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1. Introduction

The 3x + 1 problem concerns the iteration of the function T : Z → Z defined by

T(x) =





 2

x_ _

2
3x + 1_ _____

if x ≡ 0 ( mod 2 ) .

if x ≡ 1 ( mod 2 ) ,
(1.1)

The 3x + 1 Conjecture asserts that, for all n ≥ 1, some iterate T (k) (n) = 1. More generally, it is

conjectured that T has finitely many cycles under iteration, and that every n ∈ Z eventually enters

a cycle, cf. Lagarias [6]. The 3x + 1 Conjecture has been verified for all n < 5. 6×1013 by

Leavens and Vermeulen [8].

One approach to these questions is to study how many integers n below a given bound x have

some T (k) (n) = 1. More generally, for any a ∈ Z, set

π a (x) = #{n : n ≤ x and some T (k) (n) = a , k ≥ 0 } . (1.2)

It is well-known that the growth of π a (x) depends on the residue class a (mod 3). If

a ≡ 0 ( mod 3 ), then the preimages of a under iterates of T are exactly { 2ka : k ≥ 1 }; hence

π a (x) grows logarithmically with x. The other cases are covered by:

Conjecture A. For each a ≡/ 0 (mod 3), there is a positive constant c a such that
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π a (x) ≥ c a x for all x ≥ a .

In any case one has, for a ≡/ 0 (mod 3),

π a (x) ≥ x γ for x ≥ x 0 (a) , (1.3)

for some constant γ > 0, as was first shown by Crandall [3], with γ = .05. Crandall’s approach

directly studies the tree of preimages of a under T. Sander [9] strengthened Crandall’s approach

to obtain γ = .30. Krasikov [5] introduced a different method which derives a system of

difference inequalities with variables associated to congruence classes ( mod 3k). Using these

inequalities for k = 2, he obtained γ = .43. Wirsching [10] used Krasikov’s inequalities with

k = 3 to obtain γ = .48.

In studying π a (x), a related problem concerns the size of the tree of preimages of a under T.

Let

n k (a) : = #{n : T (k) (n) = a} . (1.4)

Lagarias and Weiss (1992) prove a result implying that, for a ≡/ 0 (mod 3), the average size of

n k (a) as a varies is
2
3_ _



 3

4_ _




k

. They conjectured:

Conjecture B. For each a ≡/ 0 (mod 3),

n k (a) =


 3

4_ _




k( 1 + o( 1 ) )

as k → ∞ . (1.5)

For a not in a cycle, they showed that

2
1_ _ (√ 2

4
) k ≤ n k (a) ≤ 2 . (√ 3 ) k , (1.6)

by studying all possible trees of backward iterates of depth 4.
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The object of this paper and its sequel is to obtain improved bounds for π a (x) and n k (a),

using computer-assisted proofs. This paper obtains bounds based on the tree-search approach

started by Crandall, while the sequel obtains bounds for π α (x) derived from Krasikov’s

difference inequalities.

In §2 we study the trees 7 k
∗ (a) containing all n ≡/ 0 (mod 3) with T ( j) (n) = a for some

j ≤ k. The structure of this tree depends only on a (mod 3k + 1). Each leaf n of the tree is

assigned a weight which counts the number of iterates T (i) (n) ≡ 1 (mod 2), for 0 ≤ i ≤ k − 1.

By computer search we find, for all k ≤ 30, upper and lower bound statistics concerning the

number of leaves of such trees having a fixed weight. An immediate consequence is:

Theorem 1.1. For any a ≡/ 0 (mod 3), and for all sufficiently large k,

( 1. 302053 ) k ≤ n k (a) ≤ ( 1. 358386 ) k . (1.7)

The proof of Theorem 1.1 is unavoidably computer-intensive; in effect it searches all trees of

depth 30.

The upper bound and lower bound statistics for number of leaves lie within a small constant

factor of (
3
4_ _ ) k . They appear to have a much narrower distribution than that predicted by

branching process models for 3x + 1 trees studied in [7], as we show in detail elsewhere [2].

In §3 we use Chernoff bounds to obtain lower bounds for the number of leaves in such trees

having a large weight and use this to get lower bounds for the exponent γ in (1.3). Using trees of

depth k we obtain a bound γk
∗ by optimizing a ‘‘large deviations’’ bound for the number of

heavily weighted leaves in a ‘‘worst-case’’ tree of depth k. In this fashion using k = 30 we

obtain:

Theorem 1.2. For each a ≡/ 0 (mod 3), there is a positive constant c a such that

π a (x) ≥ c a x .65 for all x ≥ a . (1.8)
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This exponent improves on previous bounds; however in part II we will show that Krasikov’s

inequalities give still better exponents.

In §3 we also obtain upper bounds for the number of leaves in any tree 7 k
∗ (a) that have a

large weight. Korec [4] showed that the set {n : some T (k) (n) < nβ } has density one for all

β > β c : =
log 4
log 3_ ____. We describe an approach to lower the bound β c using such upper bound

estimates. This approach becomes effective, however, only if a certain threshold is exceeded, and

it is not reached by tree depth k = 30.

We are indebted to T. H. Foregger and an anonymous referee for a critical reading and helpful

comments.

2. 3x+1 Trees

In this section we always suppose that a ≡/ 0 (mod 3). The preimages under T − 1 of any

integer form an infinite labelled tree 7 (a), whose root node is labelled a and whose nodes at the

k-th level are labelled {n : T (k) (n) = a}. Note that if a is not in a cycle, then no two nodes of

7 (a) have the same label, while if a is in a cycle then labels will be repeated. The tree 7 (a) is

constructed recursively using the multivalued operator

T − 1 (n) =






{ 2n ,

3
2n − 1_ _____ }

{ 2n}

if n ≡ 2 ( mod 3 ) .

if n ≡ 0 , 1 ( mod 3 )

Each node n at level k of the tree is connected to one or two nodes, labelled with the labels in

T − 1 (n), at depth k + 1 of the tree.

In studying asymptotic properties of n k (a), it proves convenient to throw out all preimages

n ≡ 0 (mod 3), and to estimate instead the quantity
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nk
∗ (a) : = #{n : T (k) (n) = a and n ≡/ 0 ( mod 3 ) } . (2.1)

It is easy to show that

nk
∗ (a) ≤ n k (a) ≤ k nk

∗ (a) ,

see Lemma 3.1 of [7], hence nk
∗ (a) and n k (a) have similar exponential growth in k as k → ∞.

Thus, following [7], we study the smaller tree 7 ∗ (a) resulting by deleting all nodes

n ≡ 0 ( mod 3 ) from 7 (a). The inverse operator (T ∗ ) − 1 to T on the restricted domain

{n : n ≡/ 0 ( mod 3 ) } is:

(T ∗ ) − 1 (n) =






{ 2n ,

3
2n − 1_ _____ }

{ 2n}

if n ≡ 2 or 8 ( mod 9 ) .

if n ≡ 1 , 4 , 5 or 7 ( mod 9 ) ,
(2.2)

Now let 7 k
∗ (a) denote the depth k subtree of 7 (a), see Figure 2.1 for 7 5 ( 4 ) and 7 5

∗ ( 4 ).

_ ___________________
Insert Figure 2.1 about here

_ ___________________

We next assign weights to each edge of the tree which keep track of 3x + 1 iterates (mod 2):

An edge connecting 2n and n is assigned weight 0, while one connecting
3

2n − 1_ _____ and n is

assigned weight 1. Each node of a tree (except the root) is then assigned weight equal to the sum

of the weights of the edges connecting it to the root node. Thus a leaf l of 7 k
∗ (a) has

weight (l) : = #{ i : T (i) (l) ≡ 1 ( mod 2 ) , 0 ≤ i ≤ k − 1 } . (2.3)

The weight approximately measures the size of the node label, namely

l ≤ 3 − weight (l) 2ka . (2.4)

In addition it can be shown that
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l = ( 1 + o( 1 ) ) 3 − weight (l) 2ka (2.5)

as k → ∞, for all those l having weight (l) ≤
10
6_ __ k.

The branching structure of the tree 7 k
∗ (a), together with all the weights of all its nodes and

edges, is completely determined by the congruence class a ( mod 3k + 1 ); thus the number of

distinct tree structures 7 k
∗ (a) is at most 2 . 3k .

We will study various statistics concerning the leaves of the trees 7 k
∗ (a). Let wj

k (a) count

the number of leaves of 7 k
∗ (a) having weight j, yielding the vector of weights

wk
∗ (a) : = (w0

k (a) , w1
k (a) , . . . , wk

k (a) ) . (2.6)

Now let Nk
∗ (a) count the number of leaves of 7 k

∗ (a), whence

Nk
∗ (a) = w0

k (a) + w1
k (a) + . . . + wk

k (a) . (2.7)

It is obvious that

nk
∗ (a) ≤ Nk

∗ (a) ,

and equality holds whenever a is not in a cycle of T. Theorem 3.1 of [7] showed that the

expected size E[Nk
∗ (a) ] averaged over residue classes a( mod 3k + 1 ) with a ≡/ 0 (mod 3) is

E[Nk
∗ (a) ] =



 3

4_ _




k

. (2.8)

The quantities we study are

N + (k) : = max {Nk
∗ (a) : a ( mod 3k + 1 ) with a ≡/ 0 ( mod 3 ) }

N − (k) : = min {Nk
∗ (a) : a ( mod 3k + 1 ) with a ≡/ 0 ( mod 3 ) }

and the majorizing and minorizing vectors:
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w + (k) : = majorize {wk
∗ (a) : a( mod 3k + 1 ) with a ≡/ 0 ( mod 3 ) }

w − (k) : = minorize {wk
∗ (a) : a ( mod 3k + 1 ) with a ≡/ 0 ( mod 3 ) } .

Here we say that a vector w = (w 0 , . . . , w k ) majorizes a vector w′ = (w0′ , . . . , wk′ ) if

j = 0
Σ
i

w k − j ≥
j = 0
Σ
i

wk − j′ , 0 ≤ i ≤ k ,

while w minorizes w′ if

j = 0
Σ
i

w k − j ≤
j = 0
Σ
i

wk − j′ , 0 ≤ i ≤ k .

Now

w + (k) : = (w0
+ (k) , w1

+ (k) , . . . , wk
+ (k) )

is the smallest vector majorizing all the wk
∗ (a), and is determined by the conditions

j = 0
Σ
i

wk − j
+ (k) = max



j = 0
Σ
i

wk − j
k (a) : a ( mod 3k + 1 ) with a ≡/ 0 ( mod 3 )





, 0 ≤ i ≤ k .(2.9)

Similarly

w − (k) : = (w0
− (k) , w1

− (k) , . . . , wk
− (k) )

is determined by the conditions

j = 0
Σ
i

wk − j
− (a) = min



j = 0
Σ
i

wk − j
k (a) : a( mod 3k + 1 ) with a ≡/ 0 ( mod 3 )





, 0 ≤ i ≤ k .(2.10)

It is easy to see that these definitions imply that

N + (k) =
j = 0
Σ
k

wj
+ (k) , (2.11a)

N − (k) =
j = 0
Σ
k

wj
− (k) . (2.11b)

In view of (2.8), we have
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N − (k) ≤


 3

4_ _




k

≤ N + (k) , k ≥ 1 . (2.12)

We computed the vectors w + (k) and w − (k) for 1 ≤ k ≤ 30; the data for w − (k) and N − (k)

appear in Table 2.1, and that for w + (k) and N + (k) in Table 2.2. Details on the computational

method are given at the end of the section.

_ ___________________
Insert Tables 2.1 and 2.2 about here

_ ___________________

The associated growth rates are

g − (k) = N − (k)1/ k ; g + (k) = N + (k)1/ k . (2.13)

They are tabulated for 1 ≤ k ≤ 30 in Tables 2.1 and 2.2.

Theorem 2.1. For any k ≥ 1, and any a ≡/ 0 (mod 3),

g − (k) ≤
j→ ∞

lim inf Nj
∗ (a)1/ j ≤

j→ ∞
lim sup Nj

∗ (a)1/ j ≤ g + (k) . (2.14)

In addition,

g − (k) ≤
j→ ∞

lim inf nj
∗ (a)1/ j ≤

j→ ∞
lim sup n j (a)1/ j ≤ g + (k) . (2.15)

Proof. Since each tree of depth j k splits into trees of depth k attached to each leaf of the tree of

depth j(k − 1 ), we get by an easy induction

N − (k) j ≤ Nj k
∗ (a) ≤ N + (k) j .

For 0 ≤ l ≤ k, we obviously have

N − (k) j ≤ Nj k + l
∗ (a) ≤ N + (k) j + 1 .

Taking j k-th roots and letting j→ ∞ yields (2.14).



- 9 -

To prove the upper bound in (2.15), use

n j (a) ≤ j nj
∗ (a) ≤ j Nj

∗ (a) ,

and (2.14). The lower bound in (2.15) is also immediate if a is not in a cycle of T, since

nj
∗ (a) = Nj

∗ (a) in this case. If a is in a cycle, then the tree 7 ∗ (a) contains some a ′ not in a

cycle, say at level l. Then

nj
∗ (a) ≥ nj − l

∗ (a ′ ) = Nj − l
∗ (a ′ ) ,

and the lower bound follows from the lower bound (2.14) for Nj − l
∗ (a ′ ).

Theorem 1.1 follows immediately from this result, using the k = 30 entries of Tables 1.1 and

1.2.

How fast do N + (k) and N − (k) grow? In order for Conjecture B to be derivable from

Theorem 2.1, it is necessary that

k→ ∞
lim g + (k) =

k→ ∞
lim g − (k) =

3
4_ _ .

We restate this as the following conjecture.

Conjecture C. Both N + (k) and N − (k) are


 3

4_ _




k( 1 + o( 1 ) )

as k → ∞.

This conjecture is stronger than Conjecture B, because it concerns extreme values over all trees of

depth k, while Conjecture B applies to the quantities n k (a), which as k → ∞ should behave like

‘‘random’’ trees. To further compare the data with this conjecture, we give in Table 2.3 the

quantities (
3
4_ _ ) k and the ratios (

3
4_ _ ) k (N − (k) ) − 1 and (

3
4_ _ ) − kN + (k). Formula (2.8) implies that

for all k ≥ 1 both these ratios must be at least 1.

_ ___________________
Insert Table 2.3 about here.

_ ___________________
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The data support Conjecture C, and even suggest the following stronger conjecture.
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Conjecture C′ . There are positive constants C + and C − such that

C − 

 3

4_ _




k

≤ N − (k) < N + (k) ≤ C + 

 3

4_ _




k

for all sufficiently large k.

Lagarias and Weiss [7] developed branching process models intended to mimic the behavior

of 3x + 1 trees. It can be proved for the branching process models @[ 3 j ] for j ≥ 2 discussed in

[7] that the analogue of Conjecture C is true, but that the analogue of the stronger Conjecture C′

is false, see [2]. That is, 3x + 1 trees empirically have a narrower variation of leaf counts than that

predicted by such stochastic models. This is the first significant deviation found for the 3x + 1

iteration from being as random as possible consistent with obvious constraints. It merits on

explanation, and we raise this as an open question.

The computation of Tables 2.1 and 2.2 was based on a simple observation: For a given

a ( mod 3k + 1 ) with a ≡/ 0 ( mod 3 ), let mw k (a) denote the maximum weight of a leaf of the tree

7 k
∗ (a). Then all trees 7 k

∗ (a ′ ) with a ′ ≡ a ( mod 3mw k (a) + 1 ) have identical branching structure

and node weights. Thus in doing the computation we may group all these trees together,

specifying them by a single congruence class a ( mod 3l + 1 ) where l = mw k (a), which we call a

clone. Let Rl
k count the number of distinct clones of depth k having maximum weight leaf l. The

values of Rl
k up to k = 23 are given in Table 2.4.

_ ___________________
Insert Table 2.4 about here.

_ ___________________

The Rl
k satisfy the identity

l = 0
Σ
k

Rl
k 3k − l = 2.3k . (2.16)

The total number of clones of depth k,
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R(k) : =
l = 0
Σ
k

Rl
k , (2.17)

counts all possible tree structures of depth k that occur using the 3x + 1 function. Data on R(k)

and on R(k)1/ k also appear in Table 2.4. Using

wi
k (a) =






wi

k − 1 ( 2a) + wi − 1
k − 1 (

3
2a − 1_ _____ )

wi
k − 1 ( 2a)

if a ≡ 2 , 8 ( mod 9 ) ,

if a ≡ 1 , 4 , 5 , or 7 ( mod 9 ) ,

for 0 ≤ i ≤ k, and

mw k (a) =






max {mw k − 1 ( 2a) , mw k − 1 (

3
2a − 1_ _____ ) + 1 }

mw k − 1 ( 2a)

if a ≡ 2 or 8 ( mod 9 ) ,

if a ≡ 1 , 4 , 5 , or 7 ( mod 9 ) ,

all clones of depth k can be identified and wk
∗ (.) and mw k (.) computed for them in O(kR(k) )

operations from a hashtable containing wk − 1
∗ (.) and mw k (.) for all clones of depth k − 1. In the

actual computation, memory was exhausted by the hashtable at k = 21, so wl
∗ (.) and mw l (.) for

clones of depth l ≥ 21 were recomputed as needed.

The quantity R(k) grows at a somewhat slower exponential growth rate than 2.3k , which

makes the computation feasible up to k = 30. By analogy with a branching process model in

Lagarias and Weiss [7] one expects that there is a constant θ such that R(k) = θk( 1 + o( 1 ) ) as

k → ∞, and empirically we estimate 1. 87 < θ < 1. 92. Here the lower bound 1.87 comes from

R(k)1/(k + 1 ) , which is monotonically increasing for 8 ≤ k ≤ 28. Observe also that Rl
k = 0 for

small l, which occurs because branching of the tree is unavoidable. By analogy with branching

process models, one expects that there exists a positive constant φ such that Rl
k = 0 for

l < (φ + o( 1 ) ) k and Rl
k > 0 for (φ + o( 1 ) ) k ≤ l ≤ k, as k → ∞.
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3. Large Deviation Estimates: Lower Bounds and Upper Bounds

We can use minorizing vectors w − (k) to get lower bounds for γ in (1.3), as follows. For any

constant α ∈ ( 0 , 1 ], set

Nj
∗ (a; α) : = #{ l : l is a leaf in 7 j

∗ (a) and weight (l) ≥ α j} .

By (2.4) all such leaves satisfy the bound

l ≤ exp ( j( log 2 − α log 3 ) ) a . (3.1)

Consequently, if we set x = exp ( j( log 2 − αlog 3 ) ) a, and let j → ∞, then we obtain

π a (x) ≥ x γ − ε ,

where

γ =
log 2 − α log 3

1_ ____________
j→ ∞

lim inf
j
1_ _ ( log Nj

∗ (a;α) ) . (3.2)

Next we use the minorizing vector w − (k) to obtain an asymptotic lower bound for Nj
∗ (a;α).

Form a minorizing tree 7 k
− consisting of N − (k) leaves of depth one, with exactly wi

− (k) of these

leaves having edges assigned the weight i, for 0 ≤ i ≤ k. Now, for all j ≥ 1, recursively

construct the concatenated minorizing tree∗ 7 k
− ( j) by setting 7 k

− ( 1 ) = 7 k
− with root node

labelled 1, and then forming 7 k
− ( j) from 7 k

− ( j − 1 ) by attaching copies of the tree 7 k
− to each

leaf of 7 k
− ( j − 1 ). Each leaf of 7 k

− ( j) is assigned a weight consisting of the sum of edge weights

from it to the root node. Let

w − (k)(∗ j) : = (x0
k ( j) , . . . , xj k

k ( j) ) (3.3)

be a vector counting the number of leaves of 7 k
− ( j) of weight i, for 0 ≤ i ≤ j k. (The notation is

________________

* The tree 7 k
− ( j) has depth j, but its leaf counts will minorize those of a 3x + 1 tree of depth j k.
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intended to indicate repeated convolution of w − (k), as explained below.) Note also that the

number of leaves of 7 k
− ( j) is N − (k) j . We claim that:

w − (k)(∗ j) minorizes w − ( j k) . (3.4)

To prove the claim, it suffices to show that w − (k)(∗ j) minorizes each wj k
∗ (a). We proceed by

induction on j, it being obviously true for j = 1. Take any tree 7 j k (a) and view it as a tree

7 ( j − 1 ) k (a) with various trees 7 k (b) attached to its leaves. By the induction hypothesis (3.4),

the tree 7 k
− ( j − 1 ) can have its leaves paired with those of 7 ( j − 1 ) k (a) in such a way that each

leaf of 7 k
− ( j − 1 ) has a weight smaller than the corresponding leaf of 7 ( j − 1 ) k (a), and

7 ( j − 1 ) k (a) has some unpaired leaves left over. Then replace 7 ( j − 1 ) k (a) with 7 k
− ( j − 1 ) and

throw away all trees 7 k (b) attached to the unpaired nodes, and the weight vector of the resulting

new tree minorizes that of the old tree 7 j k (a). Next, in the resulting tree, replace each tree

7 k (b) with the tree 7 k
− , and the weight vector of the resulting tree minorizes the one before.

This final tree is 7 k
− ( j), hence we have shown that w − (k)(∗ j) minorizes wj k

∗ (a), and the

induction step follows.

Now (3.4) yields the lower bound

Nj k
∗ (a;α) ≥ Pj,k

− (α) : =
i > j kα
Σ xi

k ( j) . (3.5)

The right side of (3.5) depends only on w − (k), and can be estimated in a standard fashion, see

Lemma 3.1 below. We can then interpolate estimates for Nj k + l
∗ (a;α) using

Nj k + l
∗ (a;α) ≥ N( j + 1 ) k

∗ (a;α +
j k
1_ __ ) , 0 ≤ l ≤ k .

It is convenient to interpret this estimation as a ‘‘large deviations’’ bound in probability

theory. To do this, we assign node labels to the tree 7 k
− , by giving each leaf of weight i the label

l = 2k 3 − i .
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(This label actually represents the ratio of a leaf label to the root label.) We can use this scheme

to recursively label all the nodes of the trees 7 k
− ( j), starting by assigning the root node the

label 1. Next, let Zk
− be a random variable which draws a leaf l of 7 k

− ( 1 ) uniformly and then

takes the value

Zk
− : = log l .

= k log 2 − i log 3 (3.6)

The convolved random variable (Zk
− )(∗ j) then describes the value log l of a leaf of 7 k

− ( j) drawn

uniformly. Now, the right side of (3.5) counts exactly those leaves of 7 k
− ( j) with

l = 2 j k 3 − i ≤ 2 j k 3 − j kα , hence

Pj,k
− (α) = (N − (k) ) j Prob [ (Zk

− )(∗ j) < j k( log 2 − α log 3 ) ] , (3.7)

The estimation of (3.7) is a standard ‘‘large deviations’’ result.

Lemma 3.1. The random variable Z = Zk
− has moment generating function

Mk
− (θ) = E[e θZ ] =

i = 0
Σ
k

N − (k)

wi
− (k)______ 2kθ 3 − iθ ,

whose Legendre transform is

gk
− (β) : =

θ ∈ R
sup [β θ − log Mk

− (θ) ] .

If 0 < log 2 − α log 3 <
k
1_ _ E[Zk

− ] , then

j→ ∞
lim

j k
1_ __ ( log Pj,k

− (α) ) =
k
1_ _ ( log N − (k) − gk

− (k( log 2 − α log 3 ) ) ) . (3.8)

Proof. This is just an application of Chernoff’s theorem, see [7], Lemma 2.1.

Combining (3.2), (3.5), (3.7) and (3.8) yields the bound
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γ ≥
log 2 − α log 3

k
1_ _ ( log N − (k) − gk

− (k( log 2 − α log 3 ) ) )
_ ____________________________________ , (3.9)

provided

0 < log 2 − α log 3 <
k
1_ _ E[Zk

− ] =
k
1_ _

i = 0
Σ
k

N − (k)

i wi
− (k)_ _______ .

For each value of k it remains to optimize the bound (3.9) by choosing the optimal α = αk
∗ .

Data on the expected value
k
1_ _ E[Zk

− ], the optimal cutoff value αk
∗ , and the resulting lower

bound γk
∗ , are given in Table 3.1 below. The quantity

k
1_ _ E[Zk

− ] is always greater than the

expected growth rate of labels on a random branch of a ‘‘random’’ tree 7 k (a), which is

log 2 −
4
1_ _ log 3 =. .418494, cf. [7], Theorem 3.3. Note that

k
1_ _ E[Zk

− ] is not a monotonically

decreasing function of k, though it tends to decrease as k increases. Consequently the estimates

γk
∗ are also not monotonically increasing, but tend to increase. The largest value we found was

γ30
∗ = .654717; this proves Theorem 1.2. It is natural to conjecture that

k
1_ _ E[Zk

− ] → log 2 −
4
1_ _ log 3 and that γk

∗ → 1 as k → ∞.

_ ___________________
Insert Table 3.1 about here
_ ___________________

We can similarly use majorizing vectors w + (k) to get upper bounds on Nj
∗ (a;α). We

construct trees 7 k
+ and 7 k

+ ( j) analogously to the lower bound case, using w + (k) instead of

w − (k). Let

w + (k)(∗ j) : = (y0
k ( j) , . . . , yj k

k ( j) )

enumerate the number of leaves in the tree 7 k
+ ( j) of different weights. We then show,

analogously to the lower bound case, that
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w + (k)(∗ j) ma j orizes w + ( j k) , (3.10)

from which we conclude

Nj k
∗ (a;α) ≤ Pj,k

+ (α) : =
i > j kα
Σ yi

k ( j) . (3.11)

The right side of (3.11) is estimated by a Chernoff inequality argument. Let Zk
+ be a random

variable which draws a leaf l from 7 k
+ ( 1 ) uniformly and assigns it the value log (l), similarly to

(3.6). The convolution (Zk
+ )(∗ j) then describes the value log (l) for a random leaf of 7 k

+ ( j) and

we have

Pj,k
+ (α) = (N + (k) ) j Prob [ (Zk

+ )(∗ j) < j k( log 2 − αlog 3 ) ] .

The Chernoff bound formula is analogous to Lemma 3.1.

Lemma 3.2. The random variable Z = Zk
+ has moment generating function

Mk
+ (θ) =

i = 0
Σ
k

N + (k)

wi
+ (k)______ 2kθ 3 − iθ ,

whose Legendre transform is

gk
+ (β) : =

θ ∈R
sup [β θ − log Mk

+ (θ) ] .

If log 2 − α log 3 >
k
1_ _ E[Zk

+ ], then

j→ ∞
lim

j k
1_ __ ( log Pj,k

+ (α) ) =
k
1_ _ ( log N + (k) − gk

+ (k( log 2 − αlog 3 ) ) ) . (3.12)

Table 3.1 presents data on
k
1_ _ E[Zk

+ ]. It is always less than the expected growth rate

log 2 −
4
1_ _ log 3 =. .418494 of labels on a random branch of a ‘‘random’’ tree 7 k (a).

Empirically, it appears to be a monotone function of k, unlike the lower bound case. It is natural

to conjecture that
k
1_ _ E[Zk

+ ] → log 2 −
4
1_ _ log 3 as k → ∞.
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Upper bound estimates for Nj
∗ (a;α) are also relevant to proving results saying that ‘‘almost

all’’ integers decrease under iteration by T. Currently the best quantitative result of this kind is

that of Korec [4].

Theorem 3.1. (Korec) For any β > β c : =
log 4
log 3_ ____ =. .7925 the set

S(β) : = {n : some T (k) (n) < nβ }

has density one.

Korec’s method actually shows that almost all {n : n ≤ x} satisfy

T (k) (n) ≤ x β , for k =


 log 2

log x_ ____




, (3.13)

as x → ∞, for any fixed β > β c .

We show below that one can get improved bounds for β c in Theorem 3.1 provided that the

quantity

χk
∗ : =

k
1_ _ ( log N + (k) − gk

+ (k( log 2 − 1/2 ( log 3 ) ) ) (3.14)

is sufficiently small. This quantity is the upper bound (3.12) with α = 1/2, and its values are

given in Table 3.1.

Consider the set of ‘‘bad elements’’

R δ (x) : = {n : n < x and no T ( j) (x) < x 1 − δ for 1 ≤ j <


 log 2

log x_ ____



} .

The cardinality of R δ (x) decreases as δ → 0 and

δ →0
lim

log x

log #(R δ (x) )_ ___________ = H


 log 3

log 2_ ____




=. .94995 , (3.15)

where H(t) = − t log 2 t − ( 1 − t) log 2 ( 1 − t) is the binary entropy function, cf. [6], Theorem D.
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Almost all {n : n ≤ x} satisfy (3.13), and we can get an improvement if furthermore almost all

such T (k) (n) with k =


 log 2

log x_ ____




not lie in a ‘‘bad element’’ set R δ (x β ), for some fixed δ > 0.

How many such n can hit a particular ‘‘bad’’ element y? They must lie in the tree of preimages of

y, at height j =
log 2
log x_ ____, so we need an upper bound for the number of leaves l in such a tree, at

this height, having y ∼∼ x β and l ≤ x. Such leaves correspond to paths having α ≥
2
1_ _ (as

explained in [7], §2), hence we can apply∗ the upper bounds (3.11)–(3.13) to bound the number

of such leaves by exp



χ k log 2

log x_ ____



. Now the number of such ‘‘bad elements’’ as β → β c and

δ → 0 satisfies

log #(R δ (x β ) ) =



.94995

log 4
log 3_ ____ + o( 1 )





log x ,

hence the number of preimages n ≤ x which these generate is at most

exp








.94995

log 4
log 3_ ____ +

log 2

χ k_ ____




log x





.

This bound will be O(x 1 − ε′ ) for some ε′ > 0, if and only if

χ k < log 2 −
2
1_ _ H



 log 3

log 2_ ____




log 3 =. .171331 . (3.16)

As the data of Table 3.1 show, however, for k ≤ 30 we never attain the bound (3.16).

________________
∗ To get a rigorous bound, one must also count a few extra leaves having α <

2
1_ _, which creep in because T − 1 has

3
2x − 1_ _____ instead of

3
2x_ __. However a rigorous variant of (2.5) can be used to show that these leaves make an

asymptotically negligible contribution.
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The assumption that 3x + 1 trees behave like the branching process models of [7] leads to the

heuristic prediction that χ k → 0 as k → ∞. If so, this approach to lowering β c should

eventually work for large enough k. The data of Table 3.1 strongly indicate that the smallest k for

which (3.16) holds will however be so large that it will be impossible to compute by an

exhaustive tree search.
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7 5 ( 4 ) 7 5
∗ ( 4 )

Figure 2.1. 3x + 1 tree 7 5 ( 4 ) and pruned tree 7 5
∗ ( 4 ).



Density Bounds for the 3x+1 Problem
I. Tree-Search Method

David Applegate
Jeffrey C. Lagarias

AT&T Bell Laboratories
Murray Hill, NJ 07974

(December 15, 1993)

(Dedicated to the memory of D. H. Lehmer)

ABSTRACT

The 3x + 1 function T(x) takes the values ( 3x + 1 )/2 if x is odd and x /2 if x is even. Let
n k (a) count the number of n with T (k) (n) = a. Then for any a ≡/ 0 (mod 3) and sufficiently
large k, ( 1. 302 ) k ≤ n k (a) ≤ ( 1. 359 ) k . Let π a (x) count the number of n with n ≤ x which
eventually reach a under iteration by T. Then for any a ≡/ 0 (mod 3) and sufficiently large x,
π a (x) ≥ x .65 . The proofs are computer-intensive.

4. Branching Process Model for 3x+1 Trees

Lagarias and Weiss (1992) developed branching process models intended to mimic the
behavior of 3x + 1 trees. Detailed rigorous results can be obtained for such models, in contrast to
the 3x + 1 problem itself. We ask: How do the data in Table 2.1 compare with predictions for
such a model?

We consider the multi-type Galton-Watson branching process @[ 9 ] described in [8], §3,
Table 2. It has individuals of six types, labelled with congruence classes 1,2,4,5,7 and 8 (mod 9),
and these evolve as pictured in Table 3.1. Individuals labelled 1,4,5 and 7 evolve
deterministically, having one child of specified type, while individuals of type 2 or 8 always have
two children, one of specified type, while the other’s type is specified with probability 1/3 each.

_ ___________________
Insert Table 3.1 about here.

_ ___________________

Let X k denote the distribution of the number of leaves at depth k of a sample tree drawn from this

branching process, starting from a single individual of type drawn uniformly from

{ 1 , 2 , 4 , 5 , 7 , 8 }. The data in Table 2.1 is analogous to extreme value statistics for of the quantity



 3

4_ _




− k

X k for repeated independent draws of such trees at depth k.



How many independent draws should we allow in such a branching process model? The

naive model is to take 2.3k draws, corresponding to all a ( mod 3k + 1 ). An alternative is to take

R(k) draws, where R(k) is number of different possible 3x tree structure 7 a of depth k possible.

The quantities R(k) grow exponentially in k, and based on the data for k ≤ 30 in Applegate and

Lagarias (1993), we conjecture that

1. 87 <
k→ ∞

lim inf R(k)1/ k < 1. 92 .

We therefore consider for any fixed θ > 1 the model quantities

Ñθ
−

(k) : = E[ min {X k : [θk ] i. i. d. draws } ] (3.1a)

Ñθ
−

(k) : = E[ max {X k : [θk ] i. i. d. draws } ] . (3.1b)

Then the quantities


 3

4_ _




k

(Ñθ
−

(k) ) − 1 and


 3

4_ _




− k

Ñθ
+

(k) are analogous to the quantities given in

Table 2.1.

For this branching process models the analogue of Conjecture C′ is false.

Theorem 3.1. For any fixed θ > 1,

k→ ∞
lim



 3

4_ _




k

(Ñθ
−

(k) ) − 1 = + ∞ ,

k→ ∞
lim



 3

4_ _




− k

(Ñθ
+

(k) ) − 1 = + ∞ .

Proof. Let Wk
m for m ( mod 9 ) enumerate the number of leaves of type m of a random tree of

depth k drawn from @[ 9 ], with root node drawn uniformly from { 1 , 2 , 4 , 5 , 7 , 8 }. Set

W k : = (Wk
1 ,Wk

2 ,Wk
4 ,Wk

5 ,Wk
7 ,Wk

8 ) , (3.2)

so that X k = Wk
1 + Wk

2 + Wk
4 + Wk

5 + Wk
7 + Wk

8 . Now let w k denote the probability

distribution of the random vector


 3

4_ _




− k

W k . One has E[X 1 log X 1 ] < ∞, hence a well-known



result for a multitype Galton-Watson process (Theorem 1 of Sect. V.6 of Athreiya and Ney

(1972)) implies that the distributions w k converge weakly to a limiting distribution w ∞ , where

w ∞ = w . v (3.3)

and v = ( 1 , 1 , 1 , 1 , 1 , 1 ) is a left-eigenvector of the mean value matrix M in Table 4.2, and w is a

one-dimensional positive random variable which is absolutely continuous, except for a possible

jump at the origin. The distribution w depends on the starting individual’s type and

E[w : initial type i] = u i , (3.4)

where u is a right eigenvector of M, and the jump q i at the origin depends on i. For this special

case there are no jumps (all q i = 0), and each distribution w i = {w initial type i} is strictly

positive on R+ , by Theorem 2(iv) of Chapter V.6 of Athreiya and Ney (1972).∗ Now the random

variables


 3

4_ _




− k

Ñθ
−

(k) and


 3

4_ _




k

Ñθ
+

(k) essentially sample values in the tails of the

distributions w k , i.e. values that lie outside any fixed region (ε , 1 − ε) in the cumulative

distribution for large enough k. Since w k converge weakly to w ∞ it follows from the strict

positivity of w on R+ that



 3

4_ _




− k

Ñθ
+

(k) → ∞



 3

4_ _




− k

Ñθ
−

(k) → 0

as k → ∞ ,

as k → ∞ ,

so Theorem 3.1 follows.

To what extent does the asymptotic behavior given by Theorem 3.1 show up for k ≤ 30? To

________________

* A detailed proof of the positivity of w for the single-type Galton-Watson process appears as Theorem 2 of Sect. II.5
of Athreiya and Ney (1972).



obtain as exact a numerical comparison with Table 2.1 as possible, we computed the quantities

Ñ
−

(k) : = E[ min {X k :R(k) i. i. d. draws } ]

Ñ
+

(k) : = E[ max {X k :R(k) i. i. d. draws } ]

using the exact values of R(k) computed in Applegate and Lagarias (1993). Table 3.2 gives the

results.

_ ___________________
Insert Table 3.2 about here.

_ ___________________

In this table the qualitative increase of these quantities with k is evident. If we used the model

which takes 2 . 3k draws instead of R(k) draws, the disagreement with Table 2.1 would be even

greater. Note the non-monotonicity in k of


 3

4_ _




k

(Ñ
−

(k) ) − 1 and


 3

4_ _




− k

Ñ
+

(k) for small values

of k; this is apparently due to initial irregularities in the distribution w k for small k.

Although there are a double-exponential number of different trees possible at depth k of such

a branching process, the data Ñ
−

(k) and Ñ
+

(k) in Table 3.2 were computed in single-exponential

time as follows: Let Xk
i for i( mod 9 ) be a random variable counting the number of leaves at depth

k of a sample tree drawn from the branching process @[9], starting from a single individual of

type i. Then, the distributions of Xk
i and X k were computed from

P[X0
i = 1 ] = 1 ,

P[Xk
i = x] = P[Xk − 1

2i = x] if i = 1 , 4 , 5 , or 8 ,

P[Xk
2 = x] =

y = 0
Σ
∞

P[Xk − 1
2i = x − y] +

3

P[Xk − 1
1 = y] + P[Xk − 1

4 = y] + P[Xk − 1
7 = y]_ _________________________________ ,

P[Xk
8 = x] =

y = 0
Σ
∞

P[Xk − 1
2i = x − y] +

3

P[Xk − 1
2 = y] + P[Xk − 1

5 = y] + P[Xk − 1
8 = y]_ _________________________________ ,

and

P[X k = x] =
6
1_ _

i( mod 9 )
Σ P[Xk

i = x] .



The cumulative distribution function f k (t) of the number of leaves was then computed. Finally

the cumulative distributions of the minimum and maximum of R(k) draws were computed using

( 1 − ( 1 − f k (t) ) ) R(k) and f k (t) R(k) , respectively.

The analogue of Conjecture C is certainly true for this model. We shall not rigorously prove

it here, but present a heuristic argument for its truth. The important feature of the branching

process @[ 9 ] is that any branch must split after at most 4 steps, hence all subtrees of a tree grown

by this process must grow exponentially. (This property fails for the simpler models @[ 1 ] and

@[ 3 ] considered in [8], which is one reason we used @[ 9 ] here. In addition [8], p. 259 gives

another reason to use @[ 9 ].) As a consequence the tails of the total leaf distribution drop off

double-exponentially away from their mean. Thus minimizing over an exponential number of

i.i.d. draws of random trees is insufficient to change the growth exponent
3
4_ _.

To summarize: empirically the 3x + 1 trees show a more compact distribution of total leaf

counts than that predicted by this branching process model.

5. Branching Process Model for 3x+1 Trees

In this section we examine the growth of the quantities N + (k) and N − (k) in more detail and

compare them with predictions made using a branching process model introduced in [7].

Recall that N + (k) and N − (k) are extreme values of the quantities Nk
∗ (a), which have

expected value


 3

4_ _




k

by (2.8). It is natural to compare these quantities multiplicatively with



 3

4_ _




k

, and Table 4.1 below gives data for the quantities


 3

4_ _




k

(N − (k) ) − 1 and


 3

4_ _




− k

N + (k),

which measure multiplicative deviations from


 3

4_ _




k

.



_ ___________________
Insert Table 4.1 about here.

_ ___________________

This data supports Conjecture C, and even seem to support the following stronger conjecture.

Conjecture C′ . There are positive constants C + and C − such that

C − 

 3

4_ _




k

≤ N − (k) < N + (k) ≤ C + 

 3

4_ _




k

for all sufficiently large k.

This conjecture asserts that the multiplicative deviations are incredibly small, as explained below.

It is even conceivable that N − (k)


 3

4_ _




− k

and N + (k)


 3

4_ _




− k

have limiting values as k → ∞.

Lagarias and Weiss (1992) developed branching process models intended to mimic the

behavior of 3x + 1 trees. Detailed rigorous results can be obtained for such models, in contrast to

the 3x + 1 problem itself. We ask: How do the data in Table 4.1 compare with predictions for

such a model?

We consider the multi-type Galton-Watson branching process @[ 9 ] described in [7], §3,

Table 2. It has individuals of six types, labelled with congruence classes 1,2,4,5,7 and 8 (mod 9),

and these evolve as pictured in Table 4.2. Individuals labelled 1,4,5 and 7 evolve

deterministically, having one child of specified type, while individuals of type 2 or 8 always have

two children, one of specified type, while the other’s type is specified with probability 1/3 each.

_ ___________________
Insert Table 4.2 about here.

_ ___________________

Let X k denote the distribution of the number of leaves at depth k of a sample tree drawn from this

branching process, starting from a single individual of type drawn uniformly from

{ 1 , 2 , 4 , 5 , 7 , 8 }. The data in Table 4.1 is analogous to estimating extreme values of the quantity



(
3
4_ _ ) − kX k for repeated independent draws of such trees at depth k. How many independent draws

should we allow in the branching process model? The naive model is to take 2.3k draws,

corresponding to all a ( mod 3k + 1 ). An alternative is to take R(k) draws, corresponding to the

number of different tree structures of depth k allowed for the 3x + 1 function. We therefore take

as the model quantities:

Ñ
−

(k) : = E[ min



X k : R(k) i. i. d. draws





] (4.1a)

Ñ
+

(k) : = E[ max



X k : R(k) i. i. d. draws





] . (4.1b)

Here (
3
4_ _ ) k (Ñ

−
(k) ) − 1 and (

3
4_ _ ) − kÑ

+
(k) are analogous to the quantities in Table 4.1.

For this branching process model the analogue of Conjecture C is almost certainly true, while

the analogue of Conjecture C′ is false.

We first discuss the analogue of Conjecture C′ . Let Wk
m for m ( mod 9 ) enumerate the

number of leaves of type m of a random tree of depth k drawn from @[ 9 ], with root node drawn

uniformly from { 1 , 2 , 4 , 5 , 7 , 8 }. Set

W k : = (Wk
1 ,Wk

2 ,Wk
4 ,Wk

5 ,Wk
7 ,Wk

8 ) , (4.2)

so that X k = Wk
1 + Wk

2 + Wk
4 + Wk

5 + Wk
7 + Wk

8 . Now let w k denote the probability

distribution of the random vector


 3

4_ _




− k

W k . One has E[X 1 log X 1 ] < ∞, hence a well-known

result for a multitype Galton-Watson process (Theorem 1 of Sect. V.6 of Athreiya and Ney

(1972)) implies that the distributions w k converge weakly to a limiting distribution w ∞ , where

w ∞ = w . v (4.3)

and v = ( 1 , 1 , 1 , 1 , 1 , 1 ) is a left-eigenvector of the mean value matrix M in Table 4.2, and w is a



one-dimensional positive random variable which is absolutely continuous, except for a possible

jump at the origin. The distribution w depends on the starting individual’s type and

E[w : initial type i] = u i , (4.4)

where u is a right eigenvector of M, and the jump q i at the origin depends on i. For this special

case there are no jumps (all q i = 0), and each distribution w i = {w initial type i} is strictly

positive on R+ , by Theorem 2(iv) of Chapter V.6 of Athreiya and Ney (1972).∗ Now the random

variables Ñ
−

(k) and Ñ
+

(k) essentially sample values in the tails of the distributions w k , i.e.

values that lie outside any fixed region (ε , 1 − ε) in the cumulative distribution for large enough k.

Since w k converge weakly to w ∞ it follows from the strict positivity of w on R+ that

Ñ
+

(k) → ∞

Ñ
−

(k) → 0

as k → ∞ ,

as k → ∞ ,

so the analogue of Conjecture C′ is false.

We obtain a numerical comparison with Table 4.1 by computing (
3
4_ _ ) k (Ñ

−
(k) ) − 1 and

(
3
4_ _ ) − kÑ

+
(k) for small k, which is given in Table 4.3.

_ ___________________
Insert Table 4.3 about here.

_ ___________________

In this table the qualitative increase of these quantities with k is evident. If we used the model

which takes 2 . 3k draws instead of R(k) draws, the disagreement with Table 4.1 would be even

greater. Also note the non-monotonicity in k of (
3
4_ _ ) k (Ñ

−
(k) ) − 1 and (

3
4_ _ ) − kÑ

+
(k) for small

values of k; this is apparently due to initial irregularities in the distribution w k for small k. Even

________________

* A detailed proof of the positivity of w for the single-type Galton-Watson process appears as Theorem 2 of Sect. II.5
of Athreiya and Ney (1972).



though there are a double-exponential number of different trees possible at depth k, the values of

Ñ − (k) and Ñ + (k) for Table 4.3 were computed in single exponential time as follows: Let Xk
i for

i (mod 9) be a random variable counting the number of leaves at depth k of a sample tree drawn

from the branching process @[9], starting from a single individual of type i. Then, the

distributions of Xk
i and X k were computed from

P[X0
i = 1 ] = 1 ,

P[Xk
i = x] = P[Xk − 1

2i = x] if i = 1 , 4 , 5 , or 8 ,

P[Xk
2 = x] =

y = 0
Σ
∞

P[Xk − 1
2i = x − y] +

3

P[Xk − 1
1 = y] + P[Xk − 1

4 = y] + P[Xk − 1
7 = y]_ _________________________________ ,

P[Xk
8 = x] =

y = 0
Σ
∞

P[Xk − 1
2i = x − y] +

3

P[Xk − 1
2 = y] + P[Xk − 1

5 = y] + P[Xk − 1
8 = y]_ _________________________________ ,

and

P[X k = x] =
6
1_ _

i( mod 9 )
Σ P[Xk

i = x] .

The cumulative distribution function f k (t) of the number of leaves was then computed. Finally

the cumulative distributions of the minimum and maximum of R(k) draws were computed using

( 1 − ( 1 − f k (t) ) ) R(k) and f k (t) R(k) , respectively.

The analogue of Conjecture C appears to be true for this model. We shall not rigorously

prove it here, but present a heuristic argument for its truth. The important feature of the

branching process @[ 9 ] is that any branch must split after at most 4 steps, hence all subtrees of a

tree grown by this process must grow exponentially. (This property fails for the simpler models

@[ 1 ] and @[ 3 ] in [6], which is why we use @[ 9 ] here.) As a consequence the tails of the total

leaf distribution drop off double-exponentially away from their mean. Thus minimizing over an

exponential number of i.i.d. draws of random trees is insufficient to change the growth exponent

3
4_ _.

In conclusion: empirically the 3x + 1 trees show an unusually sharp distribution of total leaf



counts compared to that predicted by this branching process model.


