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1. Introduction

The 3x + 1 problem concerns the iteration of the function T : Z → Z defined by

T(x) =





 2

x_ _

2
3x + 1_ _____

if x ≡ 0 ( mod 2 ) .

if x ≡ 1 ( mod 2 ) ,
(1.1)

The 3x + 1 Conjecture asserts that, for all n ≥ 1, some iterate T (k) (n) = 1, see [4]. This paper

studies, for a ∈ Z, the function

π a (x) = #{n : n ≤ x and some T (k) (n) = a , k ≥ 0 } . (1.2)

It is well-known that the growth of π a (x) depends on the residue class a (mod 3). If

a ≡ 0 ( mod 3 ), then the preimages of a under T are exactly { 2ka : k ≥ 0 }, hence π a (x) grows

logarithmically with x. Consequently, we assume a ≡/ 0 (mod 3), and our object is to prove lower

bounds of the form

π a (x) ≥ x γ for x ≥ x 0 (a) , (1.3)

for some constant γ > 0. In part I we showed one can take γ = .643 using an approach started

by Crandall [2] and extended by Sander [5].

In this paper we derive bounds (1.3) using systems of difference inequalities found by

Krasikov [3]. For each k ≥ 2 there is a system ( k of such inequalities; Krasikov [3] used ( 2 to
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obtain γ = .43 in (1.3) and Wirsching [6] used ( 3 to obtain γ = .48. We extract information

from the inequalities ( k , by constructing families of auxiliary linear programs whose entries

depend (nonlinearly) on a parameter λ : = 2γ , having the property that a nonzero feasible solution

to any such linear program yields a proof of (1.3) for its associated value of γ. In this fashion,

using a well-chosen linear program derived from ( 9 , we obtain by a computer-assisted proof:

Theorem 1.1. For each a ≡/ 0 (mod 3), there is a positive constant c a such that

π a (x) ≥ c a x .81 for all x ≥ a . (1.4)

A proof of Theorem 1.1 consists of writing down the linear program and an explicit nonzero

feasible solution. This proof is too long to write down conveniently, as the linear program has

2
1_ _ ( 39 − 1 ) variables. In §3 we indicate how the linear program is obtained.

The Krasikov inequality approach for bounding γ in (1.3) empirically appears superior to the

tree-search approach studied in part I. The weakness of the tree search approach is that it does not

make full use of the fact that the leaves of the trees are somewhat well-distributed in congruence

classes ( mod 3k ), so that the worst-case behavior assumed in the estimate of Theorem 2.1 of

part I cannot occur. Krasikov inequalities capture this ‘‘mixing’’ effect to some degree, even

while searching to a much smaller depth k. On the other hand, the Krasikov inequality approach

cannot give bounds for the quantities n k (a) studied in part I, nor does it seem adaptable to obtain

any sort of upper bound estimates.

In §4 we discuss Krasikov’s conjecture that, for any ε > 0 a bound of the form

π a (x) ≥ x 1 − ε for x ≥ x 0 (a , ε) , (1.5)

is implied by the inequalities ( k , for sufficiently large k. The numerical evidence strongly

indicates that this is true. We indicate obstacles to obtaining a rigorous proof of (1.5).
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2. Krasikov-Based Lower Bounds

Krasikov [3] developed a set of difference inequalities for counting the number of 3x + 1

iterates below a given bound. Define

πa
∗ (x) : = #{n : n ≤ x , some T ( j) (n) = a , all T (i) (n) ≤ x for 0 ≤ i ≤ j} . (2.1)

Note that πa
∗ (x) ≤ π a (x). For each residue class m (mod 3k) with m ≡/ 0 (mod 3), Krasikov

defines the function

φk
m (y) : = inf {πa

∗ ( 2ya) : a ≡ m ( mod 3k ) and a is not in a cycle } . (2.2)

This is well-defined because there always exists some a ≡ m (mod 3k) not in a cycle, namely

a = 2l for suitable∗ l ≥ 3, because 2 is a primitive root (mod 3k) for all k ≥ 1. The definition

immediately implies that

φk − 1
m (y) = min {φk

m (y) , φk
m + 3k − 1

(y) , φk
m + 2.3k − 1

(y) } , (2.3)

and also that

φk
m (y) is a nondecreasing function of y , (2.4a)

φm
k (y) ≥ 1 for y ≥ 0 . (2.4b)

It is easy to see that

φk
m (y) = φk

2m (y − 1 ) , if m ≡ 1 ( mod 3 ) , (2.5)

and this relation can be used to express information purely in terms of φk
m (y) with

m ≡ 2 ( mod 3 ). Krasikov’s inequalities∗ ∗ are as follows.

________________
∗ The infimum in (2.2) is actually attained by some a = 2l . The infimum is attained because φk

m (y) is integer-
valued, so let a 0 be the minimal choice of a ≡ m (mod 3k) attaining it, and let j be maximal with T ( j) (n) = a 0 , for
any n counted in πa0

∗ ( 2ya 0 ). It suffices to choose 2l ≡ a 0 (mod 3 j + k).
∗ ∗ Krasikov actually proves the slightly stronger bound φk

m (y) ≥ φk
4m (y − 2 ) + [y + α], if m ≡ 5 ( mod 9 ), but we will

not make use of this.
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Proposition 2.1. Set α = log 2 3 =. 1. 585. Then, for all k ≥ 2,

φk
m (y) ≥ φk

4m (y − 2 ) + φk − 1
3

4m − 2_ ______

(y + α − 2 ) , if m ≡ 2 ( mod 9 ) , (2.6a)

φk
m (y) ≥ φk

4m (y − 2 ) , if m ≡ 5 ( mod 9 ) , (2.6b)

φk
m (y) ≥ φk

4m (y − 2 ) + φk − 1
3

2m − 1_ ______

(y + α − 1 ) , if m ≡ 8 ( mod 9 ) . (2.6c)

Proof. Let (T ∗ ) − 1 denote the inverse operator to T on the domain {n : n ≡ 1 or 2 ( mod 3 ) },

which is

(T ∗ ) − 1 (n) =






{ 2n ,

3
2n − 1_ _____ }

{ 2n}

if n ≡ 2 or 8 ( mod 9 ) .

if n ≡ 1 , 4 , 5 , or 7 ( mod 9 ) ,

The inequalities essentially encode (T ∗ ) − 1 iterated as necessary to give images in the set

{n : n ≡ 2 ( mod 3 ) }, which is

(T ∗ ∗ ) − 1 (n) =








{ 4n ,

3
2n − 1_ _____ }

{ 4n}

{ 4n ,
3

4n − 2_ _____ }

if n ≡ 8 ( mod 9 ) .

if n ≡ 5 ( mod 9 ) ,

if n ≡ 2 ( mod 9 ) ,

For more details, see [3], Lemma 4.

For convenience in what follows, we use the abbreviation

[ 3k ] : = {m( mod 3k ) : m ≡ 2 ( mod 3 ) } . (2.7)

Let ( k denote the system of inequalities (2.6) for {φk
m (y) : m∈[ 3k ] }. We want to use these

difference inequalities to get lower bounds for the φk
m (y). These inequalities relate the functions

φk
m at a value y to φk ′

m ′ at other values y ′ , some of which are retarded values y ′ < y, while others

are advanced values y ′ > y. We cannot extract lower bounds directly due to the presence of

advanced values. Property (2.4) allows us to obtain weaker inequalities containing only retarded
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values, by replacing each y ′ ≥ y with the value y − µ for some small µ > 0. We call this

replacement operation µ-truncation. We need to require µ > 0 in order to prove Theorem 2.1

below. To get the best bounds we will eventually let µ → 0.

Next, note that the right sides of the inequalities (2.6a)–(2.6c) involve only φj
n with

n ≡ 2 ( mod 3 ). Hence we can obtain new inequalities by replacing any term φj
n (y ′ ) on the right

side of such an inequality by substituting the Krasikov inequality (2.6) for φj
n (y ′ ). We call this

procedure splitting the term. It is clear that splitting operations can be applied repeatedly, in

many possible orders.

We consider the following general method to obtain a set of inequalities starting from the

3k − 1 inequalities ( k . Perform some finite sequence of splittings of terms for each of these

inequalities, and after this µ-truncate each inequality, to obtain a system of 3k − 1 inequalities of

the form

φk
m (y) ≥

i∈Im

Σ φk i

m i (y − α i ) , all m∈[ 3k ] . (2.8)

Here each I m is a different finite indexing set, and in this system of inequalities all arguments are

strictly retarded, i.e. all α i > 0. As an example of this method applied to a single inequality,

start with

φ3
26 (y) ≥ φ3

23 (y − 2 ) + φ2
8 (y + α − 1 ) ,

split the last term to obtain

φ3
26 (y) ≥ φ3

23 (y − 2 ) + φ2
5 (y + α − 3 ) + φ1

2 (y + 2α − 2 ) ,

then split the second term to obtain

φ3
26 (y) ≥ φ3

23 (y − 2 ) + φ2
2 (y + α − 5 ) + φ1

2 (y + 2α − 2 ) ,

then µ-truncate to get
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φ3
26 (y) ≥ φ3

23 (y − 2 ) + φ2
2 (y + α − 5 ) + φ1

2 (y − µ) .

For a fixed k, one can obtain infinitely many different systems (2.8) by this method.

Let + µ denote a system of 3k − 1 inequalities (2.8) obtained by this method, where µ indicates

the value of the µ-truncation parameter. Any such system potentially yields exponential lower

bounds for all φk
m (y), of the form

φk
m (y) ≥ a ck

m λy , all y > 0 ,

where a > 0, and λ > 1, by associating to it a linear program

( L )
















c1
2 ≤ 1 .

cj
n ≥ 0 ,

and

cj
n ≤ cj + 1

n + l.3 j

, l = 0 , 1 , 2 ,

ck
m ≤

i∈Im

Σ ck i

m i λ − α i ,

sub j ect to

maximize c1
2

all n∈[ 3 j ] , 1 ≤ j ≤ k ,

all n∈[ 3 j ] , 1 ≤ j ≤ k − 1 ,

all m∈[ 3k ]

( 2. 9 d )

( 2. 9 c )

( 2. 9 b )

( 2. 9 a )

The key ingredients in this linear program are (2.9a) and (2.9b), which encode a reversing of the

inequalities (2.8),and the inequalities (2.3), respectively.

Theorem 2.1. Suppose that the linear program (L) associated to a system of inequalities (2.8)

has a feasible solution with c1
2 > 0. Then cj

n > 0 for all n∈[ 3 j ], 1 ≤ j ≤ k, and there exists a

positive constant a such that

φj
n (y) ≥ a cj

n λy , all y > 0 , (2.10)

for all n∈[ 3 j ], 1 ≤ j ≤ k.

Proof. Let µ̃ = min {α i : i in some I m } and note that necessarily µ̃ > 0 because µ-truncation

was used. We prove, by induction on l, that (2.10) holds for all y∈[ 0 ,lµ̃]. To handle the base

case, define the integer L by
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(L − 1 ) µ̃ ≤ max {α i : i in some I m } < L µ̃ .

Since φj
n (y) ≥ 1, if we choose a > 0 small enough, then (2.10) will hold for all y∈[ 0 ,L µ̃]. For

the induction step, suppose l ≥ L and that (2.10) holds on [ 0 ,lµ̃]. If y∈(lµ̃ , (l + 1 ) µ̃], then all

y − α i ∈[ 0 ,lµ̃] , and the induction hypothesis and (2.9a) gives

φk
m (y) ≥

i∈Im

Σ φk i

m i (y − α i )

≥
i∈Im

Σ a ck i

m i λy − α i = aλy


i∈Im

Σ ck i

m i λ − α i




≥ a ck
m λy , all m∈[ 3k ] .

It remains to treat the φj
n (y) having 1 ≤ j < k. We proceed by a second, downward induction on

j, the base case j = k being proved. Now suppose case j + 1 is proved, then

φj
n (y) = min (φj + 1

n (y) , φj + 1
n + 3 j

(y) , φj + 1
n + 2.3 j

(y) )

≥ min (a cj + 1
n λy , a cj + 1

n + 3 j

λy , a cj + 1
n + 2.3 j

λy )

= aλy min (cj + 1
n , cj + 1

n + 3 j

, cj + 1
n + 2.3 j

)

≥ a cj
n λy , all n∈[ 3 j ] .

using the induction hypothesis and (2.9b). This completes the second induction which in turn

completes the first induction. Finally c1
2 > 0 implies that all cj

n > 0, using (2.9b).

We now have two problems: first, for a given system + µ to maximize the allowable value of

λ, and second, to find that system + µ maximizing this choice. We consider these in order.

For any fixed system + µ given by (2.7), if it has a solution with c1
2 > 0, it has one with

c1
2 = 1 by rescaling the variables. Hence the problem of finding the maximal λ attainable using

Theorem 2.1 is just the nonlinear programming problem:
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( N )







 ( L ) has a feasible solution with c1

2 = 1 .

sub j ect to

maximize λ

Let λ∗ (+ µ ) denote the optimal value of (N); note that this value is attained. We let µ → 0 and

consider the limiting system obtained with µ = 0, since one has

µ → 0+
lim λ∗ (+ µ ) = λ∗ (+ 0 ) .

However for the system + 0 we can only conclude via Theorem 2.1 that there are values cj
n > 0

such that for each ε > 0 there is some a(ε) > 0 such that

φj
n (y) ≥ a(ε) cj

n (λ∗ (+ 0 ) )( 1 − ε) y , all y > 0 .

To solve the system (N) for a given + 0 , we treat it for each fixed value of λ as a linear

programming program (L) and see if the optimal solution∗ has c1
2 > 0. Now we numerically

locate an approximation λ̂
∗

(+ 0 ) to the maximal value λ∗ (+ 0 ) by a bisection search, starting

from the a priori bounds 1 ≤ λ∗ ≤ 2, such that

λ̂
∗

(+ 0 ) ≤ λ∗ (+ 0 ) ≤ λ̂
∗

(+ 0 ) + 10 − 6 . (2.11)

The upper a priori bound λ∗ ≤ 2 follows because a 3x + 1 tree has at most two branches at each

node, hence no more than 2k nodes at depth k, hence all φk
m (y) ≤ 2y . We discard any system + 0

having λ∗ < 1.

It remains to choose + 0 to maximize λ∗ (+ 0 ), over all systems + 0 derivable from

Krasikov’s inequalities ( k . This seems to be a difficult problem which very likely does not have

________________
∗ Since all the constraints in (L) are homogeneous except the last constraint c1

2 ≤ 1, and since taking all c i
j = 0 is

always a feasible solution, the optimal solution has either c1
2 = 0 or c1

2 = 1.
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a nice answer. The splitting procedure and the µ-truncation operation interact in a complicated

fashion, and non-intuitive things happen.

3. Solving Linear Programs

We investigated several splitting procedures based on heuristic splitting rules.

The simplest case to consider is No Splitting: directly µ-truncate the original inequalities

(2.6). The resulting values λ̂
∗

(+ 0 ) appear in Table 3.1, up to k = 9.

_ ___________________
Insert Table 3.1 about here
_ ___________________

This table gives also the corresponding value for γ in (1.3), which is computed for λ = λ̂
∗

(+ 0 )

by

γ = log 2 (λ) =
log 2
log λ_ ____ . (3.1)

In Table 3.2 we give an optimal solution to the linear program (L) for k = 2 and 3, for

λ = λ̂0
∗

(+ 0 ).

_ ___________________
Insert Table 3.2 about here
_ ___________________

A theoretical upper bound for the value of λ∗ (+ ) attainable using the No Splitting rule on ( k

for any k is λ =. 1. 596823, the positive root of

1 = λ − 2 +
3
1_ _ (λα − 2 + 1 ) . (3.2)

To see this, note that (2.9b) implies that

ck − 1
n ≤

3
1_ _ (ck

n + ck
n + 3k − 1

+ ck
n + 2.3k − 1

) . (3.3)
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The No Splitting inequalities (2.9a) are

ck
m ≤ ck

4m + ck − 1
3

2m − 1_ ______

ck
m ≤ ck

4m

ck
m ≤ ck

4m + ck − 1
3

2m − 1_ ______

λα − 2

if m ≡ 8 ( mod 9 ) ,

if m ≡ 5 ( mod 9 ) ,

if m ≡ 2 ( mod 9 ) ,

( 3. 4 c )

( 3. 4 b )

( 3. 4 a )

Let

c̃ k =
m∈[ 3k ]

Σ ck
m .

Then, adding up all the inequalities (3.4) over {m : m∈[ 3k ] }, and substituting (3.3) on the right

side of the resulting inequality yields

c̃ k ≤ c̃ k λ − 2 +
3
1_ _ c̃ k (λα − 2 + 1 ) .

Since c̃ k > 0, the upper bound (3.2) on λ follows. The k = 9 bound in Table 3.1 is quite close

to the upper bound λ =. 1. 596823.

Next we consider the effect of splitting some terms in (2.6). We start with Advanced

Splitting: if a term cj
n (y ′ ) is advanced, i.e. y ′ > y, then split it. Do this until no more splitting is

possible, which occurs when all remaining advanced terms are c1
2 . Advanced Splitting appears

reasonable because µ-truncation only weakens advanced terms. The resulting optimal values

λ̂
∗

(+ 0 ) and exponents γ for Advanced Splitting appear in Table 3.3. It shows that splitting terms

helps in getting better exponent bounds, and these exceed the theoretical limit possible using the

No Splitting rule.

_ ___________________
Insert Table 3.3 about here
_ ___________________

In Table 3.4 we give the optimal solutions to the linear program (L) for k = 2 and 3 for a value

λ = λ̂
∗

(+ 0 ).
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_ ___________________
Insert Table 3.4

_ ___________________

This splitting rule is not optimal. In the case k = 2 it fails to do as well as Krasikov’s bound

γ = .43, which he analytically derived from the k = 2 inequalities.

We next consider 8(mod 9) Splitting: split every term cj
n (y) having n ≡ 8 (mod 9), and also

split any advanced term that can be split. For k = 2 this agrees with the splitting rule that

Krasikov [3] implicitly used. The bounds we obtain for λ̂
∗

(+ 0 ) for 8(mod 9) Splitting are given

in Table 3.5; they are superior to the Advanced Splitting bounds.

_ ___________________
Insert Table 3.5 about here
_ ___________________

In Table 3.6 we give the optimal solutions for k = 2 and 3 for the linear program (L) for

λ = λ̂
∗

(+ 0 ), and in Table 3.7 we give the value for k = 4.

_ ___________________
Insert Tables 3.6 and 3.7 about here

_ ___________________

We notice a regularity in these optimal solutions, namely that all cj
n = 1 when n ≡ 8 (mod 9). It

seems non-intuitive that splitting all 8(mod 9) functions, even when they have a retarded

argument, yields a larger value of λ∗ (+ 0 ) than that obtained by not splitting terms with a

retarded argument, but so it proves.

We experimented with Partially Optimized Greedy Splitting: for each given inequality,

compute which single terms will increase λ∗ when split individually, then split all of these

simultaneously for all inequalities, and iterate until either λ∗ does not increase or else no more

single terms improve λ∗ when split. In fact this procedure continued to improve λ∗ in smaller

and smaller increments with no sign of terminating so we halted the process when λ∗ increased
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by less than .0001 in one step. This method improves on 8(mod 9) Splitting for all k ≥ 4 that we

tried. However the regularity in an optimal solution of (L) that all cj
n = 1 when n ≡ 8 (mod 9)

does not hold. For k = 9 it gave the exponent

γ = .810454

when we halted it. The resulting linear program∗ gives a proof of Theorem 1.1.

Finally we considered Ultimate Splitting: continue splitting until all terms are cj
2 for various

values of j. At each level there remain three variables cj + 1
2 , cj + 1

2 + 3 j

, cj + 1
2 + 2.3 j

, and the latter two are

then eliminated by substituting the inequalities (2.3) for them. In this way we get a linear

program (L) that involves only the k variables {cj
2 : 1 ≤ j ≤ k}. Table 3.8 gives the values of

λ̂
∗

(+ ) and γ obtained, up to k = 6.

_ ___________________
Insert Table 3.8

_ ___________________

It seems evident that the exponents γ are converging to a limit below 1. This procedure splits an

exponential number of times and, empirically, Table 3.8 indicates that this discards too much

information to get γ → 1 as k → ∞.

4. Krasikov’s Conjecture

Krasikov [3] conjectures that, for any ε > 0, bounds of the form

π a (x) ≥ x 1 − ε , for x ≥ x 0 (a) .

can be derived from the Krasikov inequalities ( mod 3k ), for sufficiently large k. This seems

________________

* Implementations of Partially Optimized Greedy Splitting are sensitive to roundoff error in implementing the
decision rule for which terms to split, so that our particular computation may not be easily reproducible. The
splitting rule used in 8 ( mod 9 ) Splitting avoids this issue, allowing the exponent .804 to be more easily checked.
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undoubtably true. The result could potentially be rigorously proved by guessing a feasible

solution to a suitable family of linear programs (L) derived by the method of §3. To do this, one

hopes to find systems of inequalities (2.7) such that (L) has regularities in the optimal solutions of

such linear programs.

What is the limit of the linear programming method using just the Krasikov inequalities ( k of

level k? Consider the following linear program (Lk
NT ) which does no truncation.

(Lk
NT )



















c1
2 ≤ 1 . ( 4. 2 f )

cn
n ≥ 0 , all n∈[ 3 j ] , 1 ≤ j ≤ k , ( 4. 2 e )

and

cj
n ≤ cj + 1

n + l.3 j

, all n∈[ 3 j ] , l = 0 , 1 , 2 ; 1 ≤ j ≤ k − 1 , ( 4. 2 d )

ck
m ≤ ck

4m λ − 2 + ck − 1
3

2m − 1_ ______

λα − 1 , if m ≡ 8 ( mod 9 ) , ( 4. 2 c )

ck
m ≤ ck

4m λ − 2 , if m ≡ 5 ( mod 9 ) , ( 4. 2 b )

ck
m ≤ ck

4m λ − 2 + ck − 1
3

4m − 2_ ______

λα − 2 , if m ≡ 2 ( mod 9 ) , ( 4. 2 a )

sub j ect to

maximize c1
2

Now maximize λ where (Lk
NT ) has a feasible solution with c1

2 = 1. Approximations λ̂
∗

(Lk
NT ) to

the resulting quantities λ∗ (Lk
NT ) are given in Table 4.1 below, for 2 ≤ k ≤ 9.

_ ___________________
Insert Table 4.1 about here.

_ ___________________

The values in Table 4.1 exceed all the lower bounds in §3. It seems intuitively reasonable that the

bounds λ∗ (Lk
NT ) should be theoretical upper bounds for the optimal value of λ for any linear

program (L) obtained by splitting from (2.6) with fixed k, with no truncation done. So far we

cannot prove this, although it is true on all examples we computed. However we also have

examples showing that, for linear programs (L) derived by splitting alone, with no truncation

done, splitting a term can sometimes increase λ∗ . For definiteness we state a weaker conjecture.
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Conjecture 4.1 For any linear program (L) derived by repeated splitting from the Krasikov

inequalities ( k (possibly using also ( l for 1 ≤ l < k) and then truncating, one has

λ∗ (Lk
NT ) ≥ λ∗ (L) .

We note that λ∗ (Lk
NT ) are strictly increasing in k. This property is easy to prove, for a

feasible solution to (Lk
NT ) can be constructed from a feasible solution to (Lk − 1

NT ) by letting

ck
m = ck

m + 3k − 1

= ck
m + 2.3k − 1

: = ck − 1
m

for all m∈[ 3k ]. Furthermore this feasible solution can be shown to be not optimal∗ for (Lk
NT ),

hence

λ∗ (Lk
NT ) > λ∗ (Lk − 1

NT ) .

The non-truncated linear program (Lk
NT ) is of a particularly simple form. If Conjecture 4.1 is

true, then a necessary condition for Krasikov’s Conjecture to hold is:

λ∗ (Lk
NT ) → 2 as k → ∞ . (4.3)

Now consider (Lk
NT ) and introduce the averaged variables:

c
_

j,k : =
3 j

1_ __
m∈[ 3 j ]

Σ cj
m . (4.4)

Adding up all the ( k-equations in (Lk
NT ) yields

c
_

k,k ≤ c
_

k,k λ − 2 +
3
1_ _ c

_
k − 1 ,k (λα − 1 + λα − 2 ) . (4.5)

At an optimal solution of (Lk
NT ), all of (4.2a)–(4.2c) must hold with equality, hence (4.5) then

holds with equality. Conversely, if (4.5) holds with equality for a feasible solution of (Lk
NT ), so

________________

* This holds because some inequality in ( k is strict for these values. Otherwise, all ck − 1
m = ck − 1

m + 3k − 2

= ck − 1
m + 2.3k − 2

, and
by downward induction on k, all ck

m are equal, which contradicts optimality for k = 2.
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must (4.2a)–(4.2c). It follows that a necessary and sufficient condition for (4.3) to hold is that

(Lk
NT ) have optimal solutions satisfying

c
_

k,k

c
_

k − 1 ,k_ _____ → 1 as k → ∞ . (4.6)

Can any of the splitting methods of §3 be used to prove Krasikov’s Conjecture? By (3.2), the

No Splitting inequalities are not strong enough to yield (4.1). A proof of (4.1) definitely requires

that some kind of nontrivial splitting rule be used. Both Advanced Splitting and 8(mod 9)

Splitting empirically appear to retain enough information to derive (4.1). However there is no

obvious pattern in the optimal solutions to such (L).

One can experiment with splitting rules that yield optimal solutions to (L) having a nice

structure. For example, 8(mod 9) Splitting had optimal solution with cj
m = 1 for all

m ≡ 8 ( mod 9 ). We checked that splitting all terms that were 5 or 8(mod 9) and forcing the

solutions to have cj
m = 1 for all m ≡ 5 or 8(mod 9) by adding extra equality constraints led to

little loss on the exponent: we obtained γ = .788 for k = 9, compared with .804 for 8(mod 9)

Splitting. In this approach splitting is essentially being used to eliminate variables in the linear

program. The results for Ultimate Splitting demonstrate that there are limitations to the amount

of elimination of variables allowed using this approach.

These experiments show analyzing the bounds implied by systems of difference inequalities

for nondecreasing functions has a surprising complexity. It seems a fruitful area for further

study.
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ABSTRACT

The 3x + 1 function T(x) takes the values ( 3x + 1 )/2 if x is odd and x /2 if x is even. Let
π a (x) count the number of n with n ≤ x which eventually reach a under iteration by T. Then
for any a ≡/ 0 (mod 3) and sufficiently large x, π a (x) ≥ x .81 . The proof is based on solving
nonlinear programming problems constructed from inequalities of Krasikov.

( L )
















c1
2 ≤ 1 .

cj
n ≥ 0 ,

and cj
n ≤ cj + 1

n + l.3 j

, l = 0 , 1 , 2 ,

ck
m ≤

i∈Im

Σ ck
m i λ − α i ,

sub j ect to

maximize c1
2

all n∈[ 3 j ] , 1 ≤ j ≤ k ,

all n∈[ 3 j ] , 1 ≤ j ≤ k − 1 ,

all m∈[ 3k ]

( 2. 9 d )

( 2. 9 c )

( 2. 9 b )

( 2. 9 a )


