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Abstract
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N has the Delone property if there are positive constants r, R such that R > n;4q —n; > r
for all z > 1. Any set N with the Delone property has unique factorization into irreducible
elements and is therefore a subsemigroup of RT. We classify all such semigroups which are
contained in the integers Z*. The set of generalized primes of any such A consists of all but
finitely many primes, plus finitely many other composites.
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1. Introduction

This paper studies sets of Beurling generalized integers which have an “evenly-spaced”
property, the Delone property, defined below. Recall that a set G of Beurling generalized prime

numbers, or g-primes, consists of any infinite set G = {g; : i > 1} of real numbers such that
1<g1<ga<g3<..., (1.1)

with g; — oo as 1 — co. The set A of Beurling generalized integers, or g-integers, associated
to G, consists of the unit 1 together with all finite power-products of g-primes, arranged in

increasing order and counted with multiplicity. Thus A has elements
l=ng<n <my<n3z<... (1.2)

Here A is the free abelian multiplicative semigroup (with unit) generated by G, since we treat
different power products of the ¢; as distinct. It is an arithmetical semigroup of Rt in the sense
of Knopfmacher [11], using the trivial norm |n| = n.

A set N of Beurling generalized integers has the Delone property if the gaps between suc-
cessive members of A" are bounded above and below, i.e. there are positive constants r and R
such that

R>ngy1—mi>r, alli>1. (1.3)

Note that if A/ has the Delone property, then all elements of A" have multiplicity one, hence each
element of A/ uniquely factors as a product of elements of G. It follows that A is a subsemigroup

of Rt with unit, and we then call it an arithmetical Delone semigroup. An arithmetical Delone



semigroup S is a subsemigroup of Rt with unit that has unique factorization into irreducible
elements and the Delone property.

For any set A of Beurling generalized integers we define the g-prime counting function
() =#{i: g9 <z} (1.4)
and the g-integer counting function
ny(z) = #{i:n; <z} . (1.5)

The zeta function of N is
Cn(s) == an_s ,
1=0

and it clearly has the Euler product

o0

() =T[0-g7)".

i=1
Beurling [2] studied conditions on a set of generalized integers A" which imply that an

analogue of the prime number theorem holds for /. He showed that if

ny(z) = Az + O <(1ogxa;)v) (1.6)

for some v > 3/2, then the “prime number theorem”

z z
mav(z) = log z to <log$> ’ (17)

is valid, and indicated that (1.7) should not follow for v < 2. Diamond [5] gave an explicit

example satisfying (1.6) with v = 3/2 where (1.7) does not hold. Later Diamond [6] also showed
that if (1.6) holds for some v with 1 < v < %, one can still conclude that a Chebyshev-type

estimate

<mn(z) < e (1.8)

“ log x log x
holds for positive constants ¢; and ¢y depending on A'. This set of results was completed by
R. Hall [10], who gave examples of N where (1.6) holds with 0 < v < 1 but the Chebyshev-type
bound (1.8) does not hold. Revesz [16] recently gave “almost periodic” asymptotics for mar(z)

assuming certain “almost periodic” asymptotics for ny(z).



At one time it was hoped that the study of Beurling generalized integers might shed light on
the Riemann hypothesis. Suppose that {y(s) analytically continues to the half-plane Re(s) > %,

except for a simple pole at s = 1. This occurs, for example, whenever

ny(z) = Az 4+ O(2/?) . (1.9)

The analogue of the Riemann hypothesis for such A is that (x(s) has no zeros in Re(s) > %,

or, equivalently, that

rodt
v (z) = , @—I-O(JEI/HE), any €>0.

In 1961, however, Malliavin [13, Section 6] produced for each ¢ > 0 a set of g-integers N such
that (xr(s) analytically continues to Re(s) > 0 and has a simple pole at s = 1, and also has a
real zero 8 with 1 — & < 8 < 1. Thus the analogue of the Riemann hypothesis fails for these N.
Furthermore Malliavin asserted that one can find such sets N contained in the positive integers
Z*. His results actually show that the constraint on A’ imposed by the requirement that A" be

an arithmetical semigroup on R* that satisfies
ny(z) = Az +0(z°), any €¢>0, (1.10)

is not sufficient to imply the Riemann hypothesis for such A/, even if we assume that ' C Z¥.

In order to obtain sets of Beurling generalized integers A/ that might satisfy a Riemann
hypothesis, additional conditions of a non-multiplicative nature appear to be needed, cf. [1,
p. 197]. This paper proposes the Delone property as a possible such side condition. For a set of
Beurling generalized integers A/ the Delone property consists of a constraint of multiplicative
type (unique factorization property) with one of additive type (gaps bounded above and below).
It implies a bound

cz < ny(z) < ez (1.11)

for some positive constants ¢; and ¢3. The condition (1.11) is weaker than the sort of asymptotic
condition (1.6) on npr(z) that was imposed by Beurling. In particular, it does not a priori
guarantee any analytic continuation of the zeta function (x (s) beyond the half-plane Re(s) > 1,

let alone the truth of a Riemann hypothesis.



This paper characterizes arithmetical Delone semigroups that are contained in the positive
integers ZT. The simplest example of such a semigroup is Z% itself, whose generating set is the
set P of all primes. If we take

G=P\F,

where F is a finite set of primes, then we obtain an arithmetical Delone semigroup whose

members fill out all arithmetic progressions @ (mod M) with (a, M) =1, with M =[] .z p.
Our main result is the following “rigidity” result for arithmetical Delone semigroups in Z™.

Theorem 1.1. If S is an arithmetical Delone semigroup contained in Zt, then its set of

generators G contains all but finitely many primes. The set of generators has the form
G=(P\&)uc, (1.12)

where P is the set of all primes, £ is a finite set of primes, and C is a finile set of composite
numbers.

This result implies that for each arithmetical Delone semigroup in Z* there is a squarefree
modulus M with the property that S contains all arithmetic progressions ¢ (mod M) with
(a, M) =1.

We easily obtain from Theorem 1.1 a complete characterization of arithmetical Delone
semigroups § in Z*. To state it, let e,(n) denote the largest power of p that divides n.

Theorem 1.2. Let S be a semigroup with unit in Z1 whose set of generators G has the form
G=(P\&)uc,

where P is the set of all primes, £ is a finite set of primes, and C is a finile set of composite
numbers. Then S has the Delone property if and only if it has unique factorization property, and

this property holds if and only if the |E| x |C| matriz M = [M, .| with
M,.=ey(c), for pe€, ceC,

has full column rank |C| over Q.
It follows from Theorem 1.2 that the zeta function (s(s) of an arithmetical Delone semigroup

contained in Z% differs from the Riemann zeta function by a finite Euler product, so that

ns(z) =Az+0O(1), as z— o0, (1.13)



for some positive constant A. Thus the zeta function (s(s) meromorphically continues to the
entire complex plane C, and the Riemann hypothesis holds for all such § if and only if it holds
for the Riemann zeta function.

The interest of Theorem 1.1 lies in its showing that the “approximate rigidity” of the
Delone condition in Z7T forces the absolute rigidity of the sets S that can satisfy it. It is slightly
surprising that the additive and multiplicative properties of Z can be related sufficiently to
obtain the result.

To understand the scope of Theorem 1.1 one would like to characterize all arithmetical
Delone semigroups in R*. The only such semigroups I know of are contained in Z*. Are there
any others?

An outline of the proof of Theorem 1.1 is as follows. In §2 we show that the unique fac-
torization property implies ma(z) < w(z) for all z > 1, where w(z) = m+(z) is the usual
prime-counting function. We then show that the bound n(z) > ¢yz implies that the “excep-

tional set” £ of primes not in G satisfies
Y - <. (1.14)

To prove (1.14) we use Philip Hall’s theorem on systems of distinct representatives. In §3 we
show that if £ is infinite and satisfies the bound (1.14), then N cannot be relatively dense. Since
£ is infinite the Chinese remainder theorem can be used to produce arbitrarily long sequences of
consecutive integers each of which is divisible by some prime p € £. However even though any
such p € N, various multiples of such p can be in . The crux of the proof is a combinatorial
sieve to avoid all such multiples, and a proof that among all sequences of consecutive integers
of a fixed length a positive proportion remain unsieved. We sieve over certain sets of shifted
residue classes (mod p) for p in an infinite set, and since in general there exist choices of shifted
residue classes (mod p) for which the sieved set is empty, we must show that the residue classes
sieved out satisfy extra side conditions which rule out this possibility. We conclude that if A
has the Delone property, then the “exceptional set” £ is finite, hence G contains all but finitely
many primes. In §4 we complete the proofs of Theorems 1.1 and 1.2.

The Delone property was originally formulated as a concept in geometric crystallography

which models the “solid state,” see Engel [7], [8] and Senechal [17]. A set X in R™is a Delone



set or (r, R)-set if it is uniformly discrete and relatively dense. A set is uniformly discrete if
there is a positive r such that each ball of radius r contains at most one point of X, and is
relatively dense if each ball of radius R contains at least one point of X. This concept was
originally proposed by the Russian crystallographer and number theorist B. N. Delone in 1937
under the name (r, R)-set, according to [3]. This paper carries this property over to subsets of
the positive real line RT. This was motivated by the question whether the crystal-like nature

of Z7T is relevant to the (presumed) truth of the Riemann hypothesis.
2. Unique Factorization Property

Let S be a multiplicative semigroup with unit that is contained in the positive integers Z™.
Let G = {g; : i > 1} be the set of irreducible elements of &, which we call generators of S.
Throughout this section we assume that S has the unique factorization property.

We study such semigroups by using the prime factorization in Z* of elements of G. For any
n € Z7T, write its prime factorization as

n= H P (2.1)
pEP

We begin by establishing the following property of semigroups S contained in Z* that have
the unique factorization property.

Lemma 2.1. Let S be a multiplicative semigroup contained in Z+ which has the unique fac-
torization property, and let G be its set of generators. Then there exists a one-to-one map
fo : G — P such that

folg) g forall gegG . (2.2)

Remark. We call the map fg a prime transversal function for G. It is generally not unique.
The existence of a prime transversal function is a necessary but not sufficient condition for §
to have the unique factorization property.

Proof. Given any finite set of indices G C G, we set
P(G):={peP:plg forsomegeG}.

We claim that
|P(G)| > |G|, forall finite sets G C G . (2.3)



To prove the claim, write P(G) = {p1,..., pm} and consider the prime factorizations
g = pr9)  for ge @, (2.4)
pEP(G)

Each generator g; has a distinct exponent vector

v(9) = (ep (9); s epnl9)) €27, for geG .

We now argue by contradiction. If m = |P(G)| < |G|, then these vectors must be linearly
dependent in the vector space Z™, and, by clearing denominators, we obtain a nontrivial Z-

linear relation

> elg)v(g)=0. (2.5)

el
This yields two distinct factorizations of an element of &, namely

n = H g°l9) = H g~ (2.6)

geG geG
e(g)>0 e(g)<0

This contradicts the unique factorization property, hence (2.3) holds.

Next, associate to each g € G the finite set

Plg):={peP:plg}CP.

The condition (2.3) is exactly the hypothesis needed to apply Philip Hall’s theorem [9] on
the existence of a system of distinct representatives (“transversal”) for this set system, i.e.
the existence of a one-to-one map fg : G — P such that fg(g) € P(g). Hall’s theorem was
originally proved for set systems in which G and P are finite sets, but it also holds for countably
infinite sets G and P, provided that each set P(g) is finite, see Mirsky [14, Theorem 4.2.1] and
Appendix A. Thus a map fg exists. O

Lemma 2.2. If a semigroup S C Z% has the unique factorization property, then
ms(z) <w(z), allz>1; (2.7)

where 7(z) counts the number of primes less than z.

Proof. By the unique factorization property we may write G as

l<gi<ga<gs<....



Number the primes p; = 2, p; = 3,...in increasing order. If G = {p1,p2,...,pr} then (2.3)
gives

|P(G)| > |G| =k .

It follows that P(G) contains some prime p > pg, and this prime divides g; for some i €
{1,2,...,k}. Thus

gk 2 9; 2 P 2> Pk,

and (2.7) follows. O
Lemma 2.3. Suppose that the multiplicative semigroup S C Z1 has the unique factorization

property, and that there is a positive constant ¢q such that
ns(z) > iz forall z > zq . (2.8)

Then the set of “exceptional primes” £ := {p: p prime and p ¢ 8} has

Zl<oo. (2.9)

pee P

Remark. The converse also holds. For any multiplicative semigroup § in Z* with the unique
factorization property and with Zpegzl) < oo there is some ¢ > 0 such that ns(z) > cz for all
sufficiently large z.
Proof. The zeta function of a discrete semigroup S in Rt is

Cs(s) = Z n~° (integers counted without multiplicity) .

nes

Since § has unique factorization, (s(s) has an Euler product

¢s(s) = [T —g7)7" .
i=1
This Euler product converges absolutely in the half-plane Re(s) > 1, because g > pj for all

k > 1 by Lemma 2.2. Thus
log s(s) == log(1—g;*), (2.10)
=1

and the right side converges absolutely for Re(s) > 1. For real & > 1 we have

log(s(o) > Zg;g . (2.11)
=1



The lower bound for ng(z) in (2.8) implies that there is a positive constant ¢y such that for

all real o with 1 <o <2,

s > 3 (M

> —c. (2.12)

c—1

It follows that there exists a finite positive constant cs such that
log(s(o) > —log(c —1) —c3, for 1<o<2. (2.13)
Now (2.10) gives for ¢ > 1, the upper bound
log (s(o) < ig;a +cq (2.14)
i=1

where we have

0 2

4
< -
-3 6

oo 00 1 . 92_2
D S IE TR pee

)
i=1 n=2 =1 1 - 9;
By Lemma 2.1 there is a one-to-one map fg : G — P such that the prime fg(g) divides ¢ for
all g € G. Thus if g € G is not prime then g > 2f5(g) hence, for o > 1,

977 = Jol9)™" < (2f5(9))7" = (fo(9))™" < =(2fa(9))™" -

Let € = ((:1 U 52 with

& ={p:p= folg) forsome g# p}

and with & := £\&;. The inequality above gives, for o > 1,

977 < D (falg) T =D (2p)7°
i=1 =1 p€eE
< D> pT=D> 7= (2p)7°
peP pEEr pEEL
< YY) (2.15)
pEP pe€
Applying (2.11) with § = Z* gives, for ¢ > 1,
dp7? < log((o)
pEP
< —log(le—1)+¢5, (2.16)

10



in which the last inequality is based on the observation that the Riemann zeta function ((s) has
a simple pole at s = 1 with residue 1 and ((o) is bounded as ¢ — co. Combining (2.14)—(2.16)
yields, for 1 < o < 2, that
1
log(s(o) < —log(o — 1) + (ca +c5) — 1 dop 7. (2.17)
p€eE
If 3 ee zl? diverges, then the upper bound (2.17) eventually contradicts the lower bound (2.13)

as 0 — 17, which completes the proof. O
3. Combinatorial Sieve Argument

The main step in the proof of Theorem 1.1 is a sieve argument contained in the proof of

the following theorem. Recall that the lower asymptotic density d(M) of a set M C Z7 is

P |
d(M) :=lim inf - #{m:m <2 and me M}.
We prove:

Theorem 3.1. Suppose that S is a multiplicative semigroup contained in Z1 with the unique

factorization property, such that the set E ={p:p € P and p & 8} of “exceptional primes” is

infinite and satisfies

Zl<oo.

pee P

Then, for each fixed positive integer r, the set
M, ={mezZt :m+j¢gS for 1<j<r} (3.1)

has positive lower asymptotic density.
Proof. Choose a fixed prime transversal function fg : G — P, using Lemma 2.1. For all

nonexceptional primes p, we must have

folp)=p, peP\E. (3.2)

because p € G. The one-to-one property of fg implies that for all composite g € G we have
folg) € €.

By hypothesis £ is an infinite set. To prove that M, has positive density we will choose r ex-

ceptional primes py, pa, ..., p, and will study a fixed arithmetic progression ( mod p]flp];" .. .pffr)

11



of elements m such that
m+j=0 (modpfj) 1<j<r. (3.3)
The particular exponents ky,..., k. > 1 will be specified later in the proof. By the Chinese

remainder theorem the set of m that satisfy (3.3) forms the arithmetic progression

m(€) = mo + £py' P52 .. .pf7 (34)

in which 0 < mg < p]fl ...pF and /£ varies over the nonnegative integers.

We will sieve out from the arithmetic progression (3.4) all elements m(f) such that
m(l)+j€8 forsomej, 1<j<r, (3.5)

plus possibly some other elements, and show that a positive density of £ remain unsieved. To
describe it, note that even if a prime p ¢ S, various multiples of p may be in §. Associate to

each p € P the set
Glpl:=={9 € G :plg} .
We then have
péGplepel.

If m ¢ S then certainly p|m for some p € £.
The following criterion gives a sieve-type sufficient condition for m ¢ S.

Nonmembership Criterion. Let m € Z%1 and suppose that p|m and p € £. Thenm g S
if the following conditions all hold.

(). If g = fgl(g) for g € Glp], and q # p, then qtm.
(ii). If p = fg(g0) for go € Glpl, and p*|go, then p* { m.

(iii). If p = fg(go) for go € Glp], and p||go, set go = aop, then for some k > 1, p*|m and

af fm.

We prove the nonmembership criterion by contradiction. If m € S then m uniquely factors

as

m = H g“g(m) (3.6)

12



where the exponents a,(m) > 0 and all but finitely many a,(m) = 0. Since p|m, some g € G[p]
has a,(m) > 1. Consider the prime ¢ = fg(g). It divides g, hence it divides m. Now condition
(i) rules out ¢ # p. If ¢ = p, then g = go, and if p?|go, then p?|m, but condition (ii) rules
this out. Finally, if ¢ = p, and p||go with go = agp, and if p¥|m, then necessarily (go)*|m,
because the only factors contributing powers of p to the right side of (3.6) can be go and pl|go.
Since af|(go)® we have af|m, and condition (iii) rules this out. This covers all cases, so the
nonmembership criterion follows.

We sieve the arithmetic progression (3.4) to remove all m(¢) not satisfying the nonmember-

ship criterion. We first choose the primes pq,...,p, € £ to satisfy the following two conditions.
(C1). Each p; > r.

(C2). If g € G[p;] then fg(g) > r.

This can be done since £ is infinite, and these two conditions only exclude finitely many primes,
the second because there are at most 7(r) values g € G with fg(g) < r, and it suffices to avoid
all primes p which divide any of these g. We next choose the exponents £;, for 1 < j < r, as

follows:

(K1). If fg(g) # p; for all g € G[p;], set k; = 1.
(K2). If fg(g) = p; and p?|g, set k; = 1.

(K3). 1If fg(g9) = p; and g = a;p; with p; { a;, let p} be the largest prime factor of a; and pick

kj > 1 to be the smallest positive integer k such that (p})* > r.

We define p; = 1if it is not already defined by (K3).

We sieve the arithmetic progression (3.4) in two stages. In the first stage we sieve out
various residue classes of certain prime-power moduli ¢ below a sufficiently large cutoff value
T, which satisfies

T > max[r, (p;)~*! and (p’;)kﬂ for 1<j5<7r], (3.7)

and which will be further specified later. The sieve moduli used in the first stage are:
(M1). ¢ € £ with r < g < T and ¢ # p1,p2, ..., Dr.
M2). g=pH for 1< j <,

13



(M3). ¢= (p;)kﬂ for 1 <j <r, if p; #1, pj #p; for 1 <i <r, and either
p;<rorp;g¢.
At the second stage we will sieve out various residue classes of the remaining moduli
(M4). ge Eand g > T.

In the first stage sieving, for moduli ¢ € £ with r < ¢ < T we sieve out all m(¢) with
ml)+j=0(modgq), 1<j5<r. (3.8)

By hypothesis ¢ is prime to p;...p,, hence (3.9) sieves out r residue classes (mod ¢) of the
arithmetic progression parameter /.

For moduli ¢ = pfjH we sieve out all m(¢) with

k,+1
i)

m(f)+7=0 (mod p (3.9)

This is equivalent to a congruence (mod p;) on the parameter {. Note that the arithmetic
progression (3.4) has
m(f)+j=0 (mod pfj) ) (3.10)

so it follows that

m(f)+1i#0 (mod p;), 1<i<rwithi#j, (3.11)

because condition (C1) requires that all p; > r.
Finally for moduli ¢ = (p;)kﬂ for which p} is defined, and p} # p1,...p. we exclude the r
residue classes

m(f) + 7 =0 (mod (p;)kﬂ) , 1<i<r, (3.12)

This excludes r residue classes (mod (p})*5) of £. By construction (p})* > r so not all classes
(mod (p;)kﬂ) are sieved out. The condition (3.12) is a linear congruence (mod (p;‘)kﬂ) on the
parameter £, because p; does not equal any of the p; for : # j. Note that p; <T,soif pf €&
and p; > r then the exclusion of residue classes (3.12) was already achieved by (3.9) for p?
in (M1). We therefore omitted these cases from the condition (M3). Also note that if some

p; = pi with ¢ # j, then the condition

m(6) +j #0 (mod (p})") (3.13)

14



automatically holds for all m(¢) in the arithmetic progression (3.4), because
m(l)+ j # 0 (mod p;) ,

by (3.11).
Now let
L :={€: m({) unsieved up to cutoff T'} .

The congruence conditions in (M1)-(M3) consist of distinct prime-power moduli, hence the
Chinese remainder theorem applied to the arithmetic parameter £, shows that the elements of
L7 consist of a collection of arithmetic progressions to the modulus

kr= 1o I ¢

j=1 q€E
r<g<T

Thus L7 has an asymptotic density d(L), which satisfies

- 1 r
d(L) > e = — <1 - —> ) (3.14)
]:Hl pi ()M qell q
r<q<T
and clearly ¢r > 0. In fact, we have
1
#{U<z:leLr} > Jere forz > Ry . (3.15)

The constant 7 is a non-increasing function of T', hence the limit

Cop i= hm cr
T—oo

exists, and we have

Coo > Chy :H kH(l__)'

: p€eE
p>T

By hypothesis Zpeg < oo, which implies that ¢X > 0.

In the second stage sieveing, for each ¢ € £ with ¢ > T, we sieve out the r residue classes

m(f)+j=0(modq), 1<j5j<r. (3.16)

Each condition (3.16) asserts that
kl k‘r . *
mo+ Ipyt . .pr + 7 =k"q (3.17)

15



for some integer k*. The left side of (3.17) is positive, hence k* > 1. This bounds the smallest

solution ¢ to (3.17) by
s> 1= (mo + s 4

> > (3.18)
p1 . p,n 2pr1 ...p,]fr

whenever ¢ > 2(mg + r), and this certainly holds if

T>2q% . g +r)>2(mo+7) . (3.19)
Now (3.18) implies that
kal Cpkr
#{<z:m{)+757=0(mod ¢)} < (A) T (3.20)
q

is valid for all # > 1. Thus an upper bound on the number of elements £ up to = that are sieved

out in the second stage, provided that (3.19) holds, is

1
Sy(z) = 2rpht .. phr Z — |z, (3.21)
i

and we emphasize that this is valid for all z > 1.

We now choose T, and take it large enough so that (3.7) and (3.19) hold, and also so that

1 cis

N T (3.22)
qze;q 8r pkr

¢>T
Let L, denote the unsieved values of £ that remain after the second stage sieveing. Combining

(3.15) and (3.20)—(3.22) yields

#{U<z:le L} > i{ﬁgac:ﬁEET}—ST(m)

1 1
ich — Zcoox forall =z > Ry,

v

1
> ZCT@“ for all z > Ry .

Thus the set of unsieved elements L, in the arithmetic progression (3.4) has a positive lower

asymptotic density d(Ls) > %CT.

16



It remains to verify that all unsieved elements m(¢)+ j ¢ S for 1 < j < r, by verifying that

the nonmembership criterion holds. Consider a fixed j, and by construction
kj .
p; im()+7 .
The sieveing process guarantees that
gtm)+7,

for all ¢ € £ with ¢ > r, and Condition (C2) on p; ensures that all ¢ = fg(g) with g € G[p;]
satisfy this. Thus condition (i) of the nonmembership criterion holds. Condition (ii) of the
criterion is verified by the sieveing on (M2), since we choose k; = 1 according to (K2). Finally,
condition (iii) of the criterion is verified by the sieveing on (M3), where we used (K3) to choose
k; so that (p;)kﬂ > r, and (p;)kﬂ t m(¢) implies that (a;)* t m(f), which is (iii). Thus the
nonmembership criterion applies to give m(¢) +j ¢ S, and this holds for 1 < j <r. O

Remark. The proof of Theorem 3.1 sifts out by (several) nonzero residue classes ( mod ¢) over
a possibly infinite sequence of primes ¢. Given any infinite sequence of primes {¢; : j > 1},
however sparse, it is possible to sieve out exactly one residue class (mod ¢;) for each j > 1
in such a way as to sieve out every integer; at stage j choose that residue class (mod g¢;)
which sieves out the least integer currently unsieved. The proof of Theorem 3.1 rules out this

pathology via the inequality (3.18).

4. Main Results

We complete the proofs of Theorems 1.1 and 1.2.
Proof of Theorem 1.1. Lemma 2.3 applies to show that the set of “exceptional primes”
E={peP:pdgG} has Zpegzl? < oo. If £ were infinite, Theorem 3.1 shows that S omits
arbitrarily long intervals (m + 1,...,m + r), hence § is not relatively dense. This contradicts
S having the Delone property, hence £ is finite. It remains to show that the set C of composite
numbers in G is finite. In fact it contains at most |€| elements, for if it contained at least |£|+1
elements, then unique factorization of & would fail to hold. To see this, set e = |€| and choose

C*={¢;:1<i<e+ 1} CC, and define the finite set
F:={p € P\E:ple; for some i} .
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Now C* U F C G. Recall that P(G) = {p : p|g for some g € G}. Then
|IPCTUF)|=|F|l+e<|CUF|=|F|+e+1.

This violates (2.3), so S doesn’t have unique factorization. O
Proof of Theorem 1.2. If the matrix M does not have full column rank, then it contains a
Z-linear dependence of columns, which yields two factorizations
ny = H 109 and ng = H c2(9)
celC ceC
such that n; and ny have prime factorizations differing only at nonexceptional primes p €
P\E C G. Multiplying ny and ng by appropriate powers of these nonexceptional primes yields
an element s € § with two factorizations, a contradiction.
Conversely, any nonunique factorization in § when restricted in its action to primes in &,

will yield a Z-linear dependency among the columns of M. O
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Appendix A. Hall’s theorem for Countable Families of Finite Sets

This proof is due to R. Rado and appears in Mirsky [14, p. 55].
Theorem A.1. Let U = {A; : i € N} be a countable family of finite sets contained in a
countable set P, and suppose that Hall’s condition
|UAZ| > |I| for all finite I CN,
el

is satisfied. Then there exists a one-to-one map f : N — P such that
fi) € A; forall i€l

i.e. f is a transversal of U.

Proof. By the finite case of Hall’s theorem (see for example [12, Chapter 1], [15], [18]) for
each 7 > 1 there exist r distinct elements p,1 € Ay,...,p,» € A.. Now the p,; all belong to
the finite set A;. So there is an infinite subsequence N; of natural numbers with all p,; = p1,
say. Extract from this a subsequence Ny C N; of natural numbers such that p,, = p,, say.

Repeating this argument yields a sequence of distinct representatives
pp € A, forall n>1,

and we set f(n) =p,. O
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