
THE 3x + 1 CONJUGACY MAPDaniel J. Bernstein, Jeffrey C. Lagarias19960215Abstract. The 3x+1 map T and the shift map S are de�ned by T (x) = (3x+1)=2for x odd, T (x) = x=2 for x even, while S(x) = (x � 1)=2 for x odd, S(x) = x=2 forx even. The 3x + 1 conjugacy map � on the 2-adic integers Z2 conjugates S to T ,i.e., � � S ���1 = T . The map � mod 2n induces a permutation �n on Z=2nZ. Westudy the cycle structure of �n. In particular we show that it has order 2n�4 forn � 6. We also count 1-cycles of �n for n up to 1000; the results suggest that � hasexactly two odd �xed points. The results generalize to the ax + b map, where ab isodd. 1. IntroductionThe 3x+ 1 problem concerns iteration of the 3x+ 1 function(1.1) T (x) = � (3x+ 1)=2 if x � 1 (mod 2)x=2 if x � 0 (mod 2)on the integers Z. The well-known 3x + 1 Conjecture asserts that, for each posi-tive integer n, some iterate T k(n) equals 1, i.e., all orbits on the positive integerseventually reach the cycle f1; 2g.The 3x+ 1 function (1.1) is de�ned on the larger domain Z2 of 2-adic integers.It is a measure-preserving map on Z2 with respect to the 2-adic measure, and itis strongly mixing, so it is ergodic; see [8]. More is true. Let S : Z2 ! Z2 be the2-adic shift map de�ned by(1.2) S(x) = � (x� 1)=2 if x � 1 (mod 2)x=2 if x � 0 (mod 2);i.e., S(P1i=0 bi2i) = P1i=0 bi+12i, if each bi is 0 or 1. Then T is topologicallyconjugate to S: there is a homeomorphism � : Z2 ! Z2 with(1.3) � � S ���1 = T:In fact T is metrically conjugate to S: one map � satisfying (1.3) preserves the2-adic measure. Thus T is Bernoulli.1991 Mathematics Subject Classi�cation. Primary 11B75. Typeset by AMS-TEX1



2 DANIEL J. BERNSTEIN, JEFFREY C. LAGARIASThe map � is determined by (1.3) up to multiplication on the right by an au-tomorphism of the shift S. It is known that the automorphism group of S isisomorphic to Z=2Z, with nontrivial element V (x) = �1�x. (See [6, Theorem 6.9]and the introduction to [3].) We obtain a unique function � by adding to (1.3) theside condition �(0) = 0. We call � the 3x+1 conjugacy map. This function hasbeen constructed several times, apparently �rst in [8], where ��1 is denoted Q1,and also in [1], [2].An important property of � is that it is solenoidal. Here we say that a functionf on Z2 is solenoidal if, for every n, it induces a function mod 2n, i.e.,x � y (mod 2n) =) f(x) � f(y) (mod 2n):This solenoidal property, together with �(0) = 0, implies that(1.4) �(x) � x (mod 2):For completeness, we give a self-contained proof that � is unique. Let � and �0be two invertible functions satisfying (1.3) and (1.4). Write Q and Q0 for theirinverses. Then S �Q = Q �T and S �Q0 = Q0 �T , and (1.4) gives Q � Q0 (mod 2).If Q � Q0 (mod 2k) then Q�T = Q0 �T (mod 2k), so S �Q � S �Q0 (mod 2k). NowS � Q and S � Q0 agree in the bottom k bits, and Q and Q0 agree in the bottombit, so Q and Q0 agree in the bottom k + 1 bits. Hence Q � Q0 (mod 2k+1). Byinduction Q � Q0 (mod 2k) for every k, so Q = Q0, so � = �0.There is an explicit formula for ��1 ([8]). Let Tm denote the mth iterate of T .Then(1.5) ��1(x) = 1Xi=0(T i(x) mod 2)2i:This implies (1.3) and (1.4), and also shows that ��1 is solenoidal.There is also an explicit formula for � ([2]). For x 2 Z2, expand x asx =Xl 2dl ;in which fdlg is a �nite or in�nite sequence with 0 � d1 < d2 < � � � . Then(1.6) �(x) = �Xl 3�l2dl :This also implies (1.3) and (1.4), and shows that � is solenoidal.Various properties of the 3x+1 map under iteration can be formulated in termsof properties of �. The 3x+1 Conjecture is reformulated as follows ([2], [8]). HereZ+ denotes the positive integers.3x+ 1 Conjecture. Z+ � �( 13Z).Furthermore, it is known that �(Q \ Z2) � Q \Z2. (This is easily proven from(1.6); see [2].) The following conjecture is proposed in [8].



THE 3x+ 1 CONJUGACY MAP 3Periodicity Conjecture. �(Q \ Z2) = Q \ Z2.This would imply that the 3x + 1 function T has no divergent trajectories onZ. Recall that a trajectory �T k(n) : k � 1	 is divergent if it contains an in�nitenumber of distinct elements, so that ��T k(n)��!1 as k !1. In fact, ifT3;k(x) = � (3x+ k)=2 if x � 1 (mod 2),x=2 if x � 0 (mod 2),then the Periodicity Conjecture is equivalent to the assertion that, for all k ��1 (mod 6), the 3x + k function has no divergent trajectories on Z. (This followsfrom [9, Corollary 2.1b].)This paper studies the 3x + 1 conjugacy map � for its own sake. The function� is a solenoidal bijection; it induces permutations �n of Z=2nZ. Our object is todetermine properties of the cycle structure of the permutations �n. In e�ect, ourresults give information about the iterates �k of �. We prove in particular that �ncontains three \long" cycles of length 2n�4, for all n � 6.We remark that the results we prove are not related to the 3x + 1 Conjecturein any immediate way; indeed for the iterates T k the conjugacy (1.3) gives � �Sk � ��1 = T k, a relation which does not involve �k for any k � 2. We do notethat the Periodicity Conjecture is equivalent, for any k � 1, to the assertion that�k(Q\Z2) = Q\Z2. Consequently information about �k may conceivably proveuseful in resolving the Periodicity Conjecture.The contents of the paper are as follows. In x2 we give a table of the cycle lengthsof �n for n � 20. This table motivated our results. We also give data on 1-cyclesof �n for n � 1000. We conjecture that � has exactly two odd �xed points. In x3we formulate results on the progressive stabilization of the \long" cycles of �n. Inx4 we generalize these results to the conjugacy map for the ax+ b functionTa;b(x) = � (ax+ b)=2 if x � 1 (mod 2)x=2 if x � 0 (mod 2),where ab is odd. We prove all these results in x5. The proofs are based on Theorem5.1, which keeps track of the highest-order signi�cant bit in the orbit of x mod 2n+2.In x6 we reconsider \short" cycles of �n, and present a heuristic argument thatrelates their asymptotics to the number of global periodic points. This heuristic isconsistent with the data on 1-cycles presented in x2.There are two appendices on solenoidal maps. Appendix A shows the equivalenceof \solenoidal bijection," \solenoidal homeomorphism," and \2-adic isometry." Ap-pendix B shows that a wide class of functions U generalizing the 3x+1 map T areconjugate to the 2-adic shift S by a solenoidal conjugacy map �U .Finally, we note that, for odd k, the map Q(x) = kx conjugates the 3x + 1function to the 3x+ k function; i.e., Q � T �Q�1 = T3;k. Thus the cycle structureof the permutations mod 2n of all the conjugacy maps �3;k are identical. Otherproperties of the 3x + 1 conjugacy map appear in [2], [10], [11]. In particular, �and ��1 are nowhere di�erentiable on Z2; see [10], [2].We thank Mike Boyle and Doug Lind for supplying references concerning theautomorphism group of the one-sided shift, and the referee for helpful comments.



4 DANIEL J. BERNSTEIN, JEFFREY C. LAGARIAS2. Empirical Data and Two ConjecturesBy (1.4), �n takes odd numbers to odd numbers. Let �̂n : (Z=2nZ)� !(Z=2nZ)� denote its restriction. The properties of �n are completely determinedby �̂n. Indeed, �(2jx) = 2j�(x) by (1.6), so the action of �̂n�j describes theaction of �n on odd numbers times 2j .Each �̂n consists of cycles of various lengths, all of which are powers of 2. (Seex3 for a proof.) The exact form of �̂n for n � 6 appears in Table 2.1.n �̂n order(�̂n)2 identity 13 f1; 5g 24 f1; 5g f9; 13g 25 f1; 21gf5; 17gf7; 23gf9; 29; 25; 13g 46 f1; 21gf3; 35gf5; 17; 37; 49gf7; 23gf9; 29; 25; 13gf19; 51gf27; 59gf33; 53gf39; 55gf41; 61; 57; 45g 4Table 2.1. Cycle structure of �̂n, n � 6. 1-cycles are omitted.Table 2.2 below lists the number of cycles of various lengths in �̂n for n � 20.Let Xn;j denote the set of cycles of �̂n of period 2j , and let jXn;j j be the numberof such cycles. From Table 2.2 we see, empirically, that(2.1) order(�̂n) = 2n�4; n � 6:We also see a progressive stabilization of the number of \long" cycles in �̂n. Inx3{x5 we prove both these facts.How does jXn;j j, the number of cycles of �̂n of size 2j , behave as n ! 1, for�xed j? We give data for the simplest case jXn;0j of 1-cycles. Table 2.3 gives allvalues of jXn;0j for n � 100, and Table 2.4 gives values of jXn;0j at intervals of10 for n � 1000. We computed the values jXn;0j recursively for increasing n bytracking each 1-cycle individually.(k; j) 0 1 2 3 4 5 6 7 8 91 12 32 52 80 116 106 152 124 1102 2 16 38 54 82 122 112 144 124 1083 2 26 36 56 96 124 110 120 130 1084 4 22 38 54 106 124 112 108 128 925 6 18 36 54 116 114 106 114 128 966 6 20 36 54 90 128 92 132 136 967 8 18 50 68 82 118 106 140 124 1028 14 12 60 68 92 94 116 144 118 1089 14 16 62 84 102 92 122 144 104 8810 10 26 50 92 108 100 132 144 98 90Table 2.3. Number of 1-cycles in �̂10j+k .



THE 3x+ 1 CONJUGACY MAP 5(n; j) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 162 23 2 14 4 25 6 3 16 6 7 37 8 10 3 38 14 17 8 0 39 14 21 18 4 0 310 10 35 24 14 2 0 311 12 40 37 18 12 2 0 312 16 48 70 23 16 10 2 0 313 26 53 79 60 24 11 10 2 0 314 22 63 111 98 50 14 11 10 2 0 315 18 81 129 153 84 40 11 11 10 2 0 316 20 96 179 186 137 78 31 11 11 10 2 0 317 18 91 242 236 207 131 61 29 11 11 10 2 0 318 12 104 305 308 312 192 105 56 29 11 11 10 2 0 319 16 86 375 401 432 307 152 99 54 29 11 11 10 2 0 320 26 95 424 573 564 445 281 133 91 54 29 11 11 10 2 0 3Table 2.2. Number of cycles jXn;j j of �̂n of order 2j , 0 � j � n.(k; j) 0 1 2 3 4 5 6 7 8 91 10 96 380 700 844 1278 1078 1330 1944 20302 26 90 458 788 840 1176 1130 1142 2180 21623 50 116 452 916 1134 1000 1212 1170 2194 22304 92 156 544 780 942 914 1270 1240 2226 21285 108 240 574 678 874 998 1462 1346 2130 22066 100 278 588 908 910 1110 1476 1538 2294 23627 132 282 628 818 866 1172 1360 1562 2204 23548 144 320 634 784 932 1172 1358 1778 2184 23629 98 378 784 870 1060 1072 1190 1974 2114 224210 90 404 714 892 1150 1086 1208 1808 2056 2308Table 2.4. Number of 1-cycles in �̂100j+10k .The tables show that jXn;0j behaves irregularly, but has a general tendency toincrease. In x6 we present a heuristic model which suggests that(2.2) jXn;0j � F0n as n!1;where F0 is the number of odd �xed points of �. Comparison with Table 2.4suggests the following conjecture.Fixed Point Conjecture. The 3x+1 conjugacy map � has exactly two odd �xedpoints.



6 DANIEL J. BERNSTEIN, JEFFREY C. LAGARIASWe searched for odd rational �xed points, and immediately found two: x = �1and x = 1=3. The conjecture thus asserts that these are the only odd �xed pointsof �. We do not know of any approach to determine the existence or non-existenceof non-rational odd �xed points.More generally we propose the following conjecture.3x+1 Conjugacy Finiteness Conjecture. For each j � 0, the 3x+1 conjugacymap � has �nitely many odd periodic points of period 2j.We have no idea whether the 3x + 1 conjugacy map � has �nitely many oddperiodic points in total. There are examples of ax + b conjugacy maps that haveno odd periodic points; see x4.3. Cycle structure of �n: Inert Cycles and Stable CyclesThere is a simple relation between the cycles of �n and those of �n+1: Forx 2 Z2, the cycle �n+1(x) that x belongs to in �n+1 has length j�n+1(x)j eitherequal to or double the length of the cycle �n(x) that x belongs to in �n.This follows from a more general fact. Call a function fn+1 : Z=mn+1Z !Z=mn+1Z consistent mod mn if it induces a function fn from Z=mnZ to Z=mnZ,i.e., if(3.1) x1 � x2 (mod mn) =) fn+1(x1) � fn+1(x2) (mod mn):Lemma 3.1. Let fn+1 : Z=mn+1Z ! Z=mn+1Z be a function which is consistentmod mn. If x is a purely periodic point of fn+1 then x is a purely periodic point offn and j�n+1(x)j = k j�n(x)jfor some integer k with 1 � k � m.Proof. The image of �n+1(x) under projection mod mn consists of k copies of apurely periodic orbit �n(x), for some k � 1. The bound k � m follows because anyelement of Z=mnZ has only m distinct preimages in Z=mn+1Z. �Lemma 3.1 applies to �n+1, because � is solenoidal. Since m = 2 we havej�n+1(x)j = k j�n(x)j with k = 1 or 2:We call a cycle �n+1(x) split if j�n+1(x)j = j�n(x)j, because �n(x) lifts to twocycles mod 2n+1, namely �n+1(x) and �n+1(x) + 2n. If j�n+1(x)j = 2 j�n(x)j wecall �n+1(x) inert, because �n(x) has lifted to a single cycle. If �n+1(x) is an inertcycle, and j�n(x)j = p, then j�n+1(x)j = 2p and(3.2) �pn+1(x) � x+ 2n (mod 2n+1):By induction on n, the length of any cycle j�n(x)j is a power of 2.We call a cycle �n(x) stable if �m(x) is an inert cycle for all m � n. If �n(x) isa stable cycle, then j�m(x)j = 2m�n+1 j�n�1(x)j ; m � n:For a stable cycle �n(x), Lemma 3.1 guarantees that the map � restricted tofy 2 Z2 : y � xi (mod 2n) for some xi 2 �n(x)ghas no periodic points.Our main result concerning � is as follows.



THE 3x+ 1 CONJUGACY MAP 7Theorem 3.1. For the 3x + 1 conjugacy map �, suppose that j�n(x)j � 4 andthat �n(x) and �n+1(x) are both inert cycles. Then �n+2(x) is also an inert cycle.Consequently �n(x) is a stable cycle.Theorem 3.1 follows from Corollary 5.1 at the end of x5.The hypothesis j�n(x)j � 4 is necessary in Theorem 3.1. For example, �5(3) =f3g, so both �6(3) = f3; 35g and �7(3) = f3; 99; 67; 35g are inert, but �8(3) =f3; 227; 195; 163g is split.Corollary 3.1a. order(�̂n) = order(�n) = 2n�4, for n � 6.Proof. �6(5) = f5; 17; 37; 49g is stable. �We next consider Table 2.2 in light of Theorem 3.1. Again let Xn;j denote theset of cycles of �̂n of period 2j . Call Xn;j stabilized if it consists entirely of stablecycles.Corollary 3.1b. Assume that all Xn;n�j are stabilized for 0 � j � k�1, and thatjXn;n�kj = jXn+1;n+1�kj = jXn+2;n+2�kj. Then Xm;m�k is stabilized for m � n,and jXm;m�kj = jXn;n�kj.This criterion gives the stabilized region indicated in Table 2.2. For n = 20 over90% of all elements in (Z=2nZ)� are in stable cycles.4. The ax + b Conjugacy MapConsider now the ax+ b function(4.1) Ta;b(x) = � (ax+ b)=2 if x � 1 (mod 2)x=2 if x � 0 (mod 2),where ab is odd. See [4], [5], [7], and [12] for various properties of Ta;b underiteration on Z.The 2-adic shift map S is conjugate to the general ax + b function Ta;b by theax+ b conjugacy map �a;b : Z2 ! Z2; i.e., �a;b � S ���1a;b = Ta;b. If x =Pl 2dl ,where fdlg is a �nite or in�nite sequence with 0 � d1 < d2 < � � � , then(4.2) �a;b(x) = �bXl a�l2dl ;see [2]. Associated to �a;b are the permutations �a;b;n on Z=2nZ obtained byreducing �a;b mod 2n. The following result generalizes Theorem 3.1.Theorem 4.1. For the ax+ b conjugacy map �a;b, suppose that a cycle �n(x) of�a;b;n has j�n(x)j � 4. (i) If a � 1 (mod 4), and �n(x) is an inert cycle, then�n+1(x) is an inert cycle. (ii) If a � 3 (mod 4), and �n(x) and �n+1(x) are bothinert cycles, then �n+2(x) is an inert cycle.This theorem follows from Corollary 5.1 in x5. The proof actually shows that incase (i) the weaker hypothesis j�n(x)j � 2 su�ces, when b � 3 (mod 4).There are examples of ax+b conjugacy maps �a;b for which all cycles eventuallybecome stable. Such �a;b then have no odd periodic points. Using Theorem 4.1 weeasily check that the 25x� 3 conjugacy map when taken mod 32 has an odd partconsisting of two stable cycles of period 8.



8 DANIEL J. BERNSTEIN, JEFFREY C. LAGARIAS5. The Highest Order BitThroughout this section, � = �a;b is a general ax + b conjugacy map, where aand b are odd. We analyze the high bit of the iterates of � mod 2n+2. All earlierresults follow from Theorem 5.1 below.For x 2 Z2, expand x as(5.1) x = 1Xk=0 bitk(x)2k ;where bitk(x) is either 0 or 1. De�ne the bit sums(5.2) popk(x) := kXj=0 bitj(x):The ax+ b conjugacy map is then given by(5.3) �a;b(x) = 1Xk=0 �bapopk(x) bitk(x)2k;by (4.2).Lemma 5.1. If y; z 2 Z2 with z � y (mod 2n), then(5.4) �(z)� �(y)� (z � y)� 2n+1�ab+ 12 + b(a� 1)2 popn�1(y)� (bitn(y) + bitn(z)) (mod 2n+2):Proof. Expand �(z)��(y) (mod 2n+2) using (5.3). We have bitk(z) = bitk(y) andpopk(z) = popk(y) for 0 � k � n � 1, so the �rst n terms in �(z) � �(y) cancel.Thus�(z)� �(y) � 2n�� �bapopn(z)� bitn(z)�� �bapopn(y)� bitn(y)�+ 2n+1�� �bapopn+1(z)� bitn+1(z)�� �bapopn+1(y)� bitn+1(y)� :Substitute a�1 � a (mod 4) in the coe�cient of 2n, and b � a�1 � 1 (mod 2) inthe coe�cient of 2n+1:(5.5) �(z)� �(y) � 2n(bapopn(y) bitn(y)� bapopn(z) bitn(z))+ 2n+1(bitn+1(z)� bitn+1(y)) (mod 2n+2):On the other hand(5.6) z � y � 2n(bitn(z)� bitn(y)) + 2n+1(bitn+1(z)� bitn+1(y)) (mod 2n+2):



THE 3x+ 1 CONJUGACY MAP 9Subtract (5.6) from (5.5):�(z)��(y)�(z�y) � 2n((bapopn(y)+1) bitn(y)�(bapopn(z)+1) bitn(z)) (mod 2n+2):Substitute ak � 1 + (a � 1)k (mod 4), popk(x) bitk(x) = (1 + popk�1(x)) bitk(x),and then popn�1(z) = popn�1(y):�(z)� �(y)� (z � y)� 2n((b(1 + (a� 1) popn(y)) + 1) bitn(y)� (b(1 + (a� 1) popn(z)) + 1) bitn(z))� 2n((ab+ 1 + b(a� 1) popn�1(y)) bitn(y)� (ab+ 1 + b(a� 1) popn�1(z)) bitn(z))� 2n((ab+ 1 + b(a� 1) popn�1(y))(bitn(y)� bitn(z))� 2n+1�ab+ 12 + b(a� 1)2 popn�1(y)� (bitn(y)� bitn(z)) (mod 2n+2):This is equivalent to (5.4). �Now �x x 2 Z2, and �x n � 0. Set j�n(x)j = 2j and assume from now on that(5.7) �n+1(x) is inert,so that j�n+1(x)j = 2j+1. We wish to determine whether or not �n+2(x) is inert.According to (3.2) this occurs if and only if(5.8) �2j+1(x) � x+ 2n+1 (mod 2n+2):We now introduce the quantitiesek[i] := bitk(�i(x)):In terms of the ek[i], we have(5.9) �n+2(x) is inert () en+1[0] 6= en+1[2j+1];by (5.8). We proceed to evaluate en+1[2j+1]� en+1[0] mod 2. The main theoremsof this paper are deduced from the following formula.Theorem 5.1. If j�n(x)j = 2j and �n+1(x) is an inert cycle, then(5.10) en+1[2j+1]� en+1[0] � 1 + ab+ 12 2j + b(a� 1)2 N (mod 2);where(5.11) N = 2j�1Xi=0 popn�1(�i(x)):



10 DANIEL J. BERNSTEIN, JEFFREY C. LAGARIASProof. First we de�ne Xi = (�i+1+2j (x) � �i+1(x)) � (�i+2j (x) � �i(x)). Since�n+1(x) is an inert cycle, �i+2j (x) � �i(x) + 2n (mod 2n+1), so, by Lemma 5.1,Xi � 2n+1�ab+ 12 + b(a� 1)2 popn�1(�i(x))� (mod 2n+2):Adding up the Xi gives(5.12) 2j�1Xi=0 Xi � 2n+1�ab+ 12 2j + b(a� 1)2 N� (mod 2n+2):Next de�ne Yi = 2n((en[i+ 1 + 2j ] � en[i+ 1])� (en[i+ 2j ]� en[i])). The sum ofthe Yi telescopes: 2j�1Xi=0 Yi = 2n(en[2j+1]� en[2j ]� en[2j ] + en[0]):Since �n+1(x) is an inert cycle, en[0] = en[2j+1] 6= en[2j ], so(5.13) 2j�1Xi=0 Yi = 2n(2en[0]� 2en[2j ]) � 2n+1 (mod 2n+2):On the other hand,Xi � Yi � 2n+1(en+1[i+ 1 + 2j ]� en+1[i+ 1]� en+1[i+ 2j ] + en+1[i])� 2n+1(en+1[i+ 1 + 2j ] + en+1[i+ 1]� en+1[i+ 2j ]� en+1[i]):In this form the sum of Xi � Yi also telescopes:2j�1Xi=0 (Xi � Yi) � 2n+1(en+1[2j+1]� en+1[0]) (mod 2n+2):Comparing this sum with (5.12) and (5.13), we get2n+1(en+1[2j+1]� en+1[0]) � 2n+1�ab+ 12 2j + b(a� 1)2 N�� 2n+1 (mod 2n+2);which implies (5.10). �Corollary 5.1. (i) If a � 1 (mod 4), thenen+1[2j+1]� en+1[0] � � 1 (mod 2) if b � 3 (mod 4) or j � 10 (mod 2) otherwise.(ii) If a � 3 (mod 4), and �n(x) is inert, thenen+1[2j+1]� en+1[0] � � 1 (mod 2) if j � 2,0 (mod 2) if j = 1.



THE 3x+ 1 CONJUGACY MAP 11Note that (i) proves Theorem 4.1(i), and (ii) proves Theorem 4.1(ii), using (5.9).Theorem 3.1 then follows as a special case of Theorem 4.1(ii).Proof. (i) Here a � 1 (mod 4), so the term involving N in (5.10) drops out.(ii) Here a � 3 (mod 4), and j � 1, so (5.10) simpli�es toen+1[2j+1]� en+1[0] � 1 +N (mod 2):The inertness of �n(x) givesbitn�1(�i+2j�1 (x)) = 1� bitn�1(�i(x));so popn�1(�i+2j�1 (x)) + popn�1(�i(x)) � 1 (mod 2):ThusN = 2j�1�1Xi=0 �popn�1(�i+2j�1 (x)) + popn�1(�i(x))� � 2j�1�1Xi=0 1 = 2j�1 (mod 2):Now (ii) follows. �6. Cycle Structure of �̂n: Short CyclesWe consider the behavior of \short" cycles of the 3x + 1 conjugacy map; i.e.,the behavior of jXn;j j as n ! 1 for �xed j. We describe a heuristic model whichrelates the asymptotics of jXn;j j to the number of global odd periodic points of �.We �rst note that the odd periodic points Per�(�) of � determine the entire setPer(�) of periodic points of �. The relation(6.1) �(2x) = 2�(x)implies that x has period 2j if and only if 2x has period 2j . Thus(6.2) Per(�) = �2kx : k � 0 and x 2 Per�(�)	 :Let Fj be the number of orbits of � containing an odd periodic point of minimalperiod 2j . The 3x+1 Conjugacy Finiteness Conjecture of x2 asserts that all Fj are�nite.We obtain a simple heuristic model for the 1-cycles Xn;1 of �̂n by classifyingthem into two types: those arising by reduction mod 2n from an odd �xed point of�, and all the rest. Call these \immortal" and \mortal" 1-cycles, respectively. Ourheuristic model is to assume that each \mortal" 1-cycle has equal probability ofsplitting or remaining inert, independently of all other 1-cycles. When a \mortal"1-cycle splits, both its progeny in Xn+1;1 are \mortal." An \immortal" 1-cycle inXn;1 always splits, and gives rise to two 1-cycles in Xn+1;1, at least one of which is\immortal." We also assume that only F0 \immortal" 1-cycles appear in total, i.e.,for all large enough n each \immortal" 1-cycle splits into one \immortal" 1-cycleand one \mortal" 1-cycle.



12 DANIEL J. BERNSTEIN, JEFFREY C. LAGARIASThis model is a branching process model with two types of individuals. Theexpected number of individuals Zn;1 at step n is(6.3) E[Zn;1] = F0n+ c0;where c0 is a constant depending on the levels of the initial occurrences of the F0\immortal" 1-cycles. The empirical data in Tables 6.3 and 6.4 seem consistent withthis model, with F0 = 2. We know that F0 � 2 in any case. The two \immortal"1-cycles that we know of both appear at n = 1, so that if F0 = 2, then c0 = 0 in(6.3).To obtain a heuristic model for jXn;j j when j � 1, we use a re�ned classi�cationof cycles of �̂n. A step consists of passing from �̂n�1 to �̂n. For 0 � d � j � nlet Xn;j;d denote the set of cycles of �̂n of size 2j which have remained inert forexactly d steps. Let Yn;j;d denote the subset of Xn;j;d that consists of cycles thatsplit in going to �̂n+1. Then we havejXn+1;j;0j = 2 nXd=0 jYn;j;djand jXn+1;j+1;d+1j = jXn;j;dj � jYn;j;dj :We know the following facts about these quantities:(1) If a cycle of length at least 8 has been inert for d � 2 steps, it remains inert.Thus jYn;j;dj = 0 if j � 3 and d � 2.(2) Any cycle of length 4 which has been inert for d = 2 steps must split; i.e.,jXn;2;2j = jYn;2;2j.(3) Any odd periodic point x of � of period 2j gives rise to a cycle of period 2jof �̂n for all su�ciently large n. This cycle always splits. Such cycles arein both Xn;j;0 and Yn;j;0.The quantity we are interested in isjXn;j j = nXd=0 jXn;j;dj :The facts above imply that jXn;j j is entirely determined by knowledge of jXm;j;0j,jYm;j;0j, and jYm;j;1j, for all m � n.Our heuristic model is then to suppose the following:(1) Each cycle in Xn;j;1 has (independently) probability 1=2 of falling in Yn;j;1.(2) Each \mortal" cycle in Xn;j;0 has (independently) probability 1=2 of fallingin Yn;j;0, and if so its two progeny in Xn+1;j;0 are \mortal."(3) Each \immortal" cycle in Xn;j;0 lies in Yn;j;0, and one of its progeny inXn+1;j;0 is \immortal" and the other is \mortal," with �nitely many excep-tions.



THE 3x+ 1 CONJUGACY MAP 13This is a multi-type branching process model. If Zn;j denotes the total number ofindividuals in such a process, then one may calculate that, for large n,(6.4) E[Zn;1] = 14F0n2 + (F1 + 14F0)n� F1 + 12F0 + c1;in which c1 is a constant depending on the initial occurrence of \immortal" cycles.(We assume that c0 = 0.) For j � 2, where stable cycles may occur, the formulafor E[Zn;j ] becomes quite complicated.It might be interesting to further compare predictions of this model for j � 1with actual data for �. We know of one odd periodic cycle of � of length 2, namelyf1;�1=3g; i.e., �(1) = �1=3 and �(�1=3) = 1. Thus F1 � 1.Appendix A. Solenoidal MapsCall a map F : Z2 ! Z2 solenoidal if, for all n,(A.1) x � y (mod 2n) =) F (x) � F (y) (mod 2n):An equivalent condition in terms of the 2-adic metric j�j2 is that F is nonexpand-ing; i.e.,(A.2) jF (x)� F (y)j2 � jx� yj2 ; all x; y 2 Z2.If F1 and F2 are solenoidal maps, then so is F1 � F2.Call a family of functions Fn : Z=2nZ ! Z=2nZ compatible if Fn agrees withFn�1 under projection �n : Z=2nZ ! Z=2n�1Z; i.e., if �n � Fn = Fn�1 � �n. Acompatible family fFng has an inverse limit F : Z2 ! Z2 de�ned by(A.3) F (x) � Fn(x) (mod 2n); for all n.The term \solenoidal" is justi�ed by the following lemma.Lemma A.1. F is solenoidal if and only if F is the inverse limit of a compatiblefamily fFng.Proof. If F is solenoidal, then F mod 2n induces a function Fn : Z=2nZ! Z=2nZ,for each n; and fFng is a compatible family. The reverse implication follows from(A.3). �Lemma A.2. Let U be the inverse limit of a compatible family fUng. Then thefollowing are equivalent. (i) U is a bijection. (ii) For each n, Un is a permutation.(iii) For each n, if U(x) � U(y) (mod 2n) then x � y (mod 2n).Proof. (i) =) (ii). U is surjective, so Un is surjective.(ii) =) (i). Write Vn = U�1n . Then fVng is a compatible family. Let V be itsinverse limit. By construction U � V is the inverse limit of identity functions, soU � V is the identity. Similarly V � U is the identity. Hence U is a bijection.(ii) =) (iii). If U(x) � U(y) (mod 2n) then Un(x mod 2n) = Un(y mod 2n) sox mod 2n = y mod 2n.(iii) =) (ii). Suppose that Un(a) = Un(b). Select x and y in Z2 such thata = x mod 2n, b = y mod 2n. Then Un(x mod 2n) = Un(y mod 2n), so U(x) �U(y) (mod 2n), so x � y (mod 2n), so a = b. �



14 DANIEL J. BERNSTEIN, JEFFREY C. LAGARIASCorollary A.3. The following are equivalent. (i) U is a solenoidal bijection. (ii)U is a solenoidal homeomorphism. (iii) U is a 2-adic isometry.U is a 2-adic isometry if jU(x)� U(y)j2 = jx� yj2.Proof. (i) =) (iii). U is solenoidal so jU(x)� U(y)j2 � jx� yj2. On the otherhand, by Lemma A.1, U is an inverse limit; and U is a bijection, so jU(x)� U(y)j2 �jx� yj2 by Lemma A.2(i =) iii).(iii) =) (ii). Since jU(x)� U(y)j2 � jx� yj2, U is solenoidal. By LemmaA.1, U is an inverse limit; by Lemma A.2(iii =) i), U is a bijection. SincejU(x)� U(y)j2 � jx� yj2, U�1 is solenoidal. Finally, solenoidal implies continuous.(ii) =) (i). Immediate. �Appendix B. Functions Solenoidally Conjugate to the ShiftFor any two solenoidal bijections V0; V1 de�ne UV0;V1 : Z2 ! Z2 byU(x) = � V0(x=2) if x � 0 (mod 2),V1((x� 1)=2) if x � 1 (mod 2).For example, take V0(x) = x and V1(x) = ax+ (a+ b)=2; then UV0;V1 is the ax+ bfunction.In this appendix we show that a map is solenoidally conjugate to the 2-adic shiftmap S|i.e., conjugate to S by a solenoidal bijection|if and only if it is of theform UV0;V1 .Lemma B.1. Let V be a solenoidal bijection. If z � w (mod 2m�1) then V (z) �V (w) + z � w (mod 2m).Proof. If z � w (mod 2m) then V (z) � V (w) (mod 2m).If z � w + 2m�1 (mod 2m) then still V (z) � V (w) (mod 2m�1). By Corol-lary A.3, V is an isometry, so if V (z) � V (w) (mod 2m) then z � w (mod 2m),contradiction. Thus V (z) � V (w) + 2m�1 (mod 2m). �Lemma B.2. Set U = UV0;V1 . Fix m � 1. If y � x + 2me (mod 2m+1) thenU(y) � U(x) + 2m�1e (mod 2m).Proof. Put b = x mod 2; then U(x) = Vb(S(x)). Also U(y) = Vb(S(y)), since y �x (mod 2). We have S(y) � S(x) + 2m�1e (mod 2m); by Lemma B.1, Vb(S(y)) �Vb(S(x)) + 2m�1e (mod 2m). �Lemma B.3. Set U = UV0;V1 . Fix m � j � 1. If y � x + 2me (mod 2m+1) thenU j(y) � U j(x) + 2m�je (mod 2m�j+1).Proof. Lemma B.2 and induction on j. �Lemma B.4. Set U = UV0;V1 . Fix m � 1. If y � x + 2me (mod 2m+1) thenUm(y) � Um(x) + e (mod 2).Proof. Lemma B.3 with j = m. �



THE 3x+ 1 CONJUGACY MAP 15Lemma B.5. Set U = UV0;V1 . Fix b0; b1; b2; : : : 2 f0; 1g. De�ne x0 = 0 andxm+1 = xm + 2m(bm � Um(xm)). Then y � xm (mod 2m) if and only if U i(y) �bi (mod 2) for 0 � i < m.Proof. We induct on m. For m = 0 there is nothing to prove.Say y � xm+1 (mod 2m+1). Then y � xm + 2m(bm � Um(xm)) (mod 2m+1);by Lemma B.4, Um(y) � Um(xm) + bm � Um(xm) = bm (mod 2). Also y �xm (mod 2m), so by the inductive hypothesis U i(y) � bi (mod 2) for 0 � i < m.Conversely, say U i(y) � bi (mod 2) for 0 � i � m. By the inductive hypothesisy � xm (mod 2m). Write y = xm+2me. Then bm � Um(y) � Um(xm)+e (mod 2)by Lemma B.4. Thus y � xm + 2m(bm � Um(xm)) = xm+1 (mod 2m+1). �Theorem B.1. Set U = UV0;V1 . De�ne Q(x) = P1m=0(Um(x) mod 2)2m. ThenQ is a solenoidal bijection, and U = Q�1 � S �Q.Thus any map of the form UV0;V1 is solenoidally conjugate to S. (See TheoremB.2 below for the converse.) Q�1 generalizes the ax+ b conjugacy map.Proof. Injective: Say Q(y) = Q(x). De�ne bm = Um(x) mod 2; then Um(y) �Um(x) � bm (mod 2). Next de�ne x0 = 0 and xm+1 = xm + 2m(bm � Um(xm)).By Lemma B.5, y � xm (mod 2m) and x � xm (mod 2m). Thus y � x (mod 2m)for every m; i.e., y = x.Solenoidal: Say y � x (mod 2n). De�ne bm = Um(x) mod 2, x0 = 0, andxm+1 = xm + 2m(bm � Um(xm)). Then x � xn (mod 2n) by Lemma B.5, soy � xn (mod 2n); by Lemma B.5 again, Um(y) � bm (mod 2) for 0 � m < n. ThusQ(y) � Q(x) (mod 2n).Surjective: Given b =P1i=0 bi2i with bi 2 f0; 1g, de�ne x0 = 0 and xm+1 = xm+2m(bm � Um(xm)). Since xm+1 � xm (mod 2m) the sequence x1; x2; : : : convergesto a 2-adic limit y, with y � xm (mod 2m). By Lemma B.5, Um(y) � bm (mod 2)for all m. Thus Q(y) = b.Finally, it is immediate from the de�nition of Q that Q � U = S �Q. �Theorem B.2. Let Q be a solenoidal bijection. De�ne U = Q�1 � S � Q. ThenU = UV0;V1 for some solenoidal bijections V0; V1.Proof. If Q(0) is even then Q�1(x) � x (mod 2) for all x; so writeQ�1(x) = � 2W0(x=2) if x � 0 (mod 2),1 + 2W1((x � 1)=2) if x � 1 (mod 2).Then W0;W1 are solenoidal bijections, and U = UV0;V1 where Vi = Q �Wi.Similarly, if Q(0) is odd then Q�1(x) � �1� x (mod 2) for all x; so writeQ�1(x) = � 1 + 2W0(x=2) if x � 0 (mod 2),2W1((x� 1)=2) if x � 1 (mod 2).Again W0;W1 are solenoidal bijections, and U = UV0;V1 where Vi = Q �Wi. �
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