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Abstract

Mathematics has been strongly influenced by problems arising from physics. The existence of quasicrystals as
strongly ordered structures which cannot be periodic has raised various mathematical questions that have stimulated
developments in the areas of discrete geometry, harmonic analysis, group theory and ergodic theory. It seems that extra
“internal dimensions” are useful in describing certain features of quasicrystal structure and their diffraction spectra.
In particular N-dimensional crystalline symmetries can appear in the diffraction spectra of model sets. This paper
describes recent work in discrete geometry suggested by the modelling of atomic positions in quasicrystals by Delone
sets with restrictions on interpoint distances. It suggests one mechanism for the appearance and usefulness of “internal

dimensions” in describing ordered aperiodic structures.
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1. Introduction

Mathematics has been strongly influenced by
problems arising from physics. David Hilbert in-
cluded as the 18th problem on his famous list of
23 problems at the 1900 International Mathemat-
ical Congress the building up of space from con-
gruent polyhedra, which contained as a subprob-
lem proving that there are a finite number of crys-
tallographic groups in N-dimensions, see [1]. Now
N-dimensional problems may have seemed irrele-
vant to solid state physicists who consider three-
dimensional structures, but the discovery of qua-
sicrystals changed that. It seems that extra “internal
dimensions” are useful in describing certain features
of quasicrystal structure and their diffraction spec-
tra. In particular N-dimensional crystalline symme-
tries can appear in the diffraction spectra of model
sets. The existence of quasicrystals as strongly or-
dered structures which cannot be periodic has raised
various mathematical questions that have stimulated
developments in the areas of discrete geometry, har-
monic analysis, group theory and ergodic theory.

It 1s impossible in a short space to indicate all the
directions of interesting mathematics that have re-

sulted, see [2], [3]. This paper considers three main
themes : (1) A re-examination of what properties
characterize a crystal, (2) A taxonomy of Delone sets
which can represent quasicrystalline structure from
the most strongly ordered ones to random tiling mod-
els, and (3) the problem of enforcing (weak) long
range translational order using “local rules.”

2. Tiling Models and Delone Set Models

The study of aperiodic structures with a strong form
of ordering has been formalized in two different ways:
tilings and Delone sets. In both cases the structure
is considered to be composed of small pieces, which
in one case are tiles and the other case are points.
Delone sets represent an idealized version of
atomic structure for the solid state. They were intro-
duced around 1930 by the Russian crystallographer
and mathematician B. N. Delone [Delaunay] under
the name (r, R)-set. A Delone set X is any ( nec-
essarily infinite) discrete set in R™ for which there
are positive constants r and R such that each ball of
radius r contains at most one point of X and each
ball of radius R contains at least one point of X.
The points of X represent atomic positions, and the
conditions are equivalent to the set X having finite



positive packing radius and covering radius by equal
spheres.

Tiling models typically consider filling space us-
ing congruent copies of a possibily infinite number of
different tile types (prototiles), but the case of most
interest 1s that of a finite number of tile types. In
some models the prototiles are moved by Euclidean
motions, which we call tiling by isometries, and in
others they are moved by translations only, which
we call tiling by translations.

Tiling models and Delone set models are intercon-
vertible in the following sense. Given a tiling, one
can mark on each prototile a finite number of points,
and the marks on all the tiles in a tiling then produce
a Delone set associated to the tiling. In the opposite
direction, to each Delone set is associated a tiling of
space by the Voronoi cell associated to each of its
points. (The Voronoi cell of a point xin a discrete
set X 1s the set of points in R™ closer to x than to
any other point in X.) This correspondence of tilings
and Delone sets is a rough one since it involves ar-
bitrary choices, but the corresponding models have
many properties in common, in the sense of dynam-
ical systems discussed in §3.

Aperiodic tilings generated by local rules were first
studied in mathematics in connection with a problem
in mathematical logic. In 1961 Hao Wang raised the
“domino problem”: given a set of squares with col-
ored edges which can tile the plane face-to-face with
matching edge-colorings, must there always exist a
periodic tiling using such prototiles. In 1966 Berger
gave a negative answer, exhibiting a set of about
20000 different prototiles which tiled the plane, but
only aperiodically. Berger showed that the problem
of whether a partial tiling of the plane with such
tiles could be extended to a full tiling was undecid-
able. In 1971 Raphael Robinson gave a much sim-
pler construction, exhibiting 6 prototiles which tiled
the plane, with only aperiodic tilings. Later in the
decade came Roger Penrose’s example of two pro-
totiles which tiled the plane aperiodically (allowing
rotations of the prototiles.) These last two construc-
tions both reduced the number of prototiles using a
symmetry principle: if prototiles can only be moved
by translations, then Penrose’s set consists of 20 pro-
totiles.

Penrose tilings are a special case of a theory of
aperiodic tilings with hierarchical properties, such as
self-similarity. One question is: Can tilings with hi-
erarchical properties be constructed by “local rules”,
l.e. can the prototiles be marked in various ways,
with rules for how the marking of adjacent tiles
match, so that the rules enforce the hierarchical
structure? For Penrose tiles this was shown by de
Bruijn in 1981. In general the answer is “yes,” as
shown by C. Goodman-Strauss [4].

This paper considers Delone set models. For

nearly all tiling results there is a Delone set equiv-
alent. Properties of self-similarity are most easily
framed using tilings, but have been considered for
exists a corresponding theory of substitution Delone

sets, [5], [29].

3. Dynamical Systems and Diffractivity

A connection of tilings and dynamical systems was
motivated in part by the problem of explaining sym-
metries in diffraction spectra by local properties.
The symmetries observed on diffraction spectra are
statistical symmetries, and “Bragg peaks” or point
spectra indicate correlations between the interpoint
distance vectors of a positive proportion of atoms in
the sampled material. They do not require global
symmetries to occur on the atomic level itself. On
the mathematical side the dynamical systems con-
nection appears in Mozes [9], and has been system-
atically studied by Radin [6]-[8].

The idea is to consider not a given Delone set X
but the ensemble of all Delone sets that resemble it
locally, i.e. can be approximated by translates of X
in an arbitrarily large ball around the origin. A patch
of radius R in a Delone set X is the intersection of the
Delone set with a ball of radius R centered at a point
of X. Two patches are considered to be the same
if one is a translate of the other. Let [[X]] denote
the collection of all Delone sets Y such that every
patch in Y, of whatever radius, is arbitrarily closely
approximated by a translate of some patchin X. The
set [[X]] is closed under translations, meaning if YV
isin X then sois Y 4+t for any t € R™. It forms a
topological dynamical system under this action.

The simplest such systems are those that are min-
imal, i. e. every member Y has a dense orbit in [[X]]
under translations. For sets X that we later consider
(Delone sets of finite type) this notion is equivalent
to repetitivity, which asserts that for each radius R
there is some larger radius R’ such that any patch of
radius R’ in X contains a translate of every possible
patch of radius R. Radin [7], [8] asserts that mini-
mality can be viewed as ¢ a mathematical version of
the “ground state” of a physical system.

One can now study symmetries of [[X]]. These
symmetries leave the collection [[X]] invariant but
may move the individual members of [[X]]. In par-
ticular they may include crystallographically forbid-
den rotational symmetries. Going further, Radin [10]
showed that an example, the pinwheel tiling, in
which [[X]] had the full orthogonal group O(n,R) of
point symmetries, although no member X can have
such a symmetry group.

The notion of diffraction pattern is associated with
metric dynamics. A set [[X]] is uniquely ergodic if
there is a unique translation-invariant (Borel) mea-
sure that can be defined on this set. For the sets



we later consider (Delone sets of finite type) this no-
tion is equivalent to every patch having a well-defined
frequency of occurrence in larger and larger regions
of X. Uniquely ergodic sets have a well-defined two-
point correlation function, and the Fourier transform
of this is a mathematical analogue of diffraction mea-
sure, see Hof [11]. This measure in general consists of
a pure point component (“Bragg peaks”), a singular
continuous component and an absolutely continuous
component.

Two large classes of aperiodic sets have been found
which have pure point diffraction spectra in this
sense. The first are cut-and-project sets, which were
essentially anticipated by Y. Meyer in 1972 under
the name “model set.” The second are certain kinds
of substitution sets constructed by a hierarchical
scheme. For details of such results, see Hof [11]
and Géhler and Klitzing [12]. Cut-and-project con-
structions can produce sets whose diffraction pattern
have noncrystalline symmetries, but in each dimen-
sion their point groups are of a restricted form, clas-
sified by Piunikhin, see [28, Theorem 2.1.1].

From the viewpoint of dynamical systems, Delone
set models and tiling models are nearly equivalent.
One can associate a topological dynamical system to
each, and the rough procedure described in §2 gen-
erally gives equivalent dynamical systems. Different
tilings give equivalent dynamical systems when they
are “mutually locally derivable,” see Baake et al [13].

4. Ideal Crystals

The simplest aperiodic sets should be those that
most strongly resemble ideal crystals. An ideal crys-
talis a set X in R™ that is a finite number of trans-
lates of an n-dimensional lattice.

The discovery of quasicrystals led to a re-
examination of those geometric properties of a set
that are sufficient to force it to be an ideal crystal.
We list several such properties.

(1) Bounded Patch Counts. The set X has the prop-
erty that for each radius R, the number Ng(X)
of inequivalent patches of radius R under isome-

tries in X is bounded by a constant ¢; indepen-
dent of R (but which may depend on X.)

(2) Discrete Pure Point Diffractivity. The set X has
a well-defined autocorrelation measure whose
Fourier transform (diffraction measure) is a pure
discrete measure which is supported on a Delone
set.

(3) Bounded Repetitivity. There is a constant cs
such that in each ball of radius ¢s in space con-
tains a center point of a copy of each patch of
radius R that occurs anywhere in X, irrespec-
tive of the value of R.

(4) Integral Self-Similarity. For each integer m > 2
the set X can be partitioned into a finite num-
ber of Delone sets X; and each X; can be
partitioned into a finite union of translates of
“inflated” copies {mXy} of the sets X, i.e.
X; = U(mXy + tji), where t;; is a finite set
of translations in R”.

Properties (1)- (3) each separately characterize
ideal crystals. Property (1) is a “perfect local rules”
property, and was established for regular point sys-
tems (a subclass of ideal crystals) by Delone et al.
[14] in 1976. A general proof is given in Dolbilin et
al [15]. That property (2) characterizes ideal crystals
follows from a result of Cordoba [16]. Property (3)
is discussed in Lagarias and Pleasants [17]. Property
(4) holds for ideal crystals X, and it seems likely that
it also characterizes ideal crystals.

5. Strongly Ordered Delone Sets

We now consider relaxations of the properties char-
acterizing ideal crystals that include some aperiodic
Delone sets, which form the “simplest” aperiodic sets
according to these criteria.

(1) Volume-Bounded Patch Counts. In R™ there is
a constant ¢z such that the number of inequiv-
alent patches of radius R under translations in
X 1is at most c3R™.

(2"} Pure Point Diffractivity. The Delone set X has
a well-defined autocorrelation measure whose
Fourier transform is a pure discrete measure,
but whose support may not be a discrete set.

(3") Linear Repetitivity. There is a constant ¢4 such
that in each ball of radius Mr(X) = c4R in
space there can be found in X a copy of each
patch of radius R that occurs anywhere in X.

(4") Self-Similarity. There is a constant a > 1 such
that the set X can be partitioned into a finite
number of Delone subsets X; and each X; can
be partitioned into by a finite number of trans-
lates of sets aXj. (More generally, a can be
replaced by an n x n nonnegative real matrix
which is expanding, i.e. all of whose eigenvalues

[Al > 1))

Each of conditions (1')- (4') treated by itself in-
cludes aperiodic sets, which are close to being crys-
talline in the appropriate sense. Properties (2')- (4')
enforce some form of strong long-range order. Vari-
ous self-similar sets are known to be linearly repet-
itive, and it is quite easy to show that linear repet-
itivity always implies (1’). There is no nice relation
between (2') and the other properties, but various
explicit constructions of sets with properties (3') or



(4") also satisfy (2'). Concerning Property (1’) we
have:

Conjecture If X is an aperiodic Delone set in
IR™ then there is a positive constant cz depending
on X such that X has at least c3R"™ translation-
wmnequivalent patches of radius R, for each R > 0.
This conjecture is raised in [17]. Tt is known bo
be true in dimension n = 1, via [15, Theorem 1.3].

6. A Taxonomy for Delone Sets

We describe a taxonomy presented in [18] consist-
ing of three classes of Delone sets specified by increas-
ingly strong restrictions on their sets of interpoint
vectors X — X, as follows.

Definition 6.1. Let X be a Delone set.

(i) X is a finitely generated Delone set if the addi-
tive group

[X - X]=Z[x—x":x,x € X] (1)
is finitely generated.

(i1) X is a Delone set of finite type if X — X is a dis-
crete closed subset of R™ 1. e. the intersection
of X — X with any closed ball is a finite set.

(ili) X is a Meyer set if X — X is a Delone subset of
R™.

Note that in class (i) the additive group [X — X]
may be dense in R™. We show that class (i) includes
class (i), and class (ii) obviously includes class (iii).
The class (iii) contains all cut-and-project sets as a
subclass.

The class of finitely generated Delone sets seems
too large to be interesting, but it is the largest class
on which an “address map” can be defined.

Definition 6.2. Let X be a finitely generated De-
lone set in R™ with rank(X) = s, and choose a basis
of [X], say

[X] = Z[vi,va,...,Vs] . (2)

The address map ¢ : [X] — 7Z° associated to this
basis is

¢(Z niv;) = (ni,nz,...,n;) . (3)

The address map provides a way to coordinatize
the points of X viewed as embedded in a higher di-
mensional space R®, whose dimension is the rank of
[X].

Delone sets of finite type are those Delone sets
which satisfy some set of “local rules” [18, Theorem

2.1].

Theorem 61. A Delone set X s of finite type if and
only if it has finitely many translation-equivalence
classes of patches of radius 2R, where R is its rel-
ative denseness constant. Any Delone set X of finite
type is finitely generated.

This “local rules” property motivates the name “fi-
nite type,” as does an analogy with “finite type” sys-
tems in Mozes [9] and Radin [19, p. 38] Delone sets
of finite type have the following characterization.

Theorem 62. For a Delone set X wn R", the fol-
lowing properties are equivalent.

(i) X is a Delone set of finite type, i.e. for each R
there are only finitely many interpoint distance
vectors in X of length at most R.

(ii) For each radius R, X has a finite number of
translation-equivalence classes of R-patches.

(iii) The marked Voronoi tesselation of R"™ induced
by X has finitely many translation-inequivalent
marked Voronoi domains.

(iv) X is finitely generated and for each address
map ¢ : [X]| = Z° there is a constant Cy such
that

[|6(x) — ¢(x')|| < Collx—%||, all x,x' € X .

Random tiling models of quasicrystalline structure
when converted to Delone sets generally give Delone
sets of finite type, analogously to (iii) above.

The class of Meyer sets was originally introduced
by Meyer in terms of a property in harmonic analysis
(relatively dense harmonious set). Meyer [20] showed
that this definition was equivalent to property (ii) in
the following theorem, and the equivalence of this
to the definition of Meyer set given above was later-
shown in [21].

Cut-and-project sets are a special subclass of
Meyer sets. These sets were introduced by Meyer [22,
p. 48] in 1972 under the name “model set.”

Definition 6.3 Let A be a full rank lattice in R?¢ =
R+ = R” x R™ and let 7/l and 7L be orthogonal
projections onto the factors R™ and R™, respectively.
A window Q 1s a bounded open subset of R™, and
the strip S(Q) in R? associated to the window € is

S(Q):=R"xQ={wecR?: 7t (w)€Q}.

The cut-and-project set X (A, ) associated to the
data (A, Q) is

X(A,Q) =7l(Ans(Q) . (4)
We call d the dimension of the data (A,Q). A

given cut-and-project set X may be constructed in



many ways, using different pairs (A, Q) and (A’, Q')
of different dimensions.
Meyer sets have the following characterizations.

Theorem 63. The following properties of a Delone
set X in R™ are equivalent.

(i) X is a Meyer set. That is, X — X is a Delone
set.

(ii) X is a Delone set and there is a finite set F
such that X — X C X + F .

(iii) X is a finitely generated Delone set and every
homomorphism ¢ : [X] = R? for some d > 1 is
an almost linear mapping on X, i.e. there is a
linear map L:R" > R* and a constant C' such
that

lo(x) - Lx)|I<C, all x€X .

(iv) X is a finitely generated Delone set and the
address map ¢ : [X] — Z° is an almost linear
mapping on X.

(v) X is a finitely generated Delone set and there
erists a nondegenerate cut-and-project set X' of
dimension at most rank(X) such that

XCcXx' .

This result appears in [18, Theorem 3.1]. A thor-
ough study of Meyer sets, with detailed proofs, ap-
pears in Moody [23]. The cut-and-project set X'
containing X that appears in (v) is not necessarily
irreducible.

In terms of the two constructions of sets with nice
diffractivity properties, cut-and-project sets are al-
ways Meyer sets, while Delone sets constructed by
the substitution method are always Delone sets of
finite type, but not always Meyer sets. However,
all known examples of substitution type Delone sets
which have been proved to have pure point diffrac-
tion spectra are Meyer sets, see Solomyak [24] for
analogous tiling results.

7. Local Rules Enforcing Translational Order

Delone sets of finite type have a weak form of trans-
lational order which is embodied in their lying in a
finitely generated additive module in R” (that is, a
“quasilattice.”) One can ask: “Can such weak trans-
lational order be enforced locally.” To make this pre-
cise, we say that a set of local rules (under isometries)
is a finite list £ of possible patch types of a fixed
radius R. Let X¢g(L) denote the collection of all pos-
sible sets X each of whose R-patches is isometric to
a patch in the list £, 1.e. these are the totality of
sets that satisfy the local rules £. The question then

becomes, under what circumstances can one force all
the sets in Tg(L) to be Delone sets of finite type,
and to include a given Delone set X.

For ideal crystals the answer is “yes.” More gen-
erally the answer is “yes” for any Delone set of finite
type that is repetitive, which according to the cri-
terion of §3 corresponds to a ground state, see [25,
Theorem 1.1]

Theorem 71. Let X be a Delone set of finite type
X wn R™ which is repetitive. Then there exists a set
of local rules L under isometries such that X satisfies
L and any other set Y that satisfies £ s a Delone

set of finite type.

This result has the following interpretation. Lo-
cal rules are restrictions on the local structure of a
set. One can view them as being analogous to local
minima of an energy function. In physical systems
one often expects that the associated energy func-
tion is invariant under Euclidean motions. The the-
orem states that for any “ground state” X there are
local rules which X satisfies which require that all
Y satisfying them be Delone sets of finite type, so
that [Y] is a quasilattice. Thus the sets have a weak
translational order describable using an address map,
and this description uses a finite number of “internal
dimensions.” Thus minimization of a local energy
function is a mechanism that could produce struc-
tures describable in this way. This mechanism does
not necessarily account for the usefulness of “inter-
nal dimensions” in describing quasicrystalline struc-
tures, since electromagnetic forces are long range
rather than local, but it is suggestive.

8. Perfect Local Rules

There are two natural notions of “perfectly ordered
set” which apply to Delone sets of finite type, one
coming from topological dynamics and the other
coming from metric dynamics. The notion in topo-
logical dynamics is minimality, which here is equiva-
lent to repetitivity, and the notion in metric dynam-
ics is unique ergodicity, which here is equivalent to
uniform patch frequencies. When can these condi-
tions be enforced by local rules?

We say that £ is a set of perfect. local rules when
all sets that satisfy the rules are minimal (and in
the same local isomorphism class.) There are two
versions of this concept, depending on whether the
local rules are enforced under translations or under
isometries. The results of the last section allow one
to show the following result [25, Section 5].

Theorem 81. Let X be a Delone set of finite type
i R™. Then X has perfect local rules under isome-
tries, if and only if it has perfect local rules under
translations.



This result i1s useful insofar as perfect local rules
under translations are much easier to check than per-
fect local rules under isometries. In the case of ideal
crystals, for example, the existence of perfect local
rules under translations is virtually immediate, tak-
ing the radius to be twice the diameter of a unit cell
of the lattice. However the existence of perfect lo-
cal rules under isometries is more subtle because the
possible rotations of the patches have to be limited
to a finite set.

The main source of examples of perfect local rules
in the sense above comes from hierarchical construc-
tions. In these examples the sets produced are not
only repetitive, but are usually linearly repetitive in
the sense of §5. The condition of linear repetitivity
is so strong that it enforces “perfect ordering” in the
sense of metric dynamics [17, Theorem 5.1].

Theorem 82. If X s a Delone set of finite type in
R™ which s linearly repetitive, then it has uniform
patch frequencies, so is uniquely ergodic.

In particular, this property guarantees that any
such set X is diffractive. It has a well-defined diffrac-
tion measure, which however does not necessarily
have any pure point spectrum.

Perfect local rules appear to be extremely rare.
It is an open problem to characterize when they ex-
ist. Another question concerning them is which sym-
metry groups can occur in the diffraction spectrum
of structures having perfect local rules under trans-
lations. The existing constructions show that cer-
tain non-crystalline symmetries can occur in two and
three dimensions, and there is some evidence (but no
mathematical proof T know of) that there are non-
trivial restrictions on the symmetries.

When one considers perfect local rules under
isometries, new phenomona appear. Radin [8], [19]
has raised and studied the question of exactly which
statistical symmetries can be enforced by perfect lo-
cal rules under 1sometries and has found several dif-
ferent phenomona associated to group theory. The
Conway-Radin pinwheel tiling yields an associated
Delone set with perfect rules under isometries, which
is not a Delone set of finite type, and a fortiori
does not have perfect local rules under translations.
Danzer [26] gives another example. There remain
many open questions.
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