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Abstract
In a recent paper Xian-Jin Li showed that the Riemann Hypothesis holds if and only if
An = Zp [1—(1—1/p)"] has A, > 0 for n = 1,2,3,... where p runs over the complex
zeros of the Riemann zeta function. We show that Li’s criterion follows as a consequence of
a general set of inequalities for an arbitrary multiset of complex numbers p and therefore
is not specific to zeta functions. We also give an arithmetic formula for the numbers A,
in Li’s paper, via the Guinand-Weil explicit formula and relate the conjectural positivity

of A, to Weil’s criterion for the Riemann Hypothesis.

1990 Mathematics Subject Classification 11M26, 11R42.

§1. Introduction. In a recent paper Xian-Jin Li [3] obtained an interesting
criterion for the validity of the Riemann Hypothesis. His criterion can be stated in
terms of the Riemann ¢-function

(5) = (s — D770 (2) <L)

and the sequence

1 d”
A= ——— n-1]
s 1 sl
for n = 1,2,3,..., in the form that the Riemann Hypothesis is equivalent to the

statement that A, > 0 for every positive integer n. He also showed that an iden-
tical result applies to the Riemann Hypothesis for the Dedekind zeta function of a
number field.

The number A, can be written in terms of the complex zeros p of the Riemann
zeta function (or Dedekind zeta function) as

)

* over p is understood as

2=, 2

P |S(p)I<T

where the sum

* We denote by R(z) and $(z) the real and imaginary part of the complex number z
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Li’s proof uses the positivity of certain numbers a; and b, (see [3, formulae (1.6)
and (3.5)] obtained from an appropriate integral representation of the zeta function
and one may wonder to what extent Li’s criterion is specific for zeta functions and
whether there is an arithmetic interpretation of it.

In this paper, Theorem 1 proves a general criterion for a multiset* of complex
numbers to lie in the half-plane $(s) < % Then the Corollary of Theorem 1 is a
criterion for a multiset which is invariant by complex conjugation and the functional
equation map s — 1 — s to lie on the critical line R(s) = % In the special case of
the multiset of non-trivial zeros of a zeta function, we recover Li’s theorem. These
results show that Li’s criterion is a consequence of a general set of inequalities that
is not specific to zeta functions.

Theorem 2 and the final considerations in this paper give an arithmetic formula
for the numbers A, in Li’s paper via the Guinand-Weil explicit formula. Their
conjectural positivity is then related to Weil’s well-known criterion for the Riemann
Hypothesis.

§2. Li’s criterion. In this and the following sections, convergence of a sum over
a multiset R of complex numbers p is understood as the existence of the limit

D= fim D ()

—
R I5(p)|<T

where in the sum each p occurs according to its multiplicity. In this case, we say
that the sum is *-convergent.

In what follows, for p = 0 the quantity (1—1/p)~" = (p/(p—1))" is interpreted
as 0 if n is a positive integer and as oo if n is a negative integer. We have

Lemma 1. Let R be a multiset of complex numbers and suppose that 0 ¢ R if n
is a positive integer, 1 ¢ R if n is a negative integer, and

L+ R _ .
; app? < (2.1)

Then for all integers n the sum
Y R[1-(1-1/p)"]
R

converges absolutely.
Moreover if 3 5 1/p is x-convergent then A, = [1—(1-1/p)"] is also
* -convergent.

Remark. If R is invariant by complex conjugation, 0 ¢ R and (2.1) holds, then
> 1/p is x-convergent to a real value.

* A multiset is a set whose elements have positive integral multiplicities assigned to them
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Proof: We leave the proof of these assertions to the reader, as an easy exercise.
We are now ready to state our first result.

Theorem 1. Let R be a multiset of complexr numbers p such that

(i) 1¢R;
(i) 3,(1+R(p))/(1+1p])* < 4o0.

Then the following conditions are equivalent:

(a) R(p) < 1/2 for every p;
) S, R[A-(1—=1/p)7"] >0 forn=1,2,3,...;
(¢) for every fired € > 0 there is a constant c(e) such that

Z%h —(1=1/p)™"] > —cle)e"™, n=1,2,3,....
P
Remarks. From a formal point of view if

=T (1 - f) (2.3)

and if

then one has

d LY L NS n .
Elogf(l_z) = (1_2)27<1_Z) _nz/\_n_lz . (2.4)

=0

By means of this formula, one could attack Theorem 1 by methods of conformal
mapping and complex function theory. In fact, there is a function-theoretic inter-
pretation of Theorem 1 when f(z) is well defined. The mapping w = 1/(1 — 2)
is a conformal mapping of the open unit disk |z| < 1 onto the open half-plane
R(w) > %, hence condition (a) asserts that d—dzlog F(1/(1 = z)) is holomorphic in
the unit disk, which is equivalent to limsup|A_,_;|*/” < 1. Conditions (b) and
(c) assert that this growth condition can be replaced by one-sided conditions on
R(A_n—1). In this paper we shall follow a direct approach to proving Theorem 1
which applies even if f(z) is not well defined.

Proof: We have p # 1 and

[1=1/p172 =14 (26 = 1)/]1 = p|?

where 3 = R(p), therefore (a) implies |1 — 1/p|=1 < 1 for every p. A fortiori we
have ?R[l —(1- 1/p)_"] > 0 for every positive integer n, hence (a) implies (b).
Tt is clear that (b) implies (c).
Now suppose that (a) does not hold, so that R(p) > 1 for at least one p € R.
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We use again the fact that [1—-1/p|=2 = 14+(28—1)/|1—p|?. Since (28—1)/|1—p|?
tends to zero, the maximum over p of this quantity is attained and there are finitely
many elements pr € R, k=1,..., K, such that |1 —1/p|~! = 1 +¢ = max. Note
that ¢ > 0 because g > % for at least one p.

For any other p we have |1 —1/p|7! < 1+4¢—§ for a fixed small § > 0. Let ¢y
be the argument of 1 —1/p; . Then

1—(1=1/pe) " =1—(14t) e "%,
For p # pi we have |1 —1/p|™ = O((1 +t—4)") and also

R[1=(1=1/p)7"] = O((n [R(p)| + n*)/IpI*)

as soon as |p| > n, as one easily verifies using

p—1

Hence the sum over |p| > n is O(n?) because S (1+|R(p)|)/(1+]|p|)? is convergent.
The number of elements in the sequence with |p| < n is O(n?), again because
ST+ R(p)])/(1+ |p|)? is convergent. Hence elements other than pg contribute
at most O(n?(1 4+t —4)") to Y R[1 — (1 —1/p)~"], while the remaining elements
pr contribute

K
K- (14" Ecos(nqﬁk).
k=1
We have shown that

SR[I-(1=1/p)"] = K= (146" cos(ngr) + O(n*(1 +1—)").

P k=1

By Dirichlet’s theorem on simultaneous Diophantine approximation we can make
the sum of cosines arbitrarily close to K, making it plain that Zp ﬂ%[l— (1- l/p)_”]
is infinitely often negative and exponentially large in absolute value as n tends to
0o. Thus the negation of (a) implies the negation of (c), hence (c¢) implies (a),
concluding the proof.

Corollary 1. (Li’s Criterion) Let R be a multiset of complex numbers p such that

(i) 0,1¢R;
(it) if pER then 1 —p and 7 are in R, with the same multiplicity as p;

(iii) 32,1+ [R(p)))/(1+1p])* < +oo.

Then the following conditions are equivalent:

(a) R(p) =1/2 for every p;
) X=3,1-(1-1/p)"] 20 forn=1,2,3,...;
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(¢) for every fired € > 0 there is a constant c(e) such that

E [1—(1=1/p)"] > —cle)e™, n=1,2,3,....

P

Proof: Conditions (ii) and (iii) ensure that the sumsin (b) and (c) are *-convergent
and real and A\, = A_, for n = 1,2,3,... . The proof is completed by applying
Theorem 1 to R and to 1 —R.

Remark. Condition (iii) can be relaxed to > 1/(1 + |p|)? < +o0; we leave the
details to the reader.

§3. An arithmetic interpretation. In a well-known paper A. Weil [4] obtained a
general formulation of the so-called explicit formula of the theory of prime numbers.
An equivalent formula was obtained earlier for the case of the Riemann zeta function
by A.P. Guinand [2], under the assumption of the Riemann Hypothesis*. Both
papers [2] and [4] are formulated using the Fourier transform. As a historical
note, we mention here the fact that there is an earlier paper [1] by Guinand, in
which he states an explicit formula [1, (3.5), p.36] using the Mellin transform, with
an indication of proof. In this paper Guinand does not assume the validity of the
Riemann Hypothesis but says (referring to a formal proof of his summation formula)
“This cannot readily be done without a series of involved assumptions, so I shall
only derive a formal result which will indicate the type of formula to be expected.
Any particular case of the result can be investigated separately.” However it should
be noted that Guinand’s point of view, namely summation formulae arising from
self-reciprocal transforms, is quite different from Weil’s, where the emphasis is on
the arithmetic.

We restate Weil’s formula as follows, in the special case of the Riemann zeta
function and in terms of the Mellin transform. Its formulation in the general case
does not involve additional difficulties, so we leave it as an exercise for the interested
reader.

Consider functions f(z) on the positive half-line (0, c0) such that:

(A) f(z) is continuous and continuously differentiable everywhere except at
finitely many points a;, in which both f(z) and f'(z) have at most a disconti-
nuity of the first kind, and in which one sets

Fla) = 3 [Flas +0)+ Flas ~0)];

(B) there is § > 0 such that f(z) = O(z°) as * — 0+ and f(z) = O(z~179)
as xr — +00o. ~
Define an involution f — f by the formula

f)=17(2)

* It appears that the Riemann Hypothesis is used in [2] only to obtain the validity of the
Explicit Formula for a wider class of test functions. For example, one application of [2] is an exact
formula for N(T'), the number of complex zeros of ((s) with 0 < I(s) < T'.
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and the Mellin transform of f by

= /Oof(:c) z*~lde,
0

where, by assumption (B), the integral is absolutely convergent for —¢ < R(s) <
14 4d. The inverse Mellin transform formula is

1

fz) = %/ﬁ(s):cﬂs) z~ % ds,

valid for —d <ec<1+4+4.
With this notation, we have

Explicit Formula. With f(z) satisfying (A), (B) above, we have

— (log 7+ ) f(1) —/100 {f(év) + flw) - %f(l)} xﬁxl

where the first sum ranges over all complex zeros of the Riemann zeta function and

hm Z f

ZIs(ol<T

15 understood as

Proof: This is obtained from Weil’s result [4], p.261-262, taking F(z) = e*/2 f(e®)

and making the change of variable from e” to z. We obtain

~ [ reyass / " Py de - f; A {1n) + Fm)}

maxlx) d,r
— (log 2 — PF
(log2m)f [

(3.1)

where PF 1s the limit

PF/OOOa(:B = lim [/ (1 — min(z A))a(m)%—?a(l)log)\]. (3.2)

A— 00

By splitting the integral over (0,00) as a sum of two integrals over (0,1) and
(1,00) and making the change of variable from z to 1/z in the integral over (0, 1),
we see that

/Ow(l—min(a:)‘,x_)‘))f(m)%%:/100(1—33_ )[f( )+f( )]ﬂ

x -1

(3.3)
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Now for A — co we have the asymptotic formula

z? x?—1

/100(1—:154)% rdr :%[log(A/Z)—}—'y]—i—o(l) (3.4)

which may be verified as follows. An easy step shows that we may assume that A

is an even integer 2N . Then the integral is

R

/OO 1—z7 2V dz 1 1 1
1 1—2z=2 23 2 4 2N

and the asymptotic formula follows from the definition of Euler’s constant as

11 1
= lim (~4-+...+——logh ).
7 NI—I>Ic1>o<1+2+ Ty Te )

From (3.2), (3.3) and (3.4) we deduce

maxl :v) dm
PF/ &) i

= (~log2+7)f(1) + lim oo(1—9:”) {f(m)+f(m)— %f(l)} g—cixl

1

= (tog2+ )i + [ {1+ T - 5 s 22

r2

because here we may interchange the limit and the integral. By (3.1), this completes
the proof of the Explicit Formula.
Now we are able to give an arithmetic interpretation to Li’s criterion.

Lemma 2. For n =1,2,3,... the inverse Mellin transform of 1 — (1 —1/s)" is

P,(logz) if 0<z<l1
gn(l’): n/2 if z=1
0 if xz>1

where P, (z) is the polynomial

Proof: We have

> (3)
=1 (1= /s
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This completes the proof.

Theorem 2. For n=1,2,3,... we have

Y li—(-1/p"] =

P

1 . A(m)(logm)i—1 1 ;
‘Z () g m;m%‘;“og””“

n

1= logan+ ) 5= o1 (M) -2 c)

7j=2
Remark. For n = 1 this gives the well-known evaluation*

1 11
> = =1+ -v— ;log4r =0.0230957"
~r 2 2

Proof: The function g,(z) does not satisfy condition (B), so we cannot apply the
Explicit Formula directly. Hence for 0 < € < 1 we replace g,(z) by its truncation

gn () if e<z< o0
gn,a(m) == %gn(a) Zf r=¢c
0 if x<e.

The function g, .(z) satisfies (A) and (B). Then the Explicit Formula yields

Z/g\n,a(p):/g gn,a(x)%+l gn,s(f)df_ Z %gn,s<%)

m<1/e (35)

/e zdx
(10g7+7 gns / [ gns - 2gns(1)] 21

We want to compute the limit of this formula for ¢ — 0. For the right-hand

side, we have
1 n 1
., de
e 1 j=1=
/ag, 1()3_1 (log#)}'™"—

j=
< ) loga
1

]:

* H. Davenport, Multiplicative Number Theory, Markham 1967, pp.83-84
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and

[gn,g(:c) de = En: (Z) ﬁ/gl(logm)j_ldm

j=1

zz(’;)ﬁ{( D=0t - [ (oga)i o .
- é(_nj—l <7;) +0(c(log 1/2)*7")

=1+0(g(log1/e)"71).

Since gn (1) = n/2, from (3.5), (3.6) and (3.7) we obtain that the limit of the
right-hand side of (3.5) as ¢ — 0 is

1 . A(m)(logm)i—t 1 ,
_Z <)ﬁai?+{m§a%_}(log1/ay}

—|—1—(log7r—|—'y)g —/0 [gn(z) — n2] ——

Here we have made the change of variable from z to 1/z in the last integral. We
make the change of variable z = e~* and compute

/Ol[gm)—m: = / [n_m +Z<)j_1 1ogx)j—1]1f_f';2
:(log2)n+2(—1 (") j_ll_e_et_%dt

J

:(logQ)’n-i-i(_l ()]_1 ( (z(i;rli;)
1og2n+z ()1—2])4( ),

obtaining the right-hand side of the formula of Theorem 2.
Finally, we note that

Jim. (Z ﬁn,a(p)) =3 Gal0). (3.8)

This follows from the Prime Number Theorem with error term. We have (without
error term if n = 1)

) ~Gnslo) = [ P Py (log )z da

= Py (loge) —s + 0( Ti; (log 1/¢)"~ )
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for 0 < R(s) < 1 and |s| > 1. Thus to prove (3.8) we need to show that > &”/p
and > e®() /|p|? tend to 0, as & — 0, faster than any negative power of log1/e.
By the De la Vallée-Poussin zero-free region we have

C (84
- <R <!]- -
gl +2) = T S T

for some constant ¢ > 0, therefore

eR(p) 1
= c/ log(|p|+2 —-1/2
S < (et (52 15 )
) )
— O<e—c’1/log1/s)

(3.9)

for some constant ¢’ > 0. This quantity tends to 0, as ¢ — 0, faster than any
negative power of log1/e.
In a similar way, one has

Z i — O<e—c'\/log1/a)’
p
P

possibly by readjusting the constant ¢’ > 0. In fact,

Ep 51_p
o < 1-p
1/¢)? R(p)
U o2
~ p = lrl

= 6{1/)<§) - é — 10g27r — %]og(l — 52)} + O(e—clwlogl/g)
— O<e—c'«/log1/a)

by the classical explicit formula for ¥(z), the Prime Number Theorem with error
term* and by (3.9). This proves what we want.

§4. Concluding remarks. Let f(z) and g(z) be complex valued functions
satisfying conditions (A) and (B) of the preceding section. The multiplicative con-
volution of f(z) and g(z) is given by

(f *9)(x) I/OOO fx/y)g(y) %~

The Mellin transform of f * g is ]?(s) g(s), whence, denoting by f the complex
conjugate of f, the Mellin transform of f % f is ]?(5) f(1 — s), which is real and

* H. Davenport, loc. cit., Ch.17,18
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positive on the critical line $(s) = % Thus the positivity of the Explicit Formula

on functions of the type f#f is a necessary condition for the validity of the Riemann
Hypothesis. As shown by Weil, this is also a sufficient condition.

Li’s criterion can be interpreted quite easily in this light. Let g,(z) be the
function defined in the preceding section. We have the identity

(L= =1/ ]+ [1=(1=1/(1=s))"] = [1=(1=1/s)"] - [L = (1= 1/(1 = 5))"]

and taking the inverse Mellin transform we find

Since the right-hand side of the Explicit Formula is invariant by changing f(z) into
f(:e), the positivity in Li’s criterion has the same meaning as in Weil’s criterion.
The interesting point is that Li’s criterion requires an explicit and rather simple set
of test functions for its verification.

The numbers

lim {37 A(m)(logm)” _ n—ll— - (log z)"+! (4.1)

n! z—co m
m<z

which appear in Theorem 2 are analogous to the Stieltjes constants

_ (=" (logm)” 1 4l .
T = xli>nolo Z<: m  n+1 (log z) (4.2)

which appear in the Laurent expansion*

((s+1) _—+Evn

In fact, we have

/
—%(SH _‘+Z77n : (4.3)
Hence
log(sCs—i—l Znn 1
and also

log (s¢(s+1)) = <1+Z~yn )
i 1h1<§;%8n+1)h

1

1
=05+ (n - 573)52 + (v2 —vom + 5’73)53 +o

* A. Erdélyi, W Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions,
McGraw-Hill 1953, vol. I, p.34, errata p.1
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This expresses the constants 7, as polynomials in the constants =, and in view of
Theorem 2 one obtains a formula for A, in terms of the constants log4m, ~, for
h >0 and ((h) for h = 2,3,... . A direct proof of such a formula can also be
given without recourse to the explicit formula, via power series expansions relating
(2.4) to (4.3) using the change of variable s = 1/(1 — 2).
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