
PERFORMANCE ANALYSIS OF SHAMIR’S ATTACK ON THE BASIC MERKLE-

HELLMAN KNAPSACK CRYPTOSYSTEM

(Extended Abstract)

J. C. Lagarias

AT&T Bell Laboratories

Murray Hill, New Jersey

0. Abstract

This paper gives a performance analysis of one variant of Shamir’s attack on the basic

Merkle-Hellman knapsack cryptosystem, which we call Algorithm S. Let

R =
maximum # cipher text bits

# plain text bits_ ________________________ denote the rate at which a knapsack cryptosystem transmits

information, and let n denote the number of items in a knapsack, i.e. the block size of plaintext.

We show that for any fixed R Algorithm S runs to completion in time polynomial in n on all

knapsacks with rate R o ≥ R. We show that it successfully breaks at least the fraction 1 −
n

c R_ __

of such knapsack cryptosystems as n → ∞, where c R is a constant depending on R.

1. Introduction

In 1978 Merkle and Hellman [11] proposed public key cryptosystems based on the knapsack

problem. The simplest of these cryptosystems, the basic knapsack cryptosystem, works as

follows. The public information is a set of nonnegative integers { a i : 1 ≤ i ≤ n } which are

called knapsack weights. Messages are encrypted by first being broken into blocks (x 1 , ... ,x n )

of n binary digits. A block is encrypted as the integer E given by

a 1 x 1 + ... + a n x n = E; all x i = 0 or 1 . (1.1)

The problem of solving (1.1) for (x 1 , ... ,x n ) when given arbitrary { a 1 , ... , a n , E } is known to

be NP-hard. However in the basic Merkle-Hellman cryptosystem the knapsack items

{ a i : 1 ≤ i ≤ n } have a special structure which allows (1.1) to be solved easily; this structure is

concealed by a trapdoor. The trapdoor information is any decryption pair (W ,M) of integers

satisfying the following conditions:



(i) 1 ≤ W < M and (W ,M) = 1.

(ii) M >
i

MAX { a i }.

(iii) The sequence { s i : 1 ≤ i ≤ n } defined by 0 ≤ s i < M and

s i ≡ Wa i (mod M)

is superincreasing, i.e.

s 1 + ... + s i < s i + 1 for 1 ≤ i ≤ n − 1 .

(iv) The size condition. s 1 + ... + s n < M holds.

Given a decryption pair (W ,M) a ciphertext E is decrypted by finding

E * ≡ WE (mod M) ; 0 ≤ E * < M (1.2)

and solving the 0 − 1 integer programming problem

s 1 x 1 + ... + s n x n = E * ; all x i = 0 or 1 . (1.3)

Under the conditions (i)−(ii) equations (1.1) and (1.3) have the same solution when E and E * are

related by (1.2). The equation (1.3) is easily solved in linear time using the superincreasing

property of the { s i }.

In order to produce knapsacks { a i : 1 ≤ i ≤ s n } having such a trapdoor, Merkle and

Hellman proceed as follows. Given an expansion factor d ≥ 1 and a block size n, they pick an

integer M with

2dn < M < 2dn + 1 . (1.4)

Next they pick a ‘‘random’’ superincreasing sequence { s i , ... ,s n } such that s 1 + ... + s n < M.

Finally they draw W * from 1 ≤ W * < M with (W * ,M) = 1 using the uniform distribution and

set

a i ≡ W * s i (mod M) ; 1 ≤ a i < M .

It is easy to verify that (i)−(iv) hold in this case, provided W is determined by 1 ≤ W < M and

by



WW * ≡ 1 (mod M) .

After the knapsack items { a i : 1 ≤ i ≤ n } are produced, Merkle and Hellman scramble their

order using a permutation σ ∈ S n , so that the public keys are { a σ(i) : 1 ≤ i ≤ n }. In this case

the permutation σ is also part of the trapdoor information.

The interpretation of the expansion factor d is that it is a measure of how much longer

ciphertext messages are than plaintext messages, i.e.

d ∼=
n

log 2 (nM)_ ________ ∼= # bits in plaintext block
maximum # bits in ciphertext E_ ___________________________ .

The inverse quantity R = d − 1 is a measure of the average number of bits of plaintext

transmitted per bit of ciphertext, i.e. R is the information rate.

Merkle and Hellman’s hope was that it would not be easily possible to recover the trapdoor

information. However in 1981 Adi Shamir [13] discovered a strong attack on the basic Merkle-

Hellman cryptosystem. He showed that his attack runs in time polynomial in n as n → ∞ when

the modulus M ≤ 2dn and d is fixed. (This running time is however, at least exponential in d.)

He analyzed the performance of the key step in his attack (Step 2 following), assuming an

unproved but plausible assumption (Hypothesis U in Section 3B) and showed that this step

succeeded with high probability provided 1 < d < 2. As we indicate in Section 3B and [6], this

key step depends on a rational vector constructed from the public keys having an ‘‘unusually

good’’ simultaneous Diophantine approximation. The unproved assumption is that the

‘‘unusually good’’ simultaneous Diophantine approximation arising from superincreasing

sequences behave similarly to ‘‘random’’ rational vectors having an ‘‘unusually good’’

simultaneous Diophantine approximation. Shamir also presented heuristic arguments that his

attack works in general for 1 ≤ d < ∞. (The condition d ≥ 1 is required in order that encrypted

messages be uniquely decipherable.)

The object of this paper is to outline a performance analysis of Shamir’s attack that considers

all steps in his attack, assumes no unproved hypothesis, and which applies to all expansion rates

d with 1 ≤ d < ∞. In particular it asserts that a version of Hypothesis U is true. The result

contrasts with a similar heuristic put forward by Adleman [1] in connection with an attack on

iterated knapsack cryptosystems, which does not seem to hold on numerical examples (c.f. [3]).

Some of the methods here can be applied to the analysis of other knapsack cryptosystems,

c.f. [2], [4], [6], [8], [12].



2. Shamir’s Attack on Basic Knapsack Cryptosystems

The object of Shamir’s attack is to find a decryption pair (W * ,M * ), which need not be the

same as the pair (W ,M) used by the encrypter. This is possible because any basic knapsack

cryptosystem has infinitely many decryption pairs: any pair with
M *
W *
_ ___ sufficiently close to

M
W_ __

will work.

Shamir’s attack proceeds in several steps, which we sketch here.

Algorithm S.

Step 1. Estimate the modulus M by M̃ =
1≤ i≤n
max { a i } and estimate the expansion factor d by

d * =
n
1_ _ log 2 (n 2 M̃).

Step 2. Set g = d * + 2 or g = 5, whichever is larger. Guess the correct g knapsack items

(a 1 , ... ,a g) corresponding to the g smallest superincreasing elements. (That is, run the following

algorithm on all 
g
n
 possible g-tuples.) Solve the integer program (I.P.)

x i a 1 − x 1 a i ≤ B ; 2 ≤ i ≤ g , (2.2)

1 ≤ x 1 ≤ B − 1 , (2.3)

where

B = [ 2 − n + g M * ] . (2.4)

If a solution (x1
( 0 ) , ... ,x1

( 0 ) ) is found, create two new integer programs by replacing (2.3) by the

constraints

1 ≤ x 1 < x1
( 0 )

and

x1
( 0 ) < x 1 ≤ B − 1 ,

respectively. Solve these two I.P.’s and for each solution found, create two new I.P.’s by

continuing to subdivide the x 1 regions according to the values of x1
(i) found. Do this until either

n log 2 n distinct solutions are found, with at most 2n log 2 n I.P.’s examined, or else until the

process halts before this with a set of I.P.’s with no further solutions.



Step 3. For each solution (x1
(i) , ... ,xn

(i)) found in Step 2, examine the n 7 rationals

θj
(i) =

a i

x1
(i)

_ ___ + j
n 72nM̃

1_ ______ ; 1 ≤ j ≤ n 7 . (2.5)

Find θj
(i) =

Mj
*

Wj
*

_ ___ in lowest terms using the Euclidean algorithm. Check if (Wj
* ,Mj

*) is a

decryption pair for { a 1 , ... ,a n }. If so, the algorithm succeeds. If not, continue.

The rationale for this procedure is as follows. The decryption congruence

W a i ≡ s i (mod M) (2.6)

is equivalent to the equality

Wa i − M k i = s i (2.7)

for some non negative integer k i . Then (2.7) gives:

M
W_ __ −

a i

k i_ __ =
Ma i

s i_ ____ . (2.8)

Hence we obtain

a i

k i_ __ −
a 1

k 1_ __ =
Ma 1

s 1_ ____ −
Ma i

s i_ ____ , (2.9)

so that

k i a 1 − k 1 a i =
M
1_ __ (s 1 a i − s i a 1 ) . (2.10)

Since any superincreasing sequence { s i } with
i = 1
Σ
n

s i < M has

0 ≤ s i ≤ 2 − n + i M , (2.11)

the bounds (2.10), (2.11) yield for 1 ≤ i ≤ g that

k i a 1 − k 1 a i ≤ 2 − n + g M̃ . (2.12)

So in this case the integer program (2.2) and (2.3) has at least one solution

(x 1 , ... ,x g ) = (k 1 , ... ,k g ). It turns out that for g ≥ d * + 2, a ‘‘random’’ integer program of the



form (2.2), (2.3) can be expected to have no integer feasible solution; in this sense our particular

I.P. is ‘‘unusual’’ in having a solution. The condition d * ≥ 5 is a technical one.

Now suppose Step 2 succeeds in finding a solution (x1
(i) , ... ,xn

(i) ) with x1
(i) = k 1 . Then (2.8)

and (2.11) give

0 ≤
M
W_ __ −

a 1

k 1_ __ ≤
2n + 1 a 1

1_ _______ . (2.13)

Also suppose that

n 2
1_ __ M ≤ a 1 ≤ M . (2.14)

Then (2.13) becomes

0 ≤
M
W_ __ −

a 1

k 1_ __ ≤
2nM
n 2

_ ____ . (2.15)

In this case Step 3 is bound to find a pair
Mj

*

Wj
*

_ ___ with



 Mj

*

Wj
*

_ ___ −
M
W_ __




≤
n 52nM

1_ ______ . (2.16)

Set (W * ,M * ) equal to this (Wj
* ,Mj

*). Then if λ is defined by M * = λM, we have

W * = λ(W + ε )

where (2.16) gives

ε  ≤ n − 52 − n . (2.17)

Hence

W * a i − M * k i = λ [ (Wa i − Mk i ) + ε a i ]

= λ (s i + ε a i ) ,

where

ε a i ≤ n − 52 − n M . (2.18)

It turns out that



si
* = s i + ε a i (2.19)

will be a superincreasing sequence for ‘‘almost all’’ superincreasing sequences (Corollary 3.6)

and hence (W * ,M *) will then be the desired decryption pair.

This rationale indicates that Algorithm S can only fail in the following ways:

(1) The bound
n 2
1_ __ M ≤ a 1 ≤ M can fail to hold.

(2) Step 2 may fail to find a solution (x1
(i) , ... ,x ( 1 ) ) with x1

(i) = k 1 .

(3) Step 3 may fail for all j because all sequences { si
* } given by (2.19) aren’t

superincreasing.

We analyze these possibilities in Section 3.

Before proceeding we bound the running time of Algorithm S. The integer programs

encountered in Step 2 all have g variables, which we regard as fixed while the number of items

n → ∞. Such I.P.’s can be solved in polynomial time in the input length L using an algorithm

of H. W. Lenstra, Jr. [10]. The running time bound of Lenstra’s algorithm has (apparently) the

form O(L F(g) ) where F(g) grows exponentially in g. Kannan ([5], Theorem 1) has announced a

faster algorithm, which runs in time O(g 9g L log L). Using Kannan’s algorithm, it is easy to

obtain the following result.

Lemma 2.1. Algorithm S runs to completion in time 0 (n g + 10 L log L) where L = g log M̃.

Note here than when the information rate R 0 ≤ R then the expansion factor d * ≤ d ≤ R − 1 is

bounded above. Hence g = d * + 2 is fixed and Lemma 2.1 gives a bound for the running time

which is polynomial in the input length L.

3. Performance Analysis

We assume the following probablistic model. The modulus M is fixed. The multiplier W is

drawn uniformly from the set of all W with 1 ≤ W ≤ M with (W ,M) = 1. The superincreasing

sequence { s i , ... ,s n } drawn uniformly from all superincreasing sequences with
i = 1
Σ
n

s i < M. We

define d by M = 2dn . Let G(n ,M) denote the number of choices for (W ; s 1 , ... ,s n ). Our main

result is:



Theorem 3.1. For any fixed information rate R with O < R < 1 there is a constant c R such that

for fixed M Algorithm S fails on at most ( 1 −
n

c R_ __ ) G(n ,M) choices (W ; s 1 , ... ,s n ), provided

M = 2dn with 1 ≤ d ≤ R − 1 .

We now indicate the main steps in the proof, corresponding to the three types of failure

mentioned at the end of Section 2.

A. Bounding the knapsack item a1

In this step we consider the smallest element s 1 of the superincreasing sequence as fixed.

Now Wa 1 ≡ s 1 (mod M) so that

W * s 1 ≡ a 1 (mod M) . (3.1)

where WW * ≡ 1 (mod M). There are φ(M) choices for W * with (W * ,M) = 1 and we want to

show that at most O


 n

1_ _ φ(M)




such choices give a 1 ≤
n 2
1_ __ M, provided M ≥ 2n . We use:

Lemma 3.2. Let B(M ,T) =  { x : (x ,M) = 1 and 1 ≤ x ≤ T }.

Then

B(M ,T) ≤
M
T_ __ φ(M) + O



M log log M

c o_ _________




.

This suffices if (s 1 ,M) = 1 and in fact gives O


 n

1_ _ φ(M)



. There are some complications if

(s 1 ,M) > 1. We may assume (s 1 ,M) ≤ n since the fraction of superincreasing sequences with

(s 1 ,M) > n is O


 n

1_ _



of the total, as can be inferred using Theorem 3.5 below.

B. Bounding failure in Step 2

This is done in two stages. First, we show that for a fixed K the expected number of

solutions of a ‘‘random’’ integer program of the form (2.2), (2.3) having a solution

(x1
( 0 ) , ... ,xg

( 0 ) ) with x1
( 0 ) = K is bounded above by a constant depending on g (but not on n).

Second, we show that the set of all sequences (W ,s 1 , ... ,s n ) mapping onto a fixed a 1 have

images (a 2 , ... ,a g ) hitting at least a positive fraction (depending on g) of all ‘‘random’’ I.P.’s of

the form (2.2), (2.3). Consequently the expected number of solutions to such ‘‘special’’ integer



programs is bounded above by a (larger) constant depending on g.

Shamir’s analysis avoided this second stage by assuming:

Hypothesis U. The integer programs of the form (2.2), (2.3) arising from basic knapsack

cryptosystems have, up to a multiplicative constant depending on g, the same expected number of

solutions as a ‘‘random’’ integer program (2.2), (2.3) having at least one solution.

The first stage is handled by:

Theorem 3.3. (a) Let a 1 and K be fixed. Let a 1 = λM with
n 2
1_ __ ≤ λ ≤ 1. The number

(a 2 , ... ,a g ) of integer programs

a i x 1 − a 1 x i ≤ λ2 − n + ga 1 ; 2 ≤ i ≤ g ,

with 0 ≤ a i < a, having at least one solution (x1
( 0 ) , ... ,xg

( 0 ) ) with x1
( 0 ) = K is bounded above by

a constant depending on g times λg 2(g − 1 ) dn .

(b) The expected number of solutions to such an integer program is bounded above by a

constant depending on g but not on n, provided g ≥ d + 2 and g ≥ 5.

This is proved by reformulating it as the equivalent (g − 1 )-dimensional simultaneous

Diophantine approximation problem



 a 1

a i_ __ −
x 1

x i_ __ 



≤
x 1

2 − n + g
_ ______ , 2 ≤ i ≤ g

and applying the results of [7]. Here (a) uses an easy counting argument and (b) is difficult to

prove.

The second stage is supplied by the following lemma.

Lemma 3.4. Let a 1 be fixed, with a 1 = λM for
n 2
1_ __ ≤ λ ≤ 1. The number of distinct

(a 2 , ... ,a g ) (mod a 1) arising as the image of some (W ,s 1 , ... ,s g ) with Wa 1 ≡ s 1 (mod M) is

either zero or at least a constant depending on g times λg 2(g − 1 ) dn .

To prove this we hold W and s 1 fixed and vary s 2 , ... ,s g , using the bounds on the number of

superincreasing sequences given in Theorem 3.5 below. We also need the result that the number



of ways of extending a given superincreasing sequence (s 1 , ... ,s g ) with s i < 2 − n + iM to a

superincreasing sequence (s 1 , ... ,s n ) with
i − 1
Σ
n

s i ≤ M is roughly a constant for ‘‘almost all’’

(s 1 , ... ,s g ), c.f. Corollary 3.6.

C. Bounding failure in Step 3

Here we use good estimates for the number of superincreasing sequences with various

restrictions on their elements (s 1 , ... ,s n). Let S n (M) denote the number of superincreasing

sequences with
i = 1
Σ
n

s i < M. If we set

d i = s i − (s 1 + ... + s i − 1 ) ; 1 ≤ i ≤ n .

then

s 1 + ... + s n = 2n − 1 d 1 + 2n − 2 d 2 + ... + 2d n − 1 + d n

we find S n (M) is the number of integer solutions to

d i ; 1 ≤ i ≤ n , (3.1)

M > 2n − 1 d 1 + ... + 2d n − 1 + d n .

The system (3.1) cuts out a simplex Ω n (M) in Rn with volume
n!

2
− (2

n)
_ _____ M n . Consequently this

is about the number of integer points we expect to satisfy (3.1) for large enough M.

Theorem 3.5. S n (M) =
n!

2
− (2

n)
_ _____ M n + O




 n!

2
− (2

n)
_ _____ M n (

M
2nn 4
_ ____ )






In order to make Step 3 successful, we want relatively large perturbations ε a i in (2.19) to

not ruin the superincreasing property. This is equivalent to requiring that all the d i in (3.1) be

‘‘large.’’ Now the integer program

d i > B ; 1 ≤ i ≤ n ,

M ≥ 2n − 1 d 1 + ... + 2d n − 1 + d n .

has the same number of integer feasible solutions as



di
* > 0 ; 1 ≤ i ≤ n ,

M − ( 2n − 1 ) B > 2n − 1 d1
* + ... + 2dn − 1

* + dn
* ,

which has S n (M − ( 2n − 1 ) B) solutions. Hence as long as

S n (M − 2nB) ∼ S n (M) (3.2)

as M = 2dn with n → ∞, we have ‘‘almost all’’ superincreasing sequences have all d i ≥ B.

The following Corollary of Theorem 3.5 shows that we may choose B = n − 22 − nM.

Corollary 3.6. If M = 2dn with d > 1 then as n → ∞ at most O (
n
1_ _ S n (M) ) superincreasing

sequences with
i − 1
Σ
n

s i < M and d i = s i − (s 1 + ... + s i = 1 ) have some

d i < n − 22 − nM . (3.3)

Now the bounds (2.19) and (2.17) give

ε a i ≤ n − 52 − nM (3.4)

Comparing this with (3.3) we easily check that ‘‘almost all’’ superincreasing sequences remain

superincreasing when perturbations of size n − 52 − nM are allowed.



References

[1] L. Adleman, On Breaking Generalized Knapsack Cryptosystems, Proc. 15th Annual

ACM Symposium on Theory of Computing, 1983, pp. 402-412.

[2] E. Brickell, Solving Low Density Knapsacks, in: Advances in Cryptology, Proceedings of

Crypto-83 (D. Chaum, Ed.), Plenum Publ. Co., New York 1984.

[3] E. Brickell, J. C. Lagarias and A. M. Odlyzko, Evaluation of Adleman’s Attack on

Multiply Iterated Knapsacks (Abstract), Advances in Cryptology Proceeding of Crypto-

83 (D. Chaum, Ed.), Plenum Publ. Co., New York 1984.

[4] Y. Desmedt, J. Vandewalle, R. Govaerts, A Critical Analysis of the Security of Knapsack

Public Key Cryptosystems, preprint.

[5] R. Kannan, Improved Algorithms for Integer Programming and Related Lattice

Problems, Proc. 15th Annual ACM Symposium on theory of Computing, 1983, pp. 193-

206.

[6] J. C. Lagarias, Knapsack Public Key Cryptosystems and Diophantine Approximation

(Extend Abstract), Advances in Cryptology, Proceedings of Crypto-83 (D. Chaum, Ed.),

Plenum Publ. Co., New York, 1984, pp. 3-24.

[7] J. C. Lagarias, Simultaneous Diophantine Approximation of Rationals by Rationals,

preprint.

[8] J. C. Lagarias and A. M. Odlyzko, Solving Low Density Subset Sum Problems, Proc.

24th IEEE Symposium on Foundations of Computer Science, 1983, pp. 1-10.

[9] A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz, Factoring polynomials with rational

coefficients, Math. Annalen. 261 (1982), pp. 515-534.

[10] H. W. Lenstra, Jr., Integer programming with a fixed number of variables, Math. of

Operations Research, to appear.

[11] R. Merkle and M. Hellman, Hiding Information and Signatures in Trapdoor Knapsacks,

IEEE Trans. Information Theory IT-24 (1978), pp. 525-530.



[12] A. M. Odlyzko, Cryptanalytic attacks on the multiplicative knapsack cryptosystem and

on Shamir’s fast signature scheme, IEEE Trans. Information Theory, to appear.

[13] A. Shamir, A polynomial time algorithm for breaking the basic Merkle-Hellman

cryptosystem, Proc. 23rd Annual Symposium on Foundations of Computer Science,

1982, pp. 145-152.


