ON THE DISTRIBUTION OF 3z +1 TREES

DAVID APPLEGATE AND JEFFREY C. LAGARIAS

ABSTRACT. The 3z + 1 iteration when run backwards from any fixed integer
a produces a tree of preimages of a. Let 7i(a) denote this tree grown to
depth k, and let 7. (a) denote the pruned tree resulting from the removal
of all nodes n = 0 (mod 3). The maximal and minimal number of leaves in
the pruned trees 7.(a) grown from all possible root nodes a #Z 0 (mod 3)
were computed for all tree depths k& up to depth 30. We compare this data
with predictions made using branching process models designed to imitate the
growth of 3z + 1 trees, developed in [10]. Rigorous results are derived for the
branching process models. The range of variation exhibited by the 3z+1 trees
is significantly narrower than that of the branching process models. We also
study the variation in expected leaf-counts associated to the congruence class
of a (mod 37). This variation, when properly normalized, converges almost

everywhere as j — oo to a limit function on the invertible 3-adic integers.

1. INTRODUCTION

The well-known 3z + 1 problem concerns the behavior under iteration of the

3z + 1 function T : Z — Z given by

5 ifn=0 (mod 2)
(1) T(n)=
ifn=1 (mod 2)
The 3z + 1 Conjecture asserts that for each n > 1, some iterate T(F)(n) = 1; it
has now been verified for all n < 5.6 x 103, see Leavens and Vermeulen [11]. For
each n we call the minimal & such that 7)(n) = 1 the total stopping time of n and
denote it 050(n), letting o (n) = oo if it is otherwise undefined.

The 3z + 1 function is a deterministic process that apparently exhibits pseudo-

random behavior. It has been extensively studied, see the surveys of Lagarias [9]

and Miiller [12]. One approach to quantifying its apparent pseudorandomness is
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to consider probabilistic models for its behavior on a “random” input, and then to
compare model predictions with empirical data. Any systematic discrepancies or
similarities uncovered may prove helpful in eventually proving rigorous results.
We now review several probabilistic models for the 3z + 1 iteration. Consider
taking input values n drawn from the uniform distribution Use on [1,2*], and
examine the induced probability distribution on TU)(n), for 1 < j < [ak], for a

fixed positive a. One can rigorously prove that when 0 < a < 1, the successive

T(n) 7 log T(["’“])(n) )

e - behave exactly like the trajectory of a random

iterates (log
walk which takes i.i.d. steps of size log% or log% with equal probability; see [9],
§ 2. This result suggests that the evolution of 3z + 1 function iterates can be
modelled by a multiplicative random walk, in which from an initial point Xy one
multiplies by successive i.i.d. random variables X; which take the values % and
% with probability 1 each, to obtain Y := XqXj ---X;. Such a model was first
considered in Crandall [6], and in more detail in Rawsthorne [13] and Wagon [14].
The analogue in this model of o, (Xp) is the statistic oo, (Xo,w) which for a random

walk w starting from X, gives the smallest value of J such that Y; < 1. For this

model the expected value

(2) Elos(Xo,w)] = (% log §>_ log(Xo) -

Recently Borovkov and Pfeifer [5] gave a refined analysis showing that o.,(Xo,w)

obeys a central limit theorem, i.e. the scaled variables

ooo(X07 w) —C IOg XO
c2(log X¢)t/2 ’

(3) boo(Xo,w) 1=

in which ¢; = (Llog2)~! and ¢ = ¢1%/2(% log3), have distribution converging to
the unit normal distribution N(0,1) as X9 — oco. Although this model with ng
drawn from U, is rigorously proved to approximate the distribution of T(**)(ng)
only for a < 1, empirically it is found that the approximation seems good all the
way up to a = (3log 3)~! = 6.95212. Furthermore the agreement with the central
limit approximation (3) is also reasonably good. Thus this random walk model

appears to accurately describe “average” trajectories of 3x + 1 iterates.
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Lagarias and Weiss [10] present two types of probabilistic models intended to
simulate “extreme” trajectories of 3z + 1 iterates, i.e. those attaining the largest
value of the quantity U{I;T(Z) for all n € [1,2%]. The first of these models is a
repeated multiplicative random walk model', which takes 2* entirely independent
multiplicative random walks as above, with the n-th such walk w,, starting from
Xo = n. An analogous model statistic v; to consider is the maximum value of
% taken over 1 < n < 2%, For this model, they showed that with probability

one the values ; tend to a limit ygw as k — oo, i.e. with probability one

. Too(n,wn)
4 1 Jool Wn) _ _
(4) msup Yrw

Here ygw = 41.677647 is the solution of a certain transcendental equation. This
model has the deficiency that it assumes independence of trajectories for different
starting values ng and ny. This is not true of 3z + 1 trajectories — they must
coalesce, since (empirically) all trajectories reach 1.

The second type of stochastic model of [10] is a branching process model that
mimics backwards iteration of the 3z + 1 function, and which explicitly includes
dependencies among trajectories. Backwards iteration of the 3z +1 map is multiple-
valued, and given an initial value a it produces a tree T (a) of preimages of a. The
branching process models construct “random” trees whose structures imitate the
structure of a 3z + 1 tree grown from a “random” starting point a. Lagarias and
Weiss present an infinite family B[37],5 = 0,1,2,... of successively more refined
branching process models. For these branching process models they proved that an
analogue of the asymptotically largest value of "{:T(Z) as n — oo is almost surely a
constant ygp, and ygp = Yrw = 41.677647. Finally they observed that the existing
empirical data for extremal trajectories of the 3z + 1 function, computed up to
5.6 x 10' in [11], is consistent with the predictions made by these two types of
models.

This paper studes extremal properties of ensembles of 3x + 1 trees of depth k.
A 3z + 1 tree Ti(a) is a rooted, labelled tree of depth k, representing the inverse

1The model in [10] actually uses additive random walks, and is obtained from the above by

taking logarithms.
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iterates T (a) for 0 < j < k. The inverse map T~1(n) is multivalued:

{2n} ifn=0o0rl (mod 3),
T '(n) =

{2n,221} ifn=2 (mod 3).

The root node a is at depth 0, and a node labelled n at level [ of the tree is connected
by an edge to a node labelled T'(n) at level I — 1 of the tree?. As described in [9],
the nodes labelled n = 0 (mod 3) give rise only to a linear chain of nodes labelled
n' = 0 (mod 3) at higher levels. It is convenient to remove all such nodes and
study a “pruned” tree 7,*(n) consisting of nodes n # 0 (mod 3). Figure 1 presents
some examples of Tx(a) and 7;*(a). (Nodes n =5 (mod 9) are circled to indicate
that they have some preimage T~!(n) = 0 (mod 3), and nodes n = 0 (mod 3) are

indicated with a square.)

16 ¢ 5 4 1 64 ¢ 20
8 2 32 ¢ 10
44 1 16 ¢ ;
2 8

(i) Ts(1) (i) 75(4) (iii) 75"(4)

FIGURE 1. 3z + 1 trees T(a) and “pruned” 3z + 1 tree 7,*(a)

We say two pruned 3z +1 trees 7,*(a) and 7,*(b) have the same structure if they
are isomorphic as rooted trees by an isomorphism that preserves node labels modulo
2. Since the node label n (mod 2) determines whether a branch to n comes from
a node labelled 2 or 3%l the congruence classes n (mod 3) and T'(n) (mod 9)
suffice to determine n (mod 2). From this, it easily follows that the structure of

2We adopt a convention of “unrolling” any cycles under T, so that the same node label may

appear at different levels of the tree if a cycle is present, cf. Figure 1.
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7. (a) is completely determined by a (mod 3**+!). Consequently there are at most
2 - 3% distinct pruned tree structures 7;*(a). The actual number R(k) of distinct
tree structures is smaller but still grows exponentially.

We study the extreme (maximum and minimum) leaf counts N* (k) and N~ (k)
for the ensemble of all such trees of depth k. In § 2 we present empirical data
for all ¥ < 30, which was computed in [1]. This data suggests two conjectures
concerning the asymptotic behavior of the extreme leaf counts as £ — oo, which
we call Conjecture C and the (stronger) Conjecture C#.

We now ask: to what degree do repeated trials of the branching process models
of [10] reproduce this empirical 3z + 1 data? We first note that only the models
B[37] for j > 2 can be reasonable models. The models B[1] and B[3] were already
shown in § 6 of [10] to fail to assign the correct distribution of residue classes

(mod 3) to the node labels. Besides this, and more important, the models B[1]
and B[3] do not possess the following “strict branching” property of pruned 3z + 1
trees: every pruned 3z + 1 tree branches after at most 4 steps from any node. The
models B[1] and B3] can produce trees having arbitrarily long chains of nodes with
no branching.

As far as one can tell, all the branching process models B[37] for j > 2 provide
reasonable imitations of the 3z + 1 trees. Therefore in § 3 we study the simplest
of these models, which is B[9]. We present data for k < 30 on the expected value
of extreme leaf counts for a “repeated branching process” model which takes R(k)
independent trials using the branching process B[9]. (Recall that R(k) is the num-
ber of distinct tree structures of depth k.) These expected values for k < 30 appear
consistent with Conjecture C, but exhibit larger variability than that empirically
observed for the 3z + 1 data up to k& < 30.

In § 4 and § 5 we present theoretical results about branching process models.
First, in § 4 we prove a result establishing for a large class of branching processes
that there is a double-exponential dropoff of tail probabilities for values of log N (k),
where N (k) counts the number of leaves at depth k of the process. Such results are
“folklore,” and we are indebted to Roben Pemantle for suggesting the method used

to prove Theorem 4.1. Then, in § 5 we prove that the analogue of Conjecture C is
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true for a repeated branching process model using B[9]. We finally prove that the
analogue of Conjecture C# is false for this repeated branching process model.

Thus we have uncovered a difference between the 3z + 1 empirical data and
the branching process model: the extreme leaf count statistics for the actual 3z +
1 problem appear to have a significantly narrower range than that given by the
branching process models. This seems to be the first evidence found indicating
that the 3z + 1 function iterates do not behave as randomly as possible subject to
“obvious” constraints.

In § 6 we return to the study of extremal leaf counts by studying the average
number of leaves in pruned trees 7,*(a), under the restriction a = I (mod 37), in
which I # 0 (mod 3). This amounts to specifying the branching structure of the
first j levels of the tree 7,*(a). We prove that this expected value is asymptotic to
W[l mod 37](3)* as k — oo, where W[l mod 37] is an explicitly computable value
(Theorem 6.1). The variation in W[l mod 37] appears to account for nearly all of
the variation in leaf sizes, and we conjecture that:

—k
lim sup (%) N*(k) = supW[l mod3’] .

k—o0 L,J

lim inf (%) Nk

k—o0

ilrlfW[l mod 37] .
’]

We show that W[l mod 3] interpolates to a function Wy, (I) defined almost ev-
erywhere on the invertible 3-adic integers Z; = {l € Z3 : | = 1 or 2 (mod 3)}
(Theorem 6.2). We conjecture that W (1) is well-defined on all of ZJ* and is con-
tinuous and nonzero. Numerical evidence concerning W[l mod 37] seems to support
the truth of Conjecture C¥.

Finally we remark that G. Wirsching [15], [16] has recently introduced other
functions on Z3 associated to backwards iteration of the 3z + 1 mapping. We do

not know the relation of these functions, if any, to the function W,.

2. 3z +1 TREES

In studying 3z + 1 trees we follow Applegate and Lagarias [1]. Assign to each
a # 0 (mod 3) the pruned tree 7,"(a) of depth k£ whose root node is labelled a
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and whose other vertices at depth j for 1 < j < k correspond to labels in the set
{n:n#0 (mod 3) and T\ (n) = a}. Each node labelled n at level j is connected
to that labelled T'(n) at level j — 1, see Figure 2. (The nodes in Figure 2 that
have labels n = 5 (mod 9) are circled; such nodes have a preimage n’ = 22=1 = 0

(mod 3) in the unpruned tree 7;(a).) The branching structure of the pruned tree

T (a) is completely determined by the value a (mod 3k+1).

224 ¢ 74 23 7
118 37
56
28 80
1¢D 40 13
7 e 20
(i) 72(7) attains N~ (5) = 2 (ii) 75*(20) attains N*(5) =8

FIGURE 2. Pruned 3x + 1 Trees

Let N} (a) denote the number of leaves at depth k of 7,*(a) and set

(5) N (k) := min{N}(a):a (mod 3**')anda#0 (mod3)} ,

(6) N*t(k) := max{N}(a):a (mod 3**')anda#0 (mod3)} .

Theorem 3.1 of [10] showed that the expected size of Nj(a) averaged over all a
(mod 3F*1) with a # 0 (mod 3) is

(7) BN ()] = (§)k

In Applegate and Lagarias [1] we proposed:
Conjecture C. Both N* (k) and N~(k) are (%)F0+°MW) g5 k — oo.

To test such a conjecture it is natural to examine the normalized densities

4
3
_ 4. pare
D=(k) = (57N,

D*(k) = (3)"N*(k),
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which must necessarily satisfy 0 < D~ (k) < 1 < D¥(k) by (7). Table 1 below
gives empirical data for k¥ < 30 using the data from Applegate and Lagarias [1],
§ 2. This data supports Conjecture C, and also appears to support the following
stronger conjecture.

Conjecture C*. There are positive constants C+ and C~ such that
C <D (k)<1<D*k)<Ct

for all sufficiently large k.
It even seems conceivable that D~ (k) and D% (k) have limiting values as k — oo.
In § 6 we give further evidence which seems to support Conjecture C#and the

existence of limiting densities as k — oo.

3. BRANCHING PROCESS MODELS FOR 3x + 1 TREES

We consider the question: To what extent do the branching process models B[37]
for j > 2 presented in [10] accurately imitate the behavior of 3z + 1 trees? These
models are multi-type Galton-Watson processes, for which see [3] and [7]. Recall
that such a process describes the evolution of a population of individuals of several
types over generations, where each individual lives one generation. Each individual
independently gives rise to progeny in the next generation of several types according
to a specified probability distribution. The branching process tree describes the
descendents of a single individual at generation 0, and level [ of the tree includes all
individuals in generation /. Edges connect individuals to their progeny in the next
generation. Such a process is completely described by the probability distribution
of individuals of each type.

The multi-type Galton-Watson branching process B[9] has individuals of six
types, labelled with congruence classes 1,2,4,5,7 and 8 (mod 9), and these evolve
as pictured in Figure 3. Individuals labelled 1,4,5 and 7 evolve deterministically,
having one child of specified type, while individuals of type 2 or 8 always have two
children, one of specified type, while the other’s type is specified with probability
1/3 each. Figure 3 also indicates edge labels reflecting whether T=1(n) is 2n or

(2n — 1)/3, e.g. whether T-'(n) is even or odd. The edge labels are completely
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k| TP gy | N (4)* | D=(k) | D*(k)
R(k)
1 4 1 2| 133] 0750 1.500
2 8 1 3| 178 0562 1.688
3 14 1 4| 237 0422 1.688
4 24 2 6| 316| 0633| 1.808
5 42 2 8| 421 0475 1.898
6 76 3 10| 562] 053] 1.780
7 138 4 14| 749] 0534] 1.869
8 254 5 18] 9.99] 0501| 1.802
9 470 6 24 13.32 0.451 1.802
10 876 9 32| 1776 | 0507 1.802
11 1638 11 42| 2368 0465| 1.774
12 3070 16 55| 31.57| 0507 1.742
13 5766 20 74| 4200 0475| 1.758
14 10850 27| 100| 56.12| 0481 1.782
15 20436 36| 134 74.83| 0481| 1.791
16 38550 48| 178 99.77| 0481 1.784
17 72806 64| 237| 133.03| 0481 1.782
18 137670 87| 11| 177.38| 0490 1.753
19 260612 | 114| 413 | 236.50 | 0482 1.746
20 403824 | 154| 548 | 315.34| 0483 1.738
21 936690 | 206 | 736 | 420.45| 0490| 1.751
22 1778360 | 274 | 988 | 560.60 | 0.489| 1.762
23 3370372 | 363 | 1314 | 747.47| 0486 | 1.758
24 6427190 | 484 | 1744 | 996.62| 0.486| 1.750
25 12232028 | 649 | 2309 | 1328.83 | 0488 | 1.738
26 23300652 | 868 | 3084 | 1771.77 | 0.490| 1.741
27 44414366 1159 4130 | 2362.36 0.491 1.748
28 84713872 | 1549 | 5500 | 3149.81 | 0492 | 1.746
29 161686324 | 2052 | 7336 | 4199.75 | 0489 | 1.747
30 308780220 | 2747 | 9788 | 5599.67 | 0.491| 1.748

TABLE 1. Normalized Extreme Values for 3z + 1 Trees of depth &
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determined by the types of the individuals at the two ends of the edge, hence are
determined by the Galton-Watson process.

The model B[9] permits an unambiguous assignment of node labels to all nodes
of a branching process tree provided that a root node label is given. If n is a node

label at level I, and n' is a node it is connected to at level [ + 1, then we assign

2
3

n' = 2n or 2n according as the edge connecting n to n’ is labelled even or odd.
The Galton-Watson process with the node labels added and interpreted as locations
of the individuals on the line R, becomes a branching random walk, which is the
term used for these models in [10]. The node labels are needed in [10] to view the
branching process as imitating the growth of 3z + 1 iterates, but they play no role
in this paper.

Now let X be a random variable equal to the number of leaves at depth k of a
sample tree drawn from the branching process B[9], starting from a single individual
of type drawn uniformly from {1,2,4,5,7,8}. We consider extreme value statistics
for the quantity (%)_kX r for a specified number of repeated independent draws of
such trees at depth k.

How many independent draws should one allow in such a “repeated branching
process” model? The naive model is to take 2-3* draws, corresponding to allowing
all residue classes a (mod 3*+!) with a # 0 (mod 3). An alternative is to take
instead the smaller number R(k) of different distinct 3z + 1 tree structures 7*(a)

of depth k that are possible. The quantities R(k) still grow exponentially in k, and
based on the data for k < 30, Applegate and Lagarias [1] estimated (empirically)

8 5 4 l,40r7 1 7 2,50r8
0 0 0 0 1 0 0 1
2 5 8
(prob. 1/3 each) (prob. 1/3 each)

FIGURE 3. Branching Process B[9] transitions (with edge labels added)
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that
1.87 < 1ikxgi£fR(k)1/k <1.92 .
How do the data in Figure 2 compare with the predictions from the branching
process model B[9]? To obtain as exact a numerical comparison with Table 1 as

possible, we computed for & < 30 the quantities

E[N~(k)] := E[min{X}: take R(k) ii.d. draws}]

E[NT(k)] := E[max{Xy: take R(k) ii.d. draws}]
using the values of R(k) from Table 1, drawing the root node uniformly from
1,2,4,5,7,8. The results appear in Table 2. The method of computating E[N_(k)]

and E[Kf T (k)] is described in the Appendix. In Table 2 the quantities
4

B = (5) *EIN(R)
bk = (5 FEN()

both exhibit some initial fluctuations and then ﬁ_(k) appears to steadily decrease
with k, while l~)+(k) appears to steadily increase with k. This contrasts with
the analogous quantities in Table 1, which appear to be roughly constant. If we
computed these expected values E[N~ (k)] and E[N* (k)] using 2-3* draws instead
of R(k) draws, the disagreement with Table 1 would be even greater.

In § 5 we prove theoretical results concerning the analogues of Conjectures C
and C* for the branching process model B[9]. We prove that the analogue of
Conjecture C holds for these statistics, using a result on tail probabilities for leaf
count distributions for a general class of branching processes, which is proved in
§ 4. We prove that the analogue of Conjecture C# doesn’t hold, and 5*(19) -0

and DF (k) = oo as k — co.

4. TAIL PROBABILITIES FOR LEAF COUNT DISTRIBUTIONS

We consider multi-type Galton-Watson processes G which have n types of indi-
viduals. In such a process an individual of type i lives for exactly one time period
t and gives rise to a set of progeny of various types at time ¢t + 1. We assume

that G has a finite mean matriz M = [M; j]1<i,j<n, where M, ; gives the expected
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k| IS pR-m) | BRw) | (0| B | B(k)
R(k)
1 4 1.00 2.00 1.33 0.750 1.500
2 8 1.00 2.77 1.78 0.562 1.557
3 14 1.00 3.96 2.37 0.422 1.669
4 24 2.00 5.46 3.16 0.633 1.728
5 42 2.00 7.55 4.21 0.475 1.792
6 76 3.00 9.99 5.62 0.534 1.778
7 138 3.07 14.31 7.49 0.409 1.911
8 254 4.00 19.20 9.99 0.401 1.923
9 470 5.00 26.45 13.32 0.375 1.986
10 876 7.00 35.97 17.76 0.394 2.026
11 1638 8.32 48.63 23.68 0.352 2.054
12 3070 10.81 65.53 31.57 0.342 2.076
13 5766 12.92 89.17 42.09 0.307 2.118
14 10850 17.12 119.58 56.12 0.305 2.131
15 20436 22.49 162.12 74.83 0.300 2.166
16 38550 30.16 218.52 99.77 0.302 2.190
17 72806 38.42 294.11 133.03 0.289 2.211
18 137670 4991 395.94 177.38 0.281 2.232
19 260612 64.49 533.21 236.50 0.273 2.255
20 493824 85.41 715.96 315.34 0.271 2.270
21 936690 112.45 963.62 420.45 0.268 2.292
22 1778360 148.38 1294.74 | 560.60 0.265 2.310
23 3379372 193.77 1739.01 74T AT 0.259 2.327
24 6427190 254.38 2335.64 | 996.62 0.255 2.344
25 12232928 334.18 3135.96 | 1328.83 0.252 2.360
26 23300652 441.25 4207.62 | 1771.77 0.249 2.375
27 44414366 581.63 5647.11 | 2362.36 0.246 2.390
28 84713872 766.94 7575.10 | 3149.81 0.243 2.405
29 | 161686324 1009.74 10159.40 | 4199.75 0.240 2.419
30 | 308780220 1331.40 13623.43 | 5599.67 0.238 2.433

TABLE 2. Branching Process Expected Values
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number of progeny of type j produced by an individual of type i. We assume that
G is positively regular, which means that some power M* has all entries strictly
positive. Under the positive regularity assumption the mean matrix M has a max-
imal real eigenvalue p of multiplicity one, which we call the growth rate of G. Let
N;(k) denote the total number of individuals at time k of a process starting from
a single individual of type ¢ at time 0. We say that G has finite second moments if
E[N;(1)?] < 0o for 1 <i <n.

We prove below a result showing that the upper and lower tails of the logarithm
of the leaf count distributions N;(k) of multi-type Galton-Watson processes have
double-exponential decay in k as k — oo, provided that the processes satisfy some
mild extra conditions, which we now introduce. A multi-type Galton-Watson pro-
cess is boundedly branching, if there is an upper bound L on the number of progeny
that an individual (of any type) can have in one time period. Such a process is
strictly branching if an individual always has at least two progeny in each time

period.

Theorem 4.1. Let G be a multi-type Galton- Watson process with n types which is
positively regular, has finite mean matriz M with mazimal real eigenvalue p, and
which is supercritical, i.e. p > 1.

(i) If G is boundedly branching, then for any r > p there are positive constants

a,d depending on r such that for all k > 1,
(8) Prob{N;(k) > r*} < exp(—a(1+6)F), 1<i<n .

(i) If G is strictly branching and has finite second moments, then for any r < p

there are positive constants o, d depending on r such that for all k > 1,
9) Prob{N;(k) < ¥} < exp(—a(1+6)F), 1<i<n .

Before giving the proof, we note that the conclusions of both (i) and (ii) cer-
tainly require some extra restriction on the Galton-Watson process G beyond being
positively regular and supercritical. Concerning (i), if a single-type Galton-Watson

process G has the probability p,, of m offspring satisfying p,, = ecm~* for large m
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(so G has a finite second moment), then for sufficiently large ,
Prob{N;(k) > r*} > Prob{Ni(1) > 7*} > p,x > er=* |
which violates (8). Concerning (ii), if G is not strictly branching, and p; > 0, then
Prob{N:(k) < ¥} > (p1)* ,

which violates (9).
Proof. (i) Suppose that r > p is given. By hypothesis there is a finite bound L
for the maximum number of progeny that a single individual can have in one time
period. The argument we give does not depend on the type of the individual at
time 0, so we omit explicit reference to it.

Let N@ (k) denote the number of individuals of type i at time k, and define the

type vector v(k) at period k by
v(k) = (NO (&), N (k),... ,N™(R))

Also let N3 (k, k +1) denote the number of individuals of type j at period k + 1
that are progeny of an individual of type ¢ at period k.

We claim that there is a constant § > 0 such that for all sufficiently large &,
there is some intermediate time I, with 0 <1 < k — 1 and a pair (i, j) of types with
M; ; # 0, such that

(10) NO@) > (146",
and
(11) NG I+1)> 1+ 8M;;NO(@) .

We argue by contradiction, and suppose there were no such time [. Set e =
(1,1,...,1) and observe that all the type vectors satisfy coordinatewise the in-
equality

vil+1) <A +)v(OM + (1 4+ 6)*Le
because the first term on the right bounds the contribution to v(I+1) of individuals

of type j at time ! + 1 that are progeny of those types i at time [ for which (11)

doesn’t hold, while the second term on the right bounds the contribution from types
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i for which (10) doesn’t hold. Tterating this inequality for 0 < I < k — 1 starting

with v(0) < e, we have
(12)  v(k) <nL(14+6)fe(IT+ (14 0)M+ (14 6)*M? +... + (1 +6)FMF) .

By Perron-Frobenius theory the matrix M has spectral radius p and by the positive
regularity hypothesis its set of eigenvalues on the circle |z| = p consists of a single

simple eigenvalue at z = p, hence there is a constant ¢y with
eMF < copke .

Thus (12) yields

v(k) < conL(1 + 6)** pFe |

hence
N(k) = v(k)eT < con®L(1 + 8)*kp* .

If we therefore choose § so that 1 <144 < (%)1/27 then this bound contradicts
N(k) > r* for all k > ko, proving the claim.

To bound Prob{N(k) > r*} it thus suffices to bound the probability of the
event (10) and (11) occurring over all triples (¢,7,!). Now the random variable
NGD(1,1+1) is a sum of N (1) independent draws from an integer-valued prob-
ability distribution {p,,}, where p,, is the probability that an individual of type
i on G has exactly m progeny of type j. By definition the distribution {p,,} has
expected value E[p] = M, ;, and we also know that p, = 0 for all m > L. Now
we can apply Chernoff’s theorem (as quoted in [10], p. 234) with N@ (1) draws to
obtain the bound

(13) Prob{ NG (1,1 +1) > (1 + 8)E[PIND (1)} < exp(—aND (1)) ,

where o = —g((1 + §)E[p]) with

L
— _ mo
g(a) := 51611;; {Ga log (Z Dme ) }

m=0
We check that o > 0. Certainly g(a) > 0, by taking 8§ = 0 above, and the strict con-
vexity of log (Zizo p(m)emo) allow one to check that for a > E[p] the minimizer

on the right side is not at 8 = 0, hence a > 0.
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Now combining (10), (11) and (13) yields
Prob{N(k) > r*} < n’kexp(—a(1 + §)*) ,

valid for k > ko. Decreasing o and & towards 0 as necessary, we make (8) valid for
all k > 1.
(ii) Suppose that r < p is given. The strictly branching assumption guarantees

that
(14) Ni(t)>2¢, allt>1,

holds for 1 < i < n. Now view a tree of depth k as consisting of a rooted tree
of depth ¢ which has N(¢) subtrees each of depth [ := k — ¢t growing from each of
its leaves. All of these subtrees grow independently, and each of them can have at
most r¥ leaves, because the whole tree has r* leaves by hypothesis. Thus using (14)

we obtain the bound

PrOb{Ni(k) < Tk} < (PrOb{depth [ subtree has < rk leaves})N"(t)

(15) < (ax {Prob{N;(1) <r*}})* .

We choose t = ak for a small a and wish to bound the probability that a tree of
depth [ = (1 — a)k has no more than r* leaves. Since M is positively regular and
second moments exist, the Kesten-Stigum theorem ([8], Theorem 1) applies to give

positive constants u; such that
(16) EIN;(1)] = (ui +0(1))p" asl— oo .

Furthermore by the finite second moment assumption, there is a finite upper bound

N;')Sl) valid for all [ > 1 (see Harris [7], Theorem 9.2), hence

on the second moment of

by Chebyshev’s inequality there is a constant v < 1 such that
(17) Prob{N;(I) < E[N:()]} <, all 1> 1,

holds for 1 < i < n. To apply this in (15), it suffices to arrange that E[N;(1)] > rk.

Now (16) implies that there is a positive constant ¢* such that for 1 <4 <n,

(18) E[N;()] >c*pl; alll>1 .
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Write r = p® with 0 < ¢ < 1 and choose
I = ¢k —logy(c*)
the point being that with this choice
EIN;(D] > p' >0k, 1<j<n,
the last inequality depending on the fact that p > 2. Thus, for 1 < j <n,
Prob{N;(l) < r*}] < Prob{N;(l) < E[N;()]} < v, all1>1 .
Now (15) yields, setting v = exp(—a*),

Prob{N(k) < ¥} < exp(—a*2"7!) = exp(—a*c*c(t=DF)

< exp(—a(l +6)%) ,

with @, >0. H

5. APPLICATION TO 3z + 1 BRANCHING PROCESS MODELS

We consider now a “repeated branching process” model in which the model B[9]
is grown to depth k, making S(k) independent trials. The statistics that we are
interested in are the minimum and maximum of the number of leaves over these
S(k) trials. We are interested in the case that S(k) grows exponentially in k, so
we consider S(k) = |7*], where 7 > 1 is a fixed constant. The relevant random

variables are

(19) N-(k) = min{X} :take |7%] i.i.d. draws from B[9]}

(20) N (k) = max{Xy:take |7%| i.i.d. draws from B[9]}

The scaled random variables (£)¥(N- (k))~" and (4)"*N; (k) are analogous to the
quantities (3)*(N~(k))~" and (3)~*N*(k) in Table 1.
We first prove that an analogue of Conjecture C holds for this “repeated branch-

ing process” model using B[9].
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Theorem 5.1. For any fized T > 1, with probability one, the branching process
B[9] has

lim (N, (k)% = lim (N} (k))V/* = 2

k—o0 k—o0 3

Proof. The branching process B[9] has mean matrix M given in Table 3, with

Type
1 4 7 2 5 8
Type
1 0 0 0 1 0 0

7 0 0 0 0 1 0

M 2 ! 4 ! 0 0 0
3 3 3

5 1 0 0 0 0 0

1 1 1

8 0 0 1 - - -

3 3 3

TABLE 3. Mean Matrix M for B[9]

left-eigenvector v = (1,1,1,1,1,1), and M* has positive entries so B[9] is positively
regular, c¢f. [10], Theorem 3.2. It is certainly boundedly branching, so part (i) of
Theorem 4.1 applies to give for r > 4/3,

Prob{ N (k) > r*} < 7* exp(—a(1 + 6)*) .
Since Yo, 7F exp(—a(1 + §)F) converges, we conclude that with probability one

(21) lim sup(N;F (k))'/* < p = %

k— oo

The key point of the proof concerns the strict branching property. Although B[9]
is not strict branching, repeated application of it for four time periods is. This is
easy to check using the branching data in Figure 3. The repeated branching process

G = (B[9))** has mean matrix M*, which has growth rate p*, and it has finite
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second moments since it is boundedly branching. Now part (ii) of Theorem 4.1

applies to G, to yield that for any r < (%)4, there holds
Prob{ N (4k) < r*} < 7% exp(—a(1 + 8)*) .
As in the argument above, we conclude that with probability one,

lim inf (N (4k))Y/* > (%)4

k—o0
Since N(k) < N(k +1i) < 2iN(k) for 0 < i < 3, we conclude that with probability

one

(22) lim inf(N- (k)% > p=4/3 .

k—o0

Combining (21) and (22) and using the fact that N;(k) < ]\Nf;“(k) in any sampling
of trees, we conclude that limy_,eo (N (k))2/* and limy_,o0 (N (k))2/* both exist
and equal % with probability one. H

Remark. This proof applies to all the branching process models B[37] with j > 2,
because all the processes (B[37])**) have the strict branching property for j > 2.
It does not apply to the branching processes B[1] and B[3], because they have no
iterate possessing the strict branching property. In fact the lower bound (21) is
false for B[1] and B[3] whenever 7 > .

We now show that the analogue of Conjecture C* is false for the “repeated

branching process” model using B[9].

Theorem 5.2. For any fized 7 > 1, the branching process B[9] has

lim D~ (k) =0 ,

k— o0
and

lim Dt (k) = +o0 .

k—o0

Proof Let W} for m (mod 9) enumerate the number of leaves of type m of a
random tree of depth k drawn from B[9], with root node drawn uniformly from

{1,2,4,5,7,8}. Set

Wk = (Wk}aWk?anin?’W’Z’Wks) ’
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so that Xy = W + W2+ Wi+ W7 + W[ +W2. Now let wy, denote the probability
distribution of the random vector (3)"¥Wj. Now E[X;log X1] < oo, hence the
Kesten-Stigum theorem ([8], Theorem 1) applies to give that the distributions wy,

converge weakly to a limiting distribution w,, which is of the form
(23) Woo =W -V

where v is a constant vector and w is a one-dimensional positive random variable
which is absolutely continuous, except for a possible jump at the origin. (The
jump at the origin represents the probability of extinction.) Furthermore v is the
(unique) left eigenvector corresponding to the maximal real eigenvalue p of the
mean matrix M of the Galton-Watson process; in our case M is given in Table 3
andv=e=(1,1,...,1).

The conditional distribution w; := {w | initial type i} has the expectation
(24) Efw | initial type @] = u;,

where bu is a right eigenvector of M, and the jump ¢; at the origin depends on the
type i. The g; are just probabilities of extinction, hence in the case of B[9] there are
no jumps (all ¢; = 0), and each conditional distribution w; = {w | initial type i}
is strictly positive® on RT, by Theorem 2(iv) of Chapter V.6 of Athreiya and Ney
[3]. Now the random variables (2)~*N; (k) and (2)*N;' (k) sample values in the
tails of the distributions wy, i.e. values that lie outside any fixed region (¢,1 —¢€) in
the cumulative distribution for large enough k. Since wy, converge weakly to wWo

it follows from the strict positivity of w on R+ that

—k

D= (k) = (%) N-(k)—=0 as k—oo
—k

Dt(k) = (%) Nf(k) > o0 as k— oo,

so Theorem 5.2 follows. W

3A detailed proof of the positivity of w for the single-type Galton-Watson process appears as

Theorem 2 of Sect. IL.5 of Athreiya and Ney [3]. See also Lemma 7 of Kesten and Stigum [8].
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6. AVERAGE LEAF COUNTS AND CONJECTURE C%#.

We return to the study of 3z + 1 trees, and study fluctuations in the leaf counts
of such trees caused by the branching pattern at the base of the tree, in its first 5
levels. That is, we estimate the expected size of pruned 3z + 1 trees 7;%(a) whose

root node lies in a fixed congruence clase I (mod 37). This expected value is

(25) B[l mod 3]:=3"(+) %" Nia) ,

a (mod 3k+1l)
a=l (mod 37)

for j > 1.

Theorem 6.1. For each j > 1 and | # 0 (mod 3) there is a positive constant
Wl mod 37] such that

, , 4\ *
(26) E;[l mod 37) = (W[l mod 37] + o(1)) <§> as k = oo .

Proof. We will use the formula (corresponding to j = 0)

(27) > N,m:(g)k,

a (mod 3Ft1)
a0 (mod 3)

which is proved in Theorem 4.1 of [10].
We first establish recursions for the quantities Ej[l mod 37]. The recursions are
based on the bottom branching of the 3z + 1 tree, which depends on ! (mod 9),

and which is pictured in Figure 4. This gives the recursion

20 -1

, , i—1
21 (mod 3) 20 (mod 37) —3 (mod 37
I (mod 3%) I (mod 3%)

(i) 1=1,4,5,7 (mod 9) (ii) I = 2,8 (mod 9)

FIGURE 4. Tree-branching patterns
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2a —1
(28) Ni(@) = N 1(20) + damod 9N, (270)
in which
0 if 1=1,4,5,7 (mod?9) ,
(29) ¥(l mod 9) :=
1 if 1=2,8 (mod9) ,

is an indicator function for the presence of a branch of the tree with edge label 1.
Summing (28) over all a (mod 3¥*1) yields, for k > j > 2,

(30)  Ej[lmod 3] = Ej_,[2l mod 3’] 4+ (I mod 9)E,’;71[ZT mod 3/71] .

If j >2but 1 <k < j then
(31) E}[l mod 3] = E;[l mod 3] .
The case j = 1 must be treated separately. The recursions become

. { Efllmod3] = E; [2mod3]

Ef2mod3] = Ej_[lmod3]+2 (4",
where (27) was used to obtain the last equation. We have

mod3—1-2 (4 mods 3 (4
E1[1m0d3]_1_4(3> and E1[2mod3]_3_4(3> ,

from which we deduce
k
Eillmod 3] = w(k) (—) , 1=1,2

in which w; (k) and w2(k) obey the recurrences

wi(k) = ZwQ(k—n
wa(k) = Zwl(k—l)—k%.

This yields wa(k) = {Fwa(k — 2) + 3, from which one easily deduces
k

{ wk) = $+0((B)) .

)")

(33)
wa(k) = $+0((

NN

Now (26) follows for j = 1 with:

(34) W1 mod 3] = g and  W[2 mod 3] = g .
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For j > 2, let W[l mod 37] be defined recursively in j as the unique solution to

the system of linear equations

(35) Wl modsf]zg(W[zzmod:sf]+w<zmod9>W[—2’3‘ 1m0d3j‘1]> .

Here the quantities W [2:1 mod 39~!] are known, and this linear system has matrix
I- %P where P is a certain permutation matrix, which is clearly invertible since
_ 2
I-3P)'=1+3P+(3P)" +....
Next, define the quantities Ag[l mod 37] by

Ej[l mod 37] = (W[l mod 37] + Al mod 37]) (%)k ,

and set

Apl3] = Ag[l mod 37| .
)= max o [l mod 7]

We claim that there are positive constants ¢; such that

(36) R3] < ¢, (g)’“

If so, then (26) follows.
For j =1 this holds for all £ > 1 by (33), choosing a suitable value for ¢;.
We prove (36) for j > 2 by induction on j, where for each j we verify it for all

k by induction on k£ > 1. The constants c; are defined recursively by

k
— . (8
¢j = max <60j1, lrélkaé(j Ag[37] (?> )

Assume (36) is true for j — 1 and all k. For j and 1 < k < j (36) holds by definition
of Cj.

For j > k, the recursions (30) give

3

) . 20—-1
Ak[l mod 3]] = - (Ak1[2l mod 3J] + ¢(l mod Q)Akfl[ !

1 mod 3j1]>

In particular the recursions yield the inequality

(37) R3] < sz_l[y‘] + sz_l[y’—l] .
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This gives, by the induction hypothesis

k—1 k—1
— o 3 7 3 7
Ak[?)]] S ch (g) + ZC]',1 (g)

k
S Cj (g) )

since ¢; > 6c;_1, completing the induction step. (One can prove that Ag[37] is

A

O((23)(1+9%) for any € > 0, by a similar argument.) W
The densities W[l mod 37] are determined recursively by solving the linear sys-

tem (35). For j = 2, we obtain

W[l mod 9] = 3138 = W[2mod 9] = 2398 |

3367 3367
(38) W[4 mod 9] = 3288 = W[8mod 9] = 234 |

W[7mod 9] = 2242 | W[5mod 9] = 2392 .

For later use, we show that the quantities W[l mod 37] satisfy, for all j > 1, the

mean value formula

1 .
(39) 3T > Wimod3i]=1.
I (mod 37)
1£0 (mod 3)

This holds for j = 1 by (34). For j > 2, summing up (35) over all I mod 37 yields

1 i 3 ! j—1
1 X - Wlimod ] = 7 Z. W' mod 37'] .
I (mod 37) I’ (mod 3971)
1#£0 (mod 3) I'#£0 (mod 3)

Now (39) follows by induction on j, for the above equation yields

1 ) 1 »

9. 371 Z W[l mod 3°] = 5.3i-2 Z W' mod 3’1 =1 .
I (mod 37) I' (mod 3971
1Z0 (mod 3) I'#£0 (mod 3)

The quantities W[l mod 37] yield asymptotic bounds on the number of leaves in

extremal trees.

Corollary 6.1. For each j > 1, with D*(k) = (%)_k NE(k),

limsup Dt (k) > W;F := max W[l mod3] ,
k— 00 l1Z0 (mod 3)
and
liminf D™ (k) <W; := min W[l mod 37] .
k—o0 120 (mod 3)
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Proof. Extreme values on leaf counts satisfy obvious inequalities in relation to
mean values. H

Letting j — oo in Corollary 6.1 yields

v

lim sup,_, ., Dt (k) Wi = limsup; , W},

(40) ’

liminfy oo D= (k) < Wi := liminf; Wi .
In order for Conjecture C¥# to hold, the quantities W and W must satisfy
(41) 0<Wo<1<Wi<oo .

This is unproved, but would follow from the Limit Function Conjecture stated
below.
Table 4 presents data on the extreme values W;™ and I/Vj+7 as well as on the

quantities

+ . j j
o=, max W[l mod 3’] — W[I' mod 3]

which bound how fast W;™ and Wj+ are changing as j — oco. It also gives the
quantities / (mod 37) attaining WJ.Jr and W~ with [ expressed in base 3, as well as
I (mod 3771) attaining ;.

On comparing the values in Table 4 with the extreme densities D¥ (k) and D~ (k)
in Table 1, we see that by k = 9 the values W+ and W~ seem to be accounting for
nearly all of the observed variation in D* (k) and D~ (k). (Note that Wy < D (8);
this is not contradictory because Wy is an asymptotic limit as k¥ — oo. However
we must have D~ (8) < min; E§[l mod 38](3)8.)

The data in Table 4 suggests that the quantities W[l mod 37] may explain all the
extremal variation in leaf count sizes in an asymptotic sense. We therefore propose:

Extremal Limit Conjecture. The quantities D7 (k) and D~ (k) satisfy

I
S
+

lim sup Dt (k)

k—o0

liminf D=(k) = W5 .
k—o00
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min ! max|! max [

j l(mod3) W [ (mod3) Wi I (mod3t) gf
J J J

1 13 | 0.857 23 | 1.143 — 1 0.286
2 213 | 0.577 023 | 1.369 23 | 0.599
3 2213 | 0.528 2023 | 1.493 223 | 0.407
4 22215 | 0.517 02023 | 1.561 2223 | 0.302
5 022213 | 0.504 121225 | 1.611 22225 | 0.209
6 2022213 | 0.503 2121223 | 1.649 222223 | 0.166
7 10022213 | 0.498 12121223 | 1.672 2222225 | 0.116
8 210022213 | 0.497 212121223 | 1.690 22222223 | 0.085
9 2210022213 | 0.494 2020202023 | 1.704 222222223 | 0.062
10 | 12210022213 | 0.493 || 02020202025 | 1.714 2222222223 | 0.045
11 | 212210022213 | 0.491 || 202020202023 | 1.721 || 22222222223 | 0.033

TABLE 4. Extreme densities W[l mod 37].

Finally we observe that the recursion for W[l mod 37] has a regular structure.
These quantities interpolate to a function defined almost everywhere on the invert-

ible 3-adic integers
Z; ={a€Zz:a=1lor2 (mod3)},
as we now show. We view ZJ as a measure space with the 3-adic measure p with
u(Zs3) =1, so that p(Z3) = 2.
Theorem 6.2. For p-almost all a = Z;io a;39 € Z, the following limit exists:
(42) Woo(a) := lim Wa mod 3] .
j—ooo

Proof. Let p* = 3p so that p*(Z)) = 1 is a probability measure. Define for

j > 1 the functions W; : Z; — R by
Wj(a) := Wa mod 37] ,

and view {W; : j > 1} as random variables on ZJ with respect to p*. We claim

that {W; : j > 1} is a martingale with respect to the o-fields {F; : j > 1} with
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F; = {residue classes (mod 37)}. The martingale property is that, for each residue

class a (mod 37),
EW;1(8) | B = a (mod 37)] = Wj(a) ,
which is equivalent to

2
1 . . .
(43) 3 E Wla + k- 37 mod 3" 7'] = W[a mod 37] .
k=0

To establish (43), we define
X[l mod 37] := W[l mod 3] — W[l mod 397 !] .

The recursion (35) for I mod 3/ subtracted from that for I mod 3/+! gives

(44) X[l mod 37+ = g (X[Ql mod 3/*!] + ¢ (I mod 9)X[% mod 3j]> :

We now prove by induction on j > 1 that
2
(45)  Allmod 39 :=>"X[I+k-3/ mod 3] =0 , alll (mod 37+') .
k=0

The base case j = 1 is verified by direct computation, using (38). For the induction

step, (44) summed over 1,1 + 37,1+ 2 -3/ gives
i1 3 i1 201 —-1 .
(46) Al mod 31" = 1 A2l mod 37" + ¢(I mod Q)A[T mod 37] ) .

By the induction hypothesis, the last term A[2:! mod 37] = 0. Now (46) becomes

the invertible linear system

(I- %P) (A[l mod 37*1])) =0 ,

hence (45) follows. Substituting the definition of X[l mod 37%!] in (45) gives (43),
hence {W; : j > 1} is a martingale.

The mean value formula (39) gives
Bl = BW)] = [ Wi@awi(@) =1, jz1.
3

Now the Martingale Convergence Theorem (see Billingsley [4], Theorem 35.4) ap-
plies to {W; : j > 1} so (42) follows. W
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We may define the limit function We, () for all a € ZJ, by
Weoo(a) = lim sup Wa mod 37] .
j—oo
Here W (a) > 0 and the value +oo is allowed. The Martingale Convergence
Theorem also gives

(47) EWe] = i Woo(@)dp™ (@) = E[[Weo|] = E[W1[] =1 .

The data in Table 4 suggest that 7 — 0 rapidly enough that >332, 7} < oo,
in which case W[a mod 3] would converge uniformly to Wyo(a) for all a € ZJ.
Therefore we propose:

Limit Function Conjecture. The function Wy, : Z3 — R is continuous and

nonzero, and

Woo(a) = lim W]a mod 37

j—oo
holds for all o € Z5 .

If this conjecture is true, then taking lim; , in (35) shows that W, (a) satisfies

the functional equation

(48) Weo(a) = g (Woo(2a) + (e mod )W (2 - L ))

Since Z3 is compact, this conjecture also implies that

Wi = sup Wu(a) < oo
a€Zy

and

Wo = inf We(a)>0 .
a€Z}

Since (47) and (48) imply that Wy, (a) cannot be the constant function 1, we must
have W < 1 < W}, and (41) follows. Thus the Limit Function Conjecture and
the Extremal Limit Conjecture together imply Conjecture C¥.

Finally, we note some resemblance of the recursion (35) to the Krasikov inequal-

ities studied in [2].
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APPENDIX A. COMPUTATION OF EXPECTED VALUES OF EXTREME LEAF

COUNTS

Although there are a double-exponential number of different trees possible at
depth k of such a branching process, the data E[N~ (k)] and E[N* (k)] in Table 2
were computed in single-exponential time as follows: Let X{ for i (mod 9) be a
random variable counting the number of leaves at depth k of a sample tree drawn
from the branching process B[9], starting from a single individual of type i, and
let P[X}; = x| := Prob{X] = z}. Then, the distributions of X} and X} were

computed from the recursion

P[X(=1 = 1,

P[Xj=2] = P[X}', =12]ifi=1,4,5 or8,

P(Xi=12] = ZP[Xk —a—y ](P[Xk_l=y]+P[Xi§;=y]+P[X,3_1=y]

PIXi =a] = ZP[Xk 1=7—Y (P[lezy]-'_P[X 31_y]+P[Xk 1 =Yl
and

P[Xk = .’IJ]

% Y PXi=4].

i (mod 9)

The cumulative distribution function fi(¢) of the number of leaves was then com-
puted. Finally the cumulative distributions of the minimum and maximum of R(k)
draws were computed using (1 — (1 — fi(#)))** and f;,(t)**), respectively. The

entire computation took about 15 minutes on 150 Mhz MIPS R4400 processor.

ACKNOWLEDGEMENT

We are indebted to R. Pemantle for suggesting the method used to prove Theo-

rem 4.1. We thank J. A. Reeds and the referee for helpful comments.

REFERENCES

[1] D. Applegate and J. C. Lagarias, Density bounds for the 3x+1 problem I. Tree-search method,
Math. Comp. 64 (1995), 411-426.

).
).



30 DAVID APPLEGATE AND JEFFREY C. LAGARIAS

[2] , Density bounds for the 3x 4+ 1 problem II. Krasikov inequalities, Math. Comp. 64
(1995), 427-438.
[3] K. B. Athreiya and P. E. Ney, Branching processes, Springer-Verlag, New York, 1972.
[4] P. Billingsley, Probability and measure, John Wiley & Sons, New York, 1979.
[5] K. Borovkov and D. Pfeifer, Estimates for the Syracuse problem wia a probabilistic model,
preprint, 1993.
[6] R. E. Crandall, On the “3z + 1” problem, Math. Comp. 32 (1978), 1281-1292.
[7] T. E. Harris, The theory of branching processes, Springer-Verlag, Berlin, 1963, (Reprint:
Dover 1988).
[8] H. Kesten and B. P. Stigum, A limit theorem for multidimensional Galton- Watson processes,
Ann. Math. Stat. 37 (1966), 1211-1223.
[9] J. C. Lagarias, The 3z + 1 problem and its generalizations, Amer. Math. Monthly 92 (1985),
3-21.
[10] J. C. Lagarias and A. Weiss, The 3z+1 problem: Two stochastic models, Ann. Applied Prob.
2 (1992), 229-261.
[11] G. Leavens and M. Vermeulen, 3z + 1 search programs, Computers & Mathematics, with
Applications 24 (1992), no. 11, 79-99.
H. Miiller, Das 3n + 1’ Problem, Mitteilungen der Math. Ges. Hamburg 12 (1991), 231-251.
D. W. Rawsthorne, Imitation of an iteration, Math. Mag. 58 (1985), 172-176.
S. Wagon, The Collatz problem, Math. Intelligencer 7 (1985), 72-76.
G. J. Wirsching, On a Markov chain underlying the backwards Syracuse algorithm, Rev.
Roum. Math. Pure Appl. 39 (1994), 915-926.
[16] G. J. Wirshing, The dynamical system on the natural numbers generated by the 3n + 1

function, Habilitationsschrift, Katholische Universitat Eichstatt, 1995.

AT&T BELL LABORATORIES, MURRAY HiLL, NJ 07974
E-mail address, D. Applegate: david@research.att.com

E-mail address, J. C. Lagarias: jclQresearch.att.com



