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1. Introduction

This paper studies the behavior of simultaneous Diophantine approximations of

vectors α α = (
B

a 1_ __ , ... ,
B

a n_ __ ) of rational numbers by vectors ξ ξ = (
x

x 1_ __ , ... ,
x

x n_ __ ) of

rational numbers with a smaller denominator 1 ≤ x < B. To exclude the case that ξ ξ

perfectly approximates α α we suppose that α α = (
B

a 1_ __ , ... ,
B

a n_ __ ) is primitive in the sense

that B is the minimal common denominator for the entries of α α, i.e. that

g. c. d. (a 1 , ... , a n , B) = 1 . (1.1)

In general it seems difficult to determine the set of good simultaneous Diophantine

approximations to an individual vector α α, and such sets may be badly behaved, cf.

[2],[3]. However it is possible to say more about the general behavior of such sets of

approximations when averaged over appropriately chosen ensembles of vectors α α, and

this is the object of this paper. In particular we show (Theorem 1.5) a quantitative

version of the assertion: Most primitive vectors α α that have at least one "unusually good"

simultaneous Diophantine approximation ξ ξ do not have very many such "unusually

good" approximations. Here the vectors ξ ξ are not required to be primitive but must have

a denominator x with 1 ≤ x < B.

In order to state our results we introduce some definitions and notation. First, we

need a measure of goodness of approximation. We say that a vector ξ ξ is a ∆-good
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approximation to a vector α α if

 B

a i_ __ −
x

x i_ __ ≤
Bx
∆_ __ ; for 1 ≤ i ≤ n . (1.3)

This is the usual sup norm measure of approximation since (1.3) may be rewritten as

{ { x α α} } ≤
B
∆_ _

where

{ {β β} } =
y∈Zn
MIN (

1≤ i≤n
MAX β i − y i) .

We let N(α α , ∆) denote the number of ∆-good approximation vectors to α α, i.e. the

number of solutions (x , x 1 , ... , x n ) to (1.3) with 1 ≤ x < B. By clearing denominators

in (1.3) we see that N(α α , ∆) may alternatively be interpreted as the number of solutions

(x , x 1 , ... , x n ) of the integer programming problem:

− ∆ ≤ a i x − Bx i ≤ ∆; 1 ≤ i ≤ n , (1.4a)

1 ≤ x < B , (1.4b)

x , x 1 , ... , x n integers . (1.4c)

Second, in order to formulate assertions about the behavior of "most" vectors α α, we need

to specify the sets of such vectors we are studying. We note that if y ∈ Zn is an integer

lattice point, then we have

N(α α , ∆) = N(α α + y , ∆) ,

by examining (1.4). Hence we may without loss of generality restrict our attention to

primitive vectors α α lying in the half-open unit cube [ 0 , 1 ) n in Rn , i.e. we suppose that

α α = (
B

a 1_ __ , ... ,
B

a n_ __ ) has
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0 ≤ a i < B; 1 ≤ i ≤ n . (1.5)

We study the sets S n (B) consisting of all primitive vectors α α with denominator B, which

lie in [ 0 , 1 ) n , i.e.

S n (B) = {α α = (
B

a 1_ __ , ... ,
B

a n_ __ ) : 0 ≤ a i < B and g. c. d. (a 1 , ... , a n , B) = 1} .

(1.6)

Our object is to analyze the behavior of the function N(α α , ∆) viewed as a random

variable on the sets S n (B) which we treat as discrete probability spaces with the uniform

distribution. Our first result is an estimate for the mean value of N(α α , ∆). Here d(B)

denotes the number of divisors of B.

Theorem 1.1. For n ≥ 2,

α α ∈ S n (B)
Σ N(α α , ∆) = 2n ψ n (B) B∆n + O(n3n + 1 d(B)2 B∆n − 1 ) , (1.7)

where ψ n (B) is the multiplicative function defined by

ψ n (B) =
pB
Π ( 1 − p − n ) , (1.8)

and the constant implied by the O-symbol is independent of n and B.

Note that ψ n (B) is bounded away from zero, and in fact for n ≥ 2

1 ≥ ψ n (B) ≥ [ζ(n) ] − 1 ,

where ζ denotes Riemann’s zeta function.

It is easy to verify that the set S n (B) contains exactly ψ n (B) B n elements, and

combining this result with Theorem 1.1 immediately gives the following corollary.
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Corollary 1.2. For n ≥ 2,

Prob {α α ∈ S n (B) has N(α α , ∆) ≥ 1} ≤ 2n

B n − 1
∆n

_ _____ + O(n3n + 1 d(B)2 (
B
∆_ _ ) n − 1 ) .

(1.9)

Dirichlet’s theorem for simultaneous Diophantine approximation implies that for

∆ = B
1 −

n
1_ _

, N(α α , ∆) ≥ 1 for all α α, so that in this case

Prob {α α ∈ S n (B) : N(α α , B
1 −

n
1_ _

) ≥ 1} = 1 . (1.10)

Corollary 1.2 implies that when the dimension n is held fixed

Prob {α α ∈ S n (B) : N(α α , ∆) ≥ 1} → 0 as B → ∞ , (1.11)

provided ∆ = o(B
1 −

n
1_ _

) as B → ∞; this is a quantitative version for rationals in S n (B)

of the assertion that "most" vectors do not have simultaneous Diophantine

approximations significantly better than those guaranteed to exist by Dirichlet’s theorem.

Our main result is an upper bound for the second moment of N(α α , ∆) on the set

S n (B).

Theorem 1.3. For each n ≥ 2 there are positive constants c n , 1 , c n , 2 and c n , 3 such

that

α α ∈ S n (B)
Σ N(α α , ∆)2 ≤ c n , 1 B 2 (

B
∆2
_ __ ) n + c n , 2 B∆n + R n (B , ∆) (1.12)

where the remainder term R n (B , ∆) is given by
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R n (B , ∆) =





c 2 , 3

c 3 , 3

c n , 3

(d(B)3 B∆2 )

(d(B)2 B∆3 )

(d(B)2 B∆n − 1 )

for n = 2 .

for n = 3 ,

for n ≥ 4 ,

(1.13)

For prime B the bounds (1.12) and (1.13) simplify for all n ≥ 2 to

α α ∈ S n (B)
Σ N(α α , ∆)2

n
<< B 2 (

B
∆2
_ __ ) n + B∆n . (1.14)

Here
n

<< is the Vinogradov notation, which says that the left side of (1.14) is less than the

right side of (1.14) times a positive constant depending on n. This bound for prime B is

the correct order of magnitude in that it can be shown that

α α ∈ S n (B)
Σ N(α α , ∆)2

n
>> B 2 (

B
∆2
_ __ ) n + B∆n , (1.15)

see the discussion at the end of Section 4. In (1.15) the term B∆n comes from a small set

of α α having many ∆-good approximations, while the term c n , 3 B 2 (
B

∆2
_ __ ) n is associated

with the contribution of the "average" value of N(α α , ∆) on the set of those α α with

N(α α , ∆) ≥ 1. The B 2 (
B

∆2
_ __ ) n term dominates (1.12) when ∆ ≥ B

1 −
n
1_ _

, while the B∆n

term dominates (1.12) when ∆ ≤ B
1 −

n
1_ _

.

It is necessary to restrict ourselves to primitive vectors α α with denominator B in the

ensemble S n (B) in Theorem 1.3, because the inequality (1.12) does not hold in general

for composite B if the left side of (1.12) is enlarged to sum over all α α, primitive and

imprimitive, in [ 0 , 1 ) n having denominator B. The inequality fails in this case because

there is a large contribution from perfect approximations with smaller denominators.
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The proof of Theorem 1.3 involves an auxiliary problem of independent interest.

This concerns the distribution of the number of solutions of homogeneous linear

congruences in two variables with bounds on the variables. We consider the linear

congruence

λx 1 ≡ x 2 ( mod B) , (1.15)

subject to the constraints

x 1 ≤ ∆ 1 , (1.16)

x 2 ≤ ∆ 2 . (1.17)

Let f (λ , B , ∆ 1 , ∆ 2 ) denote the number of solutions of (1.15), (1.16) and (1.17). Note

that f (λ , B , ∆ 1 , ∆ 2 ) ≥ 1 because x 1 = x 2 = 0 is always a solution. We study the

sums

Q n (B , ∆ 1 , ∆ 2 ) =
(λ , B) = 1

Σ f (λ , B , ∆ 1 , ∆ 2 ) n

Let T(B , ∆ 1 , ∆ 2 ) denote the number of f (λ , B , ∆ 1 , ∆ 2 ) equal to 1 with 1 ≤ λ ≤ B

with (λ , B) = 1. We prove the following result, where φ(B) is Euler’s φ-function.

Theorem 1.4. For n ≥ 2 and ∆ 1 ≤ ∆ 2 , there are positive constants c n and cn
* such that

Q n (B , ∆ 1 , ∆ 2 ) − T(B , ∆ 1 , ∆ 2 ) ≤ cn
* φ(B) (

B

∆ 1 ∆ 2_ _____ ) n + R n (B , ∆ 1 , ∆ 2 ) (1.18)

where the remainder term Rn
* (B , ∆ 1 , ∆ 2 ) is
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Rn
* (B , ∆ 1 , ∆ 2 ) =






c 2 ∆ 1 ∆ 2 log ∆ 1 (

dB
Σ d − 1 )

c n ∆1
n − 1 ∆ 2

if n = 2 .

if n ≥ 3 ,

( 1. 20 )

( 1. 19 )

The important feature of Theorem 1.4 for applications is the asymmetric form of the

remainder term ∆1
n − 1 ∆ 2 for n ≥ 3 in (1.19), where ∆ 1 ≤ ∆ 2 . The inequality (1.18) is

best possible when B is prime and n ≥ 3, in the sense that

Q n (B , ∆ 1 , ∆ 2 ) − T(B , ∆ 1 , ∆ 2 )
n

>> B(
B

∆ 1 ∆ 2_ _____ ) n + ∆1
n − 1 ∆ 2

in that case, cf. equation (3.4).

We combine Theorems 1.1. and 1.2 to get information about the distribution of

N(α α , ∆) on those α for which N(α α , ∆) ≥ 1. We prove the following result.

Theorem 1.5. For each n ≥ 4 there is a positive constant cn
* * such that for all B ≥ 2

and all ∆ satisfying

cn
* * d(B)2 ≤ ∆ ≤ B

1 −
n
1_ _

,

we have

Prob {α α ∈ S n (B) has N(α α , ∆) ≥ k N(α α ,∆) ≥ 1} ≤
k 2

cn
* *

_ ___ , (1.21)

for all k ≥ 1. The same result holds for n = 2 and 3 provided B is restricted to be

prime.

It is possible that (1.21) gives the correct size of the tail of this conditional probability

distribution as a function of k, apart from the size of the constant cn
* *; I am unable to
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prove this.

Theorem 1.5 has applications to the cryptanalysis of public key cryptosystems of

knapsack type. In particular it can be used to show that Shamir’s attack [5] on the Basic

Merkle-Hellman knapsack scheme succeeds in polynomial time for "almost all"

knapsacks which encrypt at a fixed information rate R, as the number of knapsack items

n → ∞, for any R with 0 < R < 1, see [2],[3]. (Shamir [5] showed this for

2
1_ _ < R < 1.) These cryptanalytic applications motivated my study of the questions in

this paper.

Finally we remark that the proofs of the theorems are substantially complicated by

the inclusion-exclusion arguments needed to treat the case of composite B. The proofs

simplify considerably in the special case that B is prime.

2. Bounding the mean value of N(α α , ∆)

Proof of Theorem 1.1. We let

G n (B , ∆) =
α ∈ S n (B)

Σ N(α α , ∆) , (2.1)

i.e. G n (B , ∆) denotes the number of approximation pairs (x , α α) where

α = (
B

a 1_ __ , ... ,
B

a n_ __ ) such that

 B

a i_ __ −
x

x i_ __ ≤
Bx
∆_ __ (2.2)

subject to
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1 ≤ x ≤ B − 1 , (2.3)

0 ≤ a i ≤ B − 1 for 1 ≤ i ≤ n , (2.4)

g. c. d. (a 1 , ... , a n , B) = 1 . (2.5)

Our goal is to estimate G n (B , ∆).

We use inclusion-exclusion to reduce the problem to the case where the relative

primality condition (2.5) is omitted. For dB let H n (B , ∆ , d) denote the number of

solutions to (2.2)-(2.4) with

d(a 1 , ... , a n , B) . (2.6)

Then by Mobius inversion

G n (B , ∆) =
dB
Σ µ(d) H n (B , ∆ , d) . (2.7)

To estimate H n (B , ∆ , d), we set a i = dai
* and x i = dyi

* for 1 ≤ i ≤ n, and rewrite

the conditions defining H n (B , ∆ , d) as

ai
* x ≡ yi

* ( mod
d
B_ _ ) , (2.8a)

yi
* ≤

d
∆_ _ for 1 ≤ i ≤ n , (2.8b)

subject to

1 ≤ x ≤ B − 1 , (2.8c)

0 ≤ ai
* ≤

d
B_ _ − 1 for 1 ≤ i ≤ n . (2.8d)

Next we let H n (B , ∆ , d , k) denote the number of solutions to (2.8) for which

(x ,
d
B_ _ ) = k, and we have
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H n (B , ∆ , d) =
k d

B_ __
Σ H n (B , ∆ , d , k) . (2.9)

To estimate H n (B , ∆ , d , k), we set x = x * k, yi
* = yi

* * k and rewrite the conditions

defining H n (B , ∆ , d , k) as

ai
* x * ≡ yi

* * ( mod
kd
B_ __ ) , (2.10a)

yi
* * ≤

kd
∆_ __ , (2.10b)

subject to

1 ≤ x * ≤
k
B_ _ − 1 , (2.10c)

0 ≤ ai
* ≤

d
B_ _ − 1 , (2.10d)

(x * ,
kd
B_ __ ) = 1 . (2.10e)

We can count solutions to (2.10) directly by observing that the number of choices of x *

satisfying (2.10c) and (2.10e) is

dφ (
kd
B_ __ ) if kd < B , (2.11a)

k
B_ _ − 1 if kd = B . (2.11b)









For each choice of x * there are 1 + 2 [
kd
∆_ __ ] choices for each yi

* * in (2.10b), which

determines ai
* ( mod

kd
B_ __ ) uniquely, and there are then k choices for ai

* ( mod
d
B_ _ )

satisfying (2.10d). Hence
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H n (B , ∆ , d , k) =






(d − 1 ) k n ( 1 + 2 [

B
∆_ _ ] ) n .

dφ (
kd
B_ __ ) k n ( 1 + 2 [

kd
∆_ __ ] ) n

if kd = B .

if kd < B ,

We may rewrite this as

H n (B , ∆ , d , k) + [dφ (
kd
B_ __ ) − δ(

kd
B_ __ ) ] k n ( 1 + 2 [

kd
∆_ __ ] ) n , (2.12)

where we define φ( 1 ) = 1 and

δ(n) =


0
1

if n > 1 .
if n = 1 , (2.13)

Substituting this expression for H n (B , ∆ , d , k) into (2.7) and (2.9) gives

G n (B , ∆) =
dB
Σ µ(d) [

k d
B_ __

Σ [dφ (
kd
B_ __ ) − d(

kd
B_ __ ) ] nk( 1 + 2 [

kd
∆_ __ ] ) n . (2.14)

To estimate this sum, we use the approximation

k n ( 1 + 2 [
kd
∆_ __ ] ) n = k n + 2n (

d
∆_ _ ) n + ε n (∆ , k , d) , (2.15)

where ε n (∆ , k , d) is a remainder term. This decomposes the sum (2.14) for G n (B , ∆)

into three sums, which we call T 1 , T 2 , T 3 respectively and estimate separately.

For the first sum

T 1 =
dB
Σ µ(d)

k d
B_ __

Σ [dφ (
kd
B_ __ ) − δ (

kd
B_ __ ) ] k n ,

we interchange the order of summation to get
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T 1 =
kB
Σ k n {

d k
B_ __

Σ µ(d) dφ (
kd
B_ __ ) − µ(

k
B_ _ ) } . (2.16)

We now use the identity valid for all M ≥ 1 that

dM
Σ µ(d) dφ (

d
M_ __ ) = µ(M) (2.17)

to conclude that all the inner sums in (2.16) are zero, and hence that

T 1 = 0 . (2.18)

To verify (2.17), use the identity

φ(M) =
dM
Σ µ(d)

d
M_ __ (2.19)

to get

dM
Σ µ(d) dφ (

d
M_ __ ) =

dM
Σ

e d
M_ __

Σ µ(d) µ(e)
e
M_ __

=
eM
Σ µ(e)

e
M_ __ (

d e
M_ __

Σ µ(d) ) . (2.20)

Now the inner sum in (2.20) is zero except when e = M, so the right side of (2.20) is just

µ(B), proving (2.17).

For the second sum,

T 2 =
dB
Σ µ(d)

k d
B_ __

Σ [dφ (
kd
B_ __ ) − δ (

kd
B_ __ ) ] 2n (

n
∆_ _ ) n ,

we have
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T 2 = 2n ∆n

dB
Σ µ(d) d − n + 1 (

k d
B_ __

Σ φ(
kd
B_ __ ) )

+ 2n ∆n

dB
Σ µ(d) . (2.21)

For B > 1 the second sum in (2.21) is zero, and using the identity

M =
dM
Σ φ (

d
M_ __ )

the sum (2.21) becomes

T 2 = 2n ∆nB
dB
Σ µ(d) d − n = 2n ψ n (B) B∆n , (2.22)

for B > 1.

To estimate the third sum

T 3 =
dB
Σ µ(d)

k d
B_ __

Σ [dφ (
kd
B_ __ ) − δ(

kd
B_ __ ) ] ε n (∆ , d , k) (2.23)

we need bounds for the remainder terms ε n (∆ , d , k). We collect these bounds in the

following lemma.

Lemma 2.1. If k > ∆,

ε n (∆ , d , k) = − 2n (
n
∆_ _ ) n . (2.24)

If k ≤ ∆ then

ε n (∆ , d , k) ≤ nk(k + 2
d
∆_ _ ) n − 1 + 3n ∆n − 1 . (2.25)
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Proof. To prove the first part, if k > ∆ then [
kd
∆_ __ ] = 0 so that

k n ( 1 + 2 [
dk
∆_ __ ] ) n = k n

Hence

ε n (∆ , k , d) n = − 2n (
d
∆_ _ ) n .

For the second part,

ε n (∆ , k , d) ≤ k n ( 1 + 2 [
kd
∆_ __ ] ) n − k n ( 1 + 2

kd
∆_ __ ) n

+ k n ( 1 + 2
kd
∆_ __ ) n − k n − 2n (

d
∆_ _ ) n . (2.26)

Now

k n ( 1 + 2 [
kd
∆_ __ ] ) n − k n ( 1 + 2

kd
∆_ __ ) n ≤ k nn( 1 + 2

kd
∆_ __ ) n − 1 (

kd
∆_ __ − [

kd
∆_ __ ] )

≤ nk n ( 1 + 2
kd
∆_ __ ) n − 1 , (2.27)

where we used

 x 1 − x 2

x1
n − x2

n
_ ______ ≤ nx1

n − 1 when x 1 ≥ x 2 ≥ 1 .

Next, using k ≤ ∆, we have

k n ( 1 + 2
kd
∆_ __ ) n − k n − 2n (

d
∆_ _ ) n = 

i = 1
Σ

n − 1
( i
n) k i (

kd
∆_ __ ) n − 1

≤ ∆n − 1
i = 1
Σ

n − 1
( i
n) 2i (

kd
1_ __ ) n − 1 ≤ 3n ∆n − 1 . (2.28)

Combining (2.27) and (2.28) gives (2.25).
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To estimate T 3 we split the sum into the sum S 1 of the terms with k > ∆ and the sum

S 2 of the terms with k ≤ ∆. Now

S 1 =
dB
Σ µ(d)

k > ∆

k d
B_ __

Σ [dφ (
kd
B_ __ ) − δ (

kd
B_ __ ) ] ( − 2n (

d
∆_ _ ) n ) . (2.24)

Using φ(M) ≤ M we have

dφ (
kd
B_ __ ) − δ (

kd
B_ __ ) ≤

k
B_ _ , (2.25)

Applying this in (2.24) and using
k
B_ _ <

∆
B_ _ since k > ∆ gives

S 1 ≤ 2n ∆n − 1 B
dB
Σ µ(d) d − n ≤ ζ( 2 ) 2nB∆n − 1 (2.26)

for n ≥ 2. Next Lemma 2.1 gives

S 2 ≤
dB
Σ

k < ∆

k d
B_ __

Σ d(φ (
kd
B_ __ ) − δ (

kd
B_ __ )nk(k + 2

d
∆_ _ ) n − 1

+
dB
Σ

k < ∆

k d
B_ __

Σ dφ (
kd
B_ __ ) − δ (

kd
B_ __ )3n ∆n − 1 (2.29)

Using (2.25) and the fact that k ≤ ∆ implies k + 2
d
∆_ _ ≤ 3∆ we get

S 2 ≤
dB
Σ

k d
B_ __

Σ (n + 1 ) B3n ∆n − 1

which implies

S 2 ≤ (n + 1 ) 3nBd(B)2 ∆n − 1 (2.28)
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where d(B) is the number of divisors of B. Combining (2.26) and (2.28) we obtain

T 3 ≤ n3n + 1 Bd(B)2 ∆n − 1 . (2.29)

Theorem 1.1 follows from (2.18), (2.22) and (2.29).

Proof of Corollary 1.2. The cardinality S n (B)of the set S n (B) is

S n (B) = ψ n (B) B n . (2.30)

To see this, note that for each qB the number of elements (
B

a 1_ __ , ... ,
B

a n_ __ ) for which

qg. c. d. (a 1 , ... , a n ) is exactly q − nB n . Hence by inclusion-exclusion

S n (B) =
qB
Σ µ(q) q − nB n

=
pB
Π ( 1 − p − n ) B n = ψ n (B) B n .

Then

Prob {α α ∈ S n (B) has N(α α , ∆) ≥ 1} ≤
S n (B)

α α ∈S n (B)
Σ N(α α , ∆)

_ ______________ ,

and the corollary follows from Theorem 1.1 and (2.30).

3. Small solutions of linear congruences

We consider the problem of counting the number f (λ ; B , ∆ 1 , ∆ 2 ) of solutions to

the linear congruence

λx 1 ≡ x 2 ( mod B) (3.1)

subject to the constraints
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x 1 ≤ ∆ 1 (3.2)

x 2 ≤ ∆ 2 .

This number fluctuates as a function of λ in an irregular way, related to the Diophantine

approximation properties of the number
B
λ_ _. We are interested in the behavior of the

numbers f (λ ; B , ∆ 1 , ∆ 2 ) averaged over all λ with 1 ≤ λ < B and (λ , B) = 1, as

measured by the quantities

Q n (B; ∆ 1 , ∆ 2 ) =

(λ , B) = 1
1≤ λ < B

Σ f (λ ; B , ∆ 1 , ∆ 2 ) n . (3.3)

Our goal is to estimate the sums Q n (B , ∆ 1 , ∆ 2 ). How large do we expect them to

be? First, if B is prime then

λ = 1
Σ
B

f (λ ; B , ∆ 1 , ∆ 2 ) ∼ 4 ∆ 1 ∆ 2 ,

since each pair (x 1 , x 2 ) satisfying (3.2) with x 1 x 2 ≠ 0 determines a unique λ in (3.1).

In this case the average size of f (λ ; B , ∆ 1 , ∆ 2 ) is
B

4∆ 1 ∆ 2_ ______, so we must get a

contribution to Q n (B , ∆ 1 , ∆ 2 ) of at least of 4n φ(B) (
B

∆ 1 ∆ 2_ _____ ) n . Second, there is a

large contribution from certain λ’s. For example for ∆ 1 ≤ ∆ 2 and 1 ≤ λ ≤
∆ 1

∆ 2___ we

have

f (λ ; B , ∆ 1 , ∆ 2 ) = 1 + 2 [∆ 1 ] ,

so this range of λ contributes at least 2n ∆1
n − 1 ∆ 2 to the sum. Third, all

f (λ ; B , ∆ 1 , ∆ 2 ) ≥ 1 since x 1 = x 2 = 0 is always a solution. Let T(B , ∆ 1 , ∆ 2 )
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denote the number of λ with (λ , B) = 1 for which f (λ ; B , ∆ 1 , ∆ 2 ) = 1. This

discussion implies that, for prime B, we have

Q n (B; ∆ 1 , ∆ 2 ) − T(B; ∆ 1 , ∆ 2 )
n

>> B(
B

∆ 1 ∆ 2_ _____ ) n + ∆1
n − 1 ∆ 2 . (3.4)

Theorem 1.4 asserts that these three contributions dominate the sum.

Proof of Theorem 1.4. We shall treat B , ∆ 1 , ∆ 2 as fixed, and abbreviate

f (λ ; B , ∆ 1 , ∆ 2 ) to f (λ). Since f (λ) = f (B − λ) we assume that 0 ≤ λ ≤ B /2.

The size of f (λ) is determined by the continued fraction expansion of
B
λ_ _. Write

B
λ_ _ = [ 0 ; a 1 , a 2 , ... , a m ] ,

where a 1 ≥ 2 since 0 ≤
B
λ_ _ <

2
1_ _. Let {

q k

p k_ __ : 0 ≤ k ≤ m } denote the convergents to

B
λ_ _, with q 0 = 1 , q 1 ≥ 2. Define k by

q k − 1 < q k ≤ ∆ 1 < q k + 1 . (3.5)

and set

λq j ≡ s j ( mod B) ; −
2
B_ _ < s j ≤

2
B_ _ . (3.6)

We recall the following facts from the basic theory of ordinary continued fractions [cf.

Lang [6], pp. 1-6].

(i) The { s j } alternate in sign, with s 0 > 0 and

s j = λq j − Bp j . (3.7)
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(ii) s 0 > s 1 > s 2 > ... > s m = 0.

We also have

s j ≥
2q j + 1

B_ _____ . (3.8)

To prove (3.8), we observe that

s j = λq j − Bp j = q j B B
λ_ _ −

q j

p j_ __

≥
2

q j B_ ___  q j

p j_ __ −
q j + 1

p j + 1_ ____ =
2q j + 1

B_ _____ .

We transform the problem slightly, using the hypothesis (λ , B) = 1, to get

f (λ) = 1 + 2H(λ) (3.9)

where H(λ) is the number of solutions of

1 ≤ x 2 ≤ ∆ 2

1 ≤ x 1 ≤ ∆ 1

λx 1 ≡ x 2 ( mod B)





(3.10)

To proceed further, we will use classical results of Halton [1], see also Slater ([8], eqns.

(30),(31),(34)), concerning the distribution of the least nonnegative residues

λx 1 ( mod B) for 1 ≤ x 1 ≤ ∆ 1 . He showed that these points partition the interval

[ 0 , B) into subintervals of at most three different lengths, and that the shortest of these

three lengths is s k. Correspondingly, the solutions x 2 of (3.10) plus x 2 = 0 partition

the interval [ − ∆ 2 , ∆ 2 ] into subintervals of at most three different lengths, excluding

the two subintervals containing the endpoints. In this partition, we label each such

interval by the solution to (3.10) that is its left endpoint if s k < 0, and its right endpoint
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if s k > 0. We will call intervals of length s kshort subintervals and all other intervals

long subintervals. Let S(λ) = S(λ ; B , ∆ 1 , ∆ 2 ) denote the number of short

subintervals, and let L(λ) = L(λ ; B , ∆ 1 , ∆ 2 ) denote the number of long subintervals.

See Figure 1 for an example of these definitions. The arrows on each subinterval indicate

the labelled endpoint. Since each solution to (3.10) is assigned a subinterval, plus x = 0,

we have

1 + H(λ) = S(λ) + L(λ) . (3.11)

We will use two different sets of bounds to estimate f (λ) via (3.9). The first bound is

the direct estimate

H(λ) ≤ 2
s k

 ∆ 2 _ _____ . (3.12)

This holds because the interval [ − ∆ 2 , ∆ 2 ] has length 2∆ 2 and all subintervals having a

labelled endpoint have length ≥ s kwith at most one exception. The second set of

bounds is given by the following lemma.

Lemma 3.1

( i ) L(λ) ≤
s k − 1

2∆ 2______ + 1 (3.13)

( ii ) S(λ) ≤
q k

∆ 1___ ( 2
s k − 1

∆ 2______ + 1 ) . (3.14)

Proof of Lemma 3.1. To prove (i), we observe that the long subintervals associated to

1 ≤ x 1 ≤ ∆ 1 are in 1-1 correspondence with the complete set of subintervals present for

1 ≤ x 1 ≤ q k − 1. (Each step of x 1 after that creates a new short subinterval on [ 0 , B] of
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Figure 1. Steps for λ / B = 8/19.

B = 19 , λ = 8 , ∆ 2 = 7

Continued fraction of θ =
19
8_ __ = [ 0 , 2 , 2 , 1 , 2 ].

j a j p j q j s j_ ______________________
0 0 0 1 8
1 2 1 2 -3
2 2 2 5 2
3 1 3 7 -1
4 2 8 19 0_ ______________________ 



































Case 1. ∆ 1 = 6.

Length of short subinterval = 2 S( 8 ; 11 , 6 , 7 ) = 1
Length of long subinterval = 3 L( 8 ; 11 , 6 , 7 ) = 4

Case 2. ∆ 1 = 3.

Length of short subinterval = 3 S( 8 ; 11 , 3 , 7 ) = 1
Length of long subintervals = 5,8 L( 8 ; 11 , 3 , 7 ) = 2
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length s k.) Since at step q k − 1 all the short subintervals at that time have length

≥ s k − 1there are at most
s k − 1

2∆ 2______ + 1 of them, using (3.12).

To prove (ii), we look at what happens to the subintervals present at step q k − 1. We

claim that each such subinterval can contain no more than
q k

∆ 1___ short subintervals at step

∆ 1 . This is because the first subinterval to get filled is the one which s k occupies, and it

gets filled by s k , 2s k , 3s k , ... , j s k . But the step corresponding to j s k is j q k so

j q k ≤ ∆ 1 , whence the bound.

We continue the proof of Theorem 1.4. By Dirichlet’s theorem there exists

1 ≤ q ≤ ∆ 1 such that { { q
B
λ_ _ } } ≤ ∆1

− 1 . Hence

s k ≤
∆ 1

B___ . (3.15)

Now we are ready to estimate the contribution to Q n (B , ∆ 1 , ∆ 2 ) of the various λ,

according to the behavior of their continued fraction expansion. We start from

Q n (B , ∆ 1 , ∆ 2 ) − T(B , ∆ 1 , ∆ 2 ) =

f (λ) ≥ 2
(λ , B) = 1

Σ f (λ) n .

Case 1.
B
λ_ _ has q k = 1.

This case occurs when q k = q 0 = 1, and q 1 > ∆ 1 . Then

s 0 ≡ λq 0 ≡ λ ( mod B) . (3.16)

Since
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q 1 = 
λ
B_ _  > ∆ 1

we have λ ∈ [ 0 ,
∆ 1

B___ ). We use the bound (3.12) to obtain

f (λ) = 1 + 2H(λ) ≤ 1 + 4 [
s 0

∆ 2_ ___ ] ≤ 1 + 4 [
λ

∆ 2___ ] . (3.17)

We have also the trivial bound

f (λ) ≤ 1 + 2∆ 1 ,

which we use whenever ∆ 1 ≤ 2
λ

∆ 2___. By symmetry we may suppose ∆ 1 ≤ ∆ 2 . Now

f (λ) ≥2
Case 1
Σ f (λ) n =

λ = 1
Σ

B /∆ 1

f (λ) n

≤ 2 [
∆ 1

∆ 2___ ] ( 1 + 2∆ 2 ) n +

λ −
∆ 1

∆ 2_ ___
Σ

MIN (
∆ 1

B_ ___ , ∆ 2 )

( 1 + 4 [
λ

∆ 2___ ] ) n

≤ 2 [
∆ 1

∆ 2___ ] ( 1 + 2∆ 1 ) n +
n − 1

1_ ____ ( 1 + 4∆ 1 ) n − 1

≤ c n ∆1
n − 1 ∆ 2 . (3.18)

Case 2.
B
λ_ _ has q k > 1 and s k − 1 ≤ ∆ 2 .

Note that (3.8) yields
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2q ks k − 1 ≥ B , (3.19)

which with the hypothesis gives

2∆ 1 ∆ 2 ≥ 2q ks k − 1 ≥ B

so this case only occurs when 2∆ 1 ∆ 2 ≥ B. Now

q k

∆ 1___
s k − 1

∆ 2______ ≥
q k

∆ 1___ ≥ 1 .

Hence using (3.11), and the claim,

f (λ) = 1 + 2H(λ) = 1 + 2 (S(λ) + L(λ) )

≤ 3 + 6
q ks k + 1

∆ 1 ∆ 2_ ________ ≤ 9
q ks k − 1

∆ 1 ∆ 2_ ________ . (3.20)

Using (3.19) gives

f (λ) ≤ 18
B

∆ 1 ∆ 2_ _____ .

Hence

f (λ) ≥2
Case 2
Σ f (λ) n ≤

(λ , B) = 1
Σ ( 18

B

∆ 1 ∆ 2_ _____ ) n

≤ 18n φ(B) (
B

∆ 1 ∆ 2_ _____ ) n . (3.21)

Case 3.
B
λ_ _ has q k > 1 and s k − 1 > ∆ 2 .

Now we use the bounds (3.12):
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H(λ) ≤ 2 [
s k

∆ 2_ ___ ] .

Next, since s k − 1 > ∆ 2 the only values of x 2 satisfying (3.10) are multiples of s k

and s k − 1 − js k. The number of such multiples is at most [
q k

∆ 1___ ] so that

H(λ) ≤ 2 [
q k

∆ 1___ ] .

Combining these two inequalities gives

H(λ) ≤ 2 MIN (
q k

∆ 1___ ,
s k

∆ 2_ ___ ) . (3.22)

Now we count the contribution over all pairs (q k , s k). A given pair (q k , s k)

can occur with at most 2 (q k , B) values of λ, using (3.6), and with no values of λ unless

(q k , B) = (s k, B). We have

f (λ) ≥2
Case 3
Σ f (λ) n ≤

dB
Σ d

(q k , B) = (s k, B) = d
s k ≤ ∆ 2

q k ≤ ∆ 1

Σ [ 1 + 4 MIN (
q k

∆ 1___ ,
s k

∆ 2_ ___ ] n (3.23)

We break this sum into two pieces (I) and (II), according as

(I)
q k

∆ 1___ <
s k

∆ 2_ ___ ,

(II)
q k

∆ 1___ ≥
s k

∆ 2_ ___ .

In case (I), we have s k < q k ∆ 1

∆ 2___. This restricts the range of summation of s kin

(3.23). Set q k = dqk
* , s k = dsk

* . Then sk
* < qk

*
∆ 1

∆2
___ so that
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(I)
Σ ≤

dB
Σ d

qk
* = 1
Σ
d

∆ 1_ ___

(qk
*

∆ 1

∆ 2___ ) [ 1 + 4
dqk

*

∆ 1_ ___ ] n

≤
dB
Σ d

qk
* = 1
Σ
d

∆ 1_ ___

5nd − nqk
* ∆1

n − 1 ∆ 2 (3.24)

If n ≥ 3 this implies

(I)
Σ ≤ (

dB
Σ d − (n − 1 ) ) ζ(n − 1 ) 5n ∆1

n − 1 ∆ 2

≤ c n , 1 ∆1
n − 1 ∆ 2 , (3.28)

where c n , 1 = ζ(n − 1 )25n . If n = 2 we obtain

(I)
Σ ≤ (

d≤ ∆ 1

dB
Σ d − 1 log (

d

∆ 1___ ) ) 52 ∆ 1 ∆ 2 ,

≤ 52 ∆ 1 ∆ 2 ( log ∆ 1 ) (
dB
Σ d − 1 ) (3.26)

In case (II) we have

s k ≥ q k ∆ 1

∆ 2___ .

Setting q k = qk
* d, s k = sk

* d, we have

(II)
Σ ≤

dB
Σ d

qk
* = 1
Σ
d

∆ 1_ ___

{

sk
* = qk

*

∆ 2

∆ 1_ ___
Σ
d

∆ 2_ ___

[ 1 + 4
dsk

*

∆ 2_ ____ ] n } . (3.27)

We bound the inner sum by
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sk
* = qk

*

∆ 2

∆ 1_ ___
Σ
d

∆ 2_ ___

[ 1 + 4
dsk

*

∆ 2_ ____ ] n ≤

sk
* = qk

*

∆ 2

∆ 1_ ___
Σ
∞

5n ∆2
nd − n (sk

*) − n

≤ 2 .
n − 1
5n

_ ____ d − n (qk
* ) − n ∆1

n − 1 ∆ 2 .

Inserting this in (3.27) yields

(II)
Σ ≤ (

dB
Σ d − (n − 1 ) ) ζ(n) 2 .

n − 1
5n

_ ____ ∆1
n − 1 ∆ 2 (3.28)

Hence if n ≥ 3, we obtain

(II)
Σ ≤ c n , 2 ∆1

n − 1 ∆ 2 (3.29)

with c n , 2 = 2ζ(n) ζ(n − 1 )
n − 1
5n

_ ____. If n = 2, we obtain

(II)
Σ ≤ cn , 2

* ∆1
n − 1 ∆ 2 ( log B) (3.30)

where c n , 2* = 2ζ(n)
n − 1
5n

_ ____.

Combining these contributions yields Theorem 1.4.

Remarks on the proof of Theorem 1.4.

(1) The proof showed that we can take c n = 5n + 1 and cn
* = ( 18 ) n . I believe that the

sharpest possible value for c n is c n ∼ 2n and that cn
* ≥ 4n .

(2) The proof placed no restrictions on the size of ∆ 1 and ∆ 2 , aside from ∆ 1 ≤ ∆ 2 . In

particular either of ∆ 1 and ∆ 2 may be ≥ B.
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4. Bounding the second moment of N(α α , ∆).

Proof of Theorem 1.3. Let

D n (B , ∆) =
2
1_ _

α α ∈S n (B)
Σ [N(α α , ∆)2 − N(α α , ∆) ] (4.1)

Now D n (B , ∆) is exactly the number of solutions (
B

a 1_ __ , ... ,
B

a n_ __ , x 1 , x 2 ) to the system

of inequalities:

 B

a i_ __ −
x 1

b 1 , i_ ____ ≤
Bx 1

∆_ ___ , (4.2a)

 B

a i_ __ −
y 2

b 2 , i_ ____ ≤
Bx 2

∆_ ___ , (4.2b)

1 ≤ x 1 < x 2 < B , (4.2c)

0 ≤ a i ≤ B − 1 , (4.2d)

g. c. d (a 1 , ... , a n , B) = 1 . (4.3)

We are going to show that for n ≥ 4 that

D n (B ,∆) ≤ cn , 1
* B 2 (

B
∆2
_ __ ) n + cn , 2

* B∆n , (4.4a)

for n = 3 that

D 3 (B , ∆) ≤ c3 , 1
* B 2 (

B
∆2
_ __ )3 + c3 , 2

* B∆3 (
dB
Σ d

−
2
1_ _

) (4.4b)

and for n = 2 that

D 2 (B , ∆) ≤ c2 , 1
* B 2 (

B
∆2
_ __ )2 + c2 , 2

* B∆2 d(B)3 . (4.4c)
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Assuming these inequalities are proved, Theorem 1.3 follows immediately by observing

that

α α ∈S n (B)
Σ N(α α , ∆)2 = D n (B , ∆) +

α α ∈S n (B)
Σ N(α α , ∆)

and using Theorem 1.1.

The conditions (4.2) are equivalent to the conditions

a i x 1 ≡ k 1 , i ( mod B)

a i x 2 ≡ k 2 , i ( mod B) (4.5a)

subject to

k 1 , i ≤ ∆

k 2 , i ≤ ∆ (4.5b)

for 1 ≤ i ≤ h. The relative primality condition g. c. d. (a 1 , ... , a n , B) = 1 implies that

at least one of the k 1 , i and one of the k 2 , i is nonzero.

Now view x 1 and x 2 as fixed, and let H(x 1 , x 2 ; B , ∆) denote the number of

solutions (a , k 1 , k 2 ) of

ax 1 ≡ k 1 ( mod B)

ax 2 ≡ k 2 ( mod B) , (4.6a)

subject to

k 1 ≤ ∆ , k ≤ ∆ . (4.6b)

Let g. c. d. (x 1 , x 2 , B) = d. There are d solutions to (4.6) having k 1 = k 2 = 0. All of

the n variables a i satisfy (4.6a), and at least one does not have k 1 = k 2 = 0 by the
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relative primality condition (4.3), hence

D n (B , ∆) =

d = g. c. d. (x 1 , x 2 , B)
1≤x 1 < x 2 < B

Σ H(x 1 , x 2 ; B , ∆) n − 1 [H(x 1 , x 2 , B , ∆) − d] (4.7)

Our general approach is to count solutions to (4.6) by eliminating a from these

congruences. To see the idea, suppose

(x 1 , B) = (x 2 , B) = 1 , (4.8)

and set

λ ≡ x1
− 1 x 2 ( mod B) . (4.9)

Then (4.6) implies that

λk 1 ≡ k 2 ( mod B) ,

k 1 ≤ ∆ , k 2 ≤ ∆ . (4.10)

Conversely, each solution to (4.10) with (x 1 , x 2 ) fixed gives rise to a unique solution of

(4.6), using the relations

a i ≡ k 1 , i x1
− 1 ( mod B) .

Note that x 1 ≠ x 2 is equivalent to λ ≡ / 1 ( mod B). In this way, we have

H(x 1 , x 2 ; B , ∆) = f (λ ; B , ∆ , ∆) (4.11)

defined by (3.1) and (3.2). Furthermore a given λ arises from exactly φ(B) different

pairs (x 1 , x 2 ) with (x 1 , B) = (x 2 , B) = 1. Hence
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S 1 , 1 (n) =

(x 1 x 2 , B) = 1
1≤x 1 < x 2 ≤B

Σ H(x 1 , x 2 ; B , ∆) n =
2
1_ _ φ(B)

(λ , B) = 1
λ = 2
Σ
B

f (λ ; B , ∆ , ∆) n

= φ(B) (
2
1_ _ Q n (B; ∆ , ∆) − f ( 1 , B , ∆ , ∆) n ) . (4.12)

We can in general estimate the whole sum D n (B , ∆) in terms of sums of this kind. Let

S d 1 , d 2
(n) =

(x 2 , B) = d 2

(x 1 , B) = d 1

1≤x 1 < x 2 < B
Σ H(x 1 , x 2 ; B , ∆) n . (4.13)

Let

(d 1 , d 2 ) = d

so that

[d 1 , d 2 ] =
d

d 1 d 2_ _____ . (4.14)

We will show that

S d 1 , d 2
(n) ≤

2
1_ _ φ(

[d 1 , d 2 ]
B_ ________ ) d1

* d2
* d nQ n (

[d 1 , d 2 ]
B_ ________ ,

d 1

∆_ __ ,
d 2

∆_ __ ) (4.15)

if d 1 ≠ d 2 , and

S d 1 , d 1
(n) ≤

2
1_ _ φ(

d 1

B_ __ ) d1
nQ n (

d 1

B_ __ , ∆ d 1
,

d 1

∆_ __ )

− φ(
d 1

B_ __ ) d1
nf ( 1 ;

d 1

B_ __ ,
d 1

∆_ __ ,
d 1

∆_ __ ) n (4.16)

Indeed, let x1
* and x2

* be defined by
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x 2 = x2
* d 2 ,

x 1 = x1
* d 1 ,

(x2
* ,

d 2

B_ __ ) = 1 .

(x1
* ,

d 1

B_ __ ) = 1 ,

(4.17)

Then (4.6a) implies that

k 1 = k1
* d 1 ,

k 2 = k2
* d 2 .

We now define d1
* and, d2

* by

d 1 = dd1
*

d 2 = dd2
* (4.12)

where d = (d 1 , d 2 ) so that (d1
* , d2

* ) = 1. Then (4.6a) implies that

ax1
* ≡ k1

* ( mod
d 1

B_ __ )

ax2
* ≡ k2

* ( mod
d 2

B_ __ ) (4.19a)

and

k1
* <

d 1

∆_ __ , k2
* <

d 2

∆_ __ (4.19b)

Now (4.19a) implies that

ax1
* ≡ k1

* ( mod
[d 1 , d 2 ]

B_ ________ )

ax2
* ≡ k2

* ( mod
[d 1 , d 2 ]

B_ ________ ) (4.20)

and (x1
* x2

* ,
[d 1 , d 2 ]

B_ ________ ) = 1. Hence
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λk1
* ≡ k2

* ( mod
[d 1 , d 2 ]

B_ ________ ) (4.21a)

subject to

k1
* ≤

d 1

∆_ __ , k2
* ≤

d 2

∆_ __ (4.21b)

where

λ ≡ (x1
* ) − 1 (x2

* ) ( mod
[d 1 , d 2 ]

B_ ________ ) . (4.22)

has (λ ,
[d 1 , d 2 ]

B_ ________ ) = 1. Thus from each solution to (4.6) we derive a solution to

(4.22). To reverse this, we must give an upper bound for how many solutions to (4.6)

give rise to the same solution of (4.22). Now the solutions to (4.21), because of the

bound (4.21b) determine k1
* and k2

* in (4.19a) uniquely. (Note that
d 1

∆_ __ ,
d 2

∆_ __ may be

≥
[d 1 , d 2 ]

B_ ________ in (4.21).) Then the equations (4.19a) determine a ( mod
(d 1 , d 2 )

B_ ________ ) so

there are at most d choices for a.

Now (4.21) has by definition f (λ ; B ,
d 1

∆ 1___ ,
d 2

∆ 2___ ) solutions. We obtain the bound

H(x 1 , x 2 ; B , ∆) ≤ df (λ ;
[d 1 , d 2 ]

B_ ________ ,
d 1

∆ 1___ ,
d 2

∆ 2___ ) . (4.23)

The number of pairs (x 1 , x 2 ) with (x 1 , B) = d 1 , (x 2 B) = d 2 , giving rise to the same

λ in (4.22) is at most

φ(
[d 1 , d 2 ]

B_ ________ ) d1
* d2

* . (4.24)
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Consequently (4.13) yields

S d 1 , d 2
(n) ≤

2
1_ _ φ(

[d 1 , d 2 ]
B_ ________ ) d1

* d2
* d nQ n (

[d 1 , d 2 ]
B_ ________ ,

d 1

∆ 1___ ,
d 2

∆ 2___ ) . (4.25)

which is (4.15). If d 1 = d 2 = d, then we may drop the λ = 1 term coming from the

cases x 1 = x 2 , and we obtain (4.16).

Now (4.7) gives

D n (B , ∆) ≤

d = (d 1 , d 2 )
d 2B
d 1B
Σ [S d 1 , d 2

(n) − dS d 1 , d 2
(n − 1 ) ] . (4.26)

Hence (4.25) yields

D n (B , ∆) ≤

d = (d 1 , d 2 )
d 2B
d 1B
Σ 2

1_ _ φ[
[d 1 , d 2 ]

B_ ________ ) d1
* d2

* d n [Q n (
[d 1 , d 2 ]

B_ ________ ,
d 1

∆_ __ ,
d 2

∆_ __ ) − Q n − 1 (
[d 1 , d 2 ]

B_ ________ , ∆ d 1
,

d 2

∆_ __ ) ] .

Now we apply Theorem 1.4. We have for n ≥ 3 and d 1 ≤ d 2 that

Q n (
[d 1 , d 2 ]

B_ ________ ,
d 1

∆_ __ ,
d 2

∆_ __ ) − Q n − 1 (
[d 1 , d 2 ]

B_ ________ ,
d 1

∆_ __ ,
d 2

∆_ __ )

≤ cn
* φ(

[d 1 , d 2 ]
B_ ________ ) (

Bd 1 d 2

∆2
_ ______ ) n + c n (

d 2

∆_ __ ) n − 1
d 1

∆_ __ . (4.28)

Substituting this inequality in (4.27) yields

D n (B , ∆) ≤

d 1 ≤ d 2

d 1Bd 2B
Σ cn

* φ(
[d 1 , d 2 ]

B_ ________ )2 d1
* d2

* d n (
Bd 1 d 2

∆2
_ ______ ) n

+

d 1 ≤d 2

d 1B , d 2B
Σ c n φ(

[d 1 , d 2 ]
B_ ________ ) d1

* d2
* d2

− (n − 1 ) d1
− 1 d n ∆n (4.29)
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We bound the two terms T 1 (n) and T 2 (n) in this sum separately. We simplify the first

term using

φ(
[d 1 , d 2 ]

B_ ________ ) ≤
[d 1 , d 2 ]

B_ ________ ) (4.30)

to obtain

T 1 (n) = cn
* B

d 1 ≤d 2

Σ φ(
[d 1 , d 2 ]

B_ ________ ) d n − 1 (
Bd 1 d 2

∆2
_ ______ ) n

≤ c n *
B 2 (

B
∆2
_ __ ) n

d 2B
d 1B

d 1 ≤d 2

Σ d − 1 [d 1 , d 2 ] − n − 1 . (4.31)

The inner sum in (4.31) is bounded, since

d 2B
d 1B

d 1 ≤d 2

Σ d − 1 [d 1 , d 2 ] − n − 1 ≤
dB
Σ d − (n + 2 )

d1
* , d2

*
Σ (d1

* d2
* ) − (n + 1 )

≤ ζ(n + 1 )2 ζ(n + 2 ) . (4.32)

Hence we obtain

T 1 (n) ≤ cn
* ζ(n + 1 )2 ζ(n + 2 ) B 2 (

B
∆2
_ __ ) n . (4.33)

Note that this bound holds also for n = 2. For the second summation in (4.29), we have

for n ≥ 3

T 2 (n) ≤ c n ∆n

d 1 ≤d 2

d 2B
d 1B
Σ φ(

[d 1 , d 2 ]
B_ ________ ) (d2

* ) − (n − 2 ) (4.34)

where d2
* =

(d 1 , d 2 )
d 2_ ________. We simplify this expression by summing over d * = [d 1 , d 2 ]



- 36 -

to obtain

d 1 ≤d 2

d 2B
d 1B
Σ φ(

[d 1 , d 2 ]
B_ ________ ) (d2

* ) − (n − 2 ) =
d *B
Σ φ(

d *
B_ __ ) Ωn − 2

* (d * ) (4.35)

where

Ωn
* (d * ) =

d 1 ≤d 2

[d 1 , d 2 ] = d *
d 1 , d 2

Σ (
(d 1 , d 2 )

d 2_ ________ ) − n (4.36)

We are going to show that for n ≥ 4

T 2 (n) ≤ cn
* B∆n (4.37)

and that for n = 3

T 2 ( 3 ) ≤ c3
* B∆n (

dB
Σ d

1_ _ ) . (4.38)

To prove (4.37) it suffices to show that for n ≥ 2 there is a bound C 0 such that

Ωn
* (d * ) ≤ C 0 (4.29)

for all d * . If this is proved, then (4.34), (4.35) and (4.39) give

T 2 (n) ≤ Cc n ∆n

d *B
Σ φ(

d
B_ _ ) = Cc n B∆n

which is (4.37).

To show the functions Ωn
* (d1

* ) are bounded above for all n ≥ 2, it suffices to prove

the result for n = 2, since Ω 2 (d * ) ≥ Ω n (d * ) for all n ≥ 2 by (4.36). We rewrite

(4.36) using d * = [d 1 , d 2 ] = e 2 d1
* d2

* , d 1 = ed1
* , d 2 = de2

* to get
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Ωn
* (d * ) =

e 2d *
Σ

d 1 ≤ d 2

[d 1 , d 2 ] = d *
(d 1 , d 2 ) = e

d 1 , d 2

Σ (
e

d 2_ __ ) − n (4.40)

Now since d1
* ≤ d2

* we must have

d * = e 2 d1
* d2

* ≤ e 2 (d2
* )2 so that

e

d 2_ __ = d2
* ≥

e
√d ∗
_ ____ .

Applying this in (4.40) gives

Ωn
* (d * ) ≤

e 2d *
Σ d(

e 2
d *
_ __ )



 d ∗

e 2
_ __




1/2

(4.41)

which for n = 2 is

Ω2
* (d * ) ≤

e 2d *
Σ d(

e 2
d *
_ __ ) (

d *
e 2
_ __ ) (4.42)

To bound the right side of (4.42), we use the submultiplicativity of the divisor function,

i.e. that

d(m 1 m 2 ) ≤ d(m 1 ) d(m 2 ) (4.43)

for all m 1 , m 2 . We set d * = f 2 d * * where d * * is squarefree, and using (4.43) get

e 2d *
Σ d(

e 2
d *
_ __ )

d *
e 2
_ __ ≤

d * *
d(d * * )_ ______

h f
Σ d( (

h
f_ _ )2 ) (

h
f_ _ ) − 2

≤
m = 1
Σ
∞

d(m 2 ) m − 2 (4.44)

using
m

d(m)_ ____ ≤ 1 for all m ≥ 1. Then (4.42) and (4.44) give
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Ω2
* (d * ) ≤

m = 1
Σ
∞

d(m 2 ) m − 2 =
p

Π ( 1 +
p 2
3_ __ +

p 4
5_ __ + ...) = C 0 .

which is the desired bound (4.39).

To prove (4.38) we proceed to establish the inequality

Ω1
* (d * ) ≤ C 1 (

dd *
Σ d − 1/2 ) . (4.45)

Then (4.34), (4.35) and (4.45) imply for n = 3 that

T 2 ( 3 ) ≤ C 1 c n B∆3 (
dB
Σ d1

− 1/2 ) ,

which is (4.38).

To prove (4.38), we use (4.41) for n = 1, which gives

Ω1
* (d * ) ≤

e 2d *
Σ d(

e 2
d *
_ __ ) (

d ∗
e 2
_ __ )1/2

≤
dd *
Σ (

d *
d_ __ )1/2 =

dd *
Σ d − 1/2 .

Finally we treat the case n = 2. In this case we apply Theorem 1.4 for n = 2, and

(4.29) is replaced by

D 2 (B , ∆) ≤

d 1 ≤2
d 2B
d 1B
Σ c2

* φ(
[d 1 , d 2 ]

B_ ________ )2 d1
* d2

* d 2 (
Bd 1 d 2

∆2
_ ______ )2

+

d 1 ≤d 2

d 2B
d 1B
Σ c 2 φ(

[d 1 , d 2 ]
B_ ________ ) d1

* d2
* d2

− 1 d1
− 1 d 2 ∆2 (

fB
Σ f

1_ _ ) , (4.46)

where d = (d 1 , d 2 ). The first of the sums on the right side of (4.46) is bounded by
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(4.33). The second term becomes, letting d * = [d 1 , d 2 ],

T 2 ( 2 ) ≤ c 2 ∆2 (
fB
Σ f

1_ _ )
d *B
Σ {φ(

d *
B_ __ ) (

d 1 ≤d 2

[d 1 , d 2 ] = d *
d 1 , d 2

Σ 1 ) } (4.47)

We use the crude bound

d *B
Σ {φ(

d *
B_ __ ) (

d 1 ≤d 2

[d 1 , d 2 ] = d *
d 1 , d 2

Σ 1 ) } ≤
d *B
Σ φ(

d *
B_ __ )2

≤ Bd(B)2

to obtain in (4.48)

T 2 ( 2 ) ≤ c 2 Bd(B)3 ∆2 . (4.49)

Combining (4.46), (4.31) and (4.49) proves (4.4c).

Now we show that when B is prime,

α ∈S n (B)
Σ N(α , ∆)2

n
>> B 2 (

B
∆2
_ __ ) n + B∆n . (4.50)

We have

α ∈S n (B)
Σ N(α , ∆)2 ≥ D n (B , ∆)

≥ S 1 , 1 (n) − S 1 , 1 (n − 1 )

using (4.1), (4.7) and (4.12), since (x 1 , x 2 , B) = 1 always holds when B is prime.

When B is prime (4.12) gives
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S 1 , 1 (n) − S 1 , 1 (n − 1 ) ≥
2
1_ _ (B − 1 ) [Q n (B; ∆ , ∆) − f ( 1 ; B , ∆ , ∆) n ]

+ O(BQ n − 1 (B; ∆ , ∆) ) . (4.52)

Now for prime B,

Q n (B; ∆ , ∆) − f ( 1 , B , ∆ , ∆) n ≥ f ( 2 ; B , ∆ , ∆) n

≥ 2 − n ∆n (4.53)

by direct calculation, when B is odd. Also (3.4) implies that

Q n (B; ∆ , ∆)
n

>> B(
B

∆2
_ __ ) n . (4.54)

Since f ( 1 , B , ∆ , ∆) ≤ 2∆, combining (4.53) and (4.54) gives

Q n (B; ∆ , ∆) − f ( 1 , B , ∆ , ∆) n

n
>> MAX (∆n , B(

B
∆2
_ __ ) n

n
>> ∆n + B(

B
∆2
_ __ ) n . (4.55)

Now (4.51), (4.52) and (4.55) imply (4.50) as required.

5. Bounding the tail of a conditional probability distribution

Proof of Theorem 1.5. We study the conditional probabilities

p k (B , ∆ , n) = Prob {α α ∈ S n (B) has N(α α , ∆) ≥ k N(α α , ∆) ≥ 1} .

We use the following elementary lemma.

Lemma 5.1. Let η be a real-valued random variable with finite mean and variance, and

suppose that there is a positive constant α such that
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E[η2 ] ≤ αE[η] . (5.1)

Then

Prob [η ≥ k] ≤ (
k
α_ _ )2 . (5.2)

Proof. Now

αE[η] ≥ E[η2 ] ≥ (E[η] )2

so that 0E[η] ≤ α. Hence

k 2 Prob [η ≥ k] ≤ E[η2 ] ≤ αE[η] ≤ α2 .

We apply Lemma 5.1 to the discrete random variable η = N(α α ,∆) restricted to the

subset

Sn
* (B) = {α α ∈ S n (B) : N(α α , ∆) ≥ 1}

of S n (B), with the uniform probability measure on Sn
* (B). Let Prob* denote this

probability measure, and observe that

p k (B , ∆ , n) = Prob* {η ≥ k } . (5.3)

Now we have

E[η] = Sn
* (A)− 1 (

α α ∈S n (B)
Σ N(α α , ∆) )

E[η2 ] = Sn
* (A)− 1 (

α α ∈S n (B)
Σ N(α α , ∆)2 ) .

so that



- 42 -

E[η]
E[η2 ]_ ______ ≤

α α ∈S n (B)
Σ N(α α , ∆)

α α ∈S n (B)
Σ N(α α , ∆)2

________________ . (5.4)

Now for n ≥ 2 and ∆ ≥ c n , 1 d(B)2 for a sufficiently large positive c n , 1 , Theorem 1.1

gives

α α ∈S n (B)
Σ N(α α , ∆) ≥ c n , 2 B∆n (5.5)

for some positive constant c n , 2 . Next for n ≥ 4 and c n , 1 d(B)2 ≤ ∆ ≤ B
1 −

n
1_ _

Theorem 1.3 gives

α α ∈S n (B)
Σ N(α α , ∆)2 ≤ c n , 3 B∆n . (5.6)

for some positive constant c n , 3 . Also for n = 2 or 3 and B prime, for

c n , 1 d(B)2 ≤ ∆ ≤ B
1 −

n
1_ _

Theorem 1.3 gives (5.6) also. Now applying (5.6) and (5.5)

in (5.4) gives

E[η]
E[η2 ]_ _____ ≤

c n , 2

c n , 3_ ____ .

The theorem follows from Lemma 5.1 on choosing α =
c n , 2

c n , 3_ ____ and

cn
* * = MAX (c n , 1 , α2 ).
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Simultaneous Diophantine Approximation of Rationals by Rationals
J. C. Lagarias

Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

Let α α = (
B

a 1_ __ , ... ,
B

a n_ __ ) be a vector of rational numbers satisfying the primitivity

condition g. c. d. (a 1 , ... , a n , B) = 1. This paper studies the number N(α α , ∆) of
simultaneous Diophantine approximations to α α with denominators x < B of a given
degree of approximation measured by ∆, i.e. N(α α , ∆) is the number of vectors

ξ ξ = (
x

x 1_ __ , ... ,
x

x n_ __ ) with 1 ≤ x < B such that  B

a i_ __ −
x

x i_ __ ≤
Bx
∆_ __ for 1 ≤ i ≤ n. It

gives estimates for the first and second moments of N(α α , ∆) over the ensemble S n (B)
consisting of all primitive vectors α α in the unit n-cube having denominator B. As a
consequence it shows for n ≥ 4 that "most" vectors in S n (B) that have one "unusually
good" simultaneous Diophantine approximation have a bounded number of such
approximations. The paper also estimates the moments of the number of solutions to
homogenous linear congruences λx 1 ≡ x 2 ( mod B) with bounds x 1 ≤ ∆ 1 ,
x 2 ≤ ∆ 2 on the variables, taken over the set of λ with (λ , B) = 1. These results have
applications to the analysis of cryptanalytic attacks on knapsack-type public key
cryptosystems.


