson)[arXiv, Nov 2016]

Thank you for your attention!