[14] J. Steiner, Uber parallel flichen, Jber. preuss. Akad. Wiss. (1840), 114-118. (See: Gesam-
melte Werke, Vol. II, New York: Chelsea 1971, pp. 171-177.)

[15] H. Steinhaus, Length, shape, and area, Collog. Math., 3, (1954) 1-13.

37



References

[1] T. Banchoff, Critical Points and Curvature for Embedded Polyhedra, J. Diff. Geom. 1
(1967), 257-268.

[2] T. Banchoff, Critical Points and Curvature for Embedded Polyhedral Surfaces, Amer.
Math. Monthly 77 (1970), 475-485.

[3] Yu D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag: Boston, 1988.

[4] J. Cheeger, W. Miiller, and R. Schrader, On the Curvature of Piecewise Flat Spaces,
Comm. Math. Phys. 92 (1984), 405-454.

[5] J. Cheeger, W. Miiller, and R. Schrader, Kinematic and Tube Formulas for Piecewise

Linear Spaces, Indiana U. Math. J. 35 (1986), 737-754.

[6] S. S. Chern, Curves and Surfaces in Euclidean Space, in: Studies in Global Geometry and

Analysis, (C. W. Curtis, Ed.), MAA, 1967, pp. 16-56.

[7] I. Féry, Sur certaines inégalitiés géométriques, Acta. Sci. Math. (Szeged) 12 (1950), 117
124.

[8] F. J. Flaherty, Curvature Measures for Piecewise Linear Manifolds, Bull. Amer. Math. Soc.
79 (1973), 100-102.

[9] G. Galperin and A. Topygo, Moscow Mathematical Olympiads, Education: Moscow 1986.
(Russian) (Problem #33).

[10] J. Milnor, On the Total Curvature of Knots, Annals of Math. 52 (1950), 248-257.

[11] T. J. Richardson, Total Curvature and Intersection Tomography, Advances in Mathemat-

ics, to appear.

[12] L. A. Santald, Integral Geometry and Geometric Probability, Addison-Wesley: Reading,
Massachusetts, 1976.

[13] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge U. Press: Cam-
bridge, 1993.

36



We have K(P") = K(P'), using the fact that the closed polygon (v;41,u1,...,ug, vj41) is
convex, and clearly L(P") > L(P’), hence

M(P") < M(P') .

Thus M(P") < M(P), so P"is a C X-polygon. This completes the induction step, and the

proof. O
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K(P)
> L(P) .

using
27 S 27
2||vig1 — vi|| = L(dconv(P))

It remains to consider the case where P contains two consecutive reversals that are not
s Vj41, Vj42] in which v;40 = v; and

directly adjacent. That is, P contains a path [v;, v;31,

.,vj4+1] is a monotone boundary path of length < n — 1.

vj42 = vj, where Q = [v41,Vi42, ..

Now Lemma 4.3 applies to show that the polygon

!
P = <’Uo,. EERCEN PRES ER -vn—l>

has

M(P) < M(P),

and is a boundary C'X-polygon. However [v;41, v;41] may now be a jump. To remove the jump,
let Q° = [vj41,u1,. .., uk,vj41] be the monotone path from v;41 to v;41 in dconv(P) that lies

in the complement of [v;49, vit3,...,v;]. Then consider

1"
PY = <f007' e UL Vi1, ULy ey UR, U1,y - - '7vn—1> )

which is a boundary polygon with no jumps and which has two fewer reversals than P, see
Figure 6.1.

Vi = Vj+2
UV = Ui42

I’ Vit
|

[

A

|

|

I

‘\ ~

<

Ui+l

= [UU-}-I , U, Uz, U3, vj-}-l]-)

Figure 6.1: Complementing paths. (In this figure Q°

34



jumps at v;, and v;,. Furthermore v;,41 # v;,41, S0 v;,4+1 lies strictly in the interior of C;. Now
zy lies in Cy, because C is adjacent to the cone C; but not to C;F. Hence, the whole edge

[z9, viy41] lies in Cy. Thus, the cone Cy = CF[xo;vi,41 — T2, V341 — T2] has
Cz2Nconv(P) G CpNconv(P),

where strict inclusion holds because v;,41 is on a boundary edge of C; but is strictly interior

to Cq. Thus (5.2) holds. ]

6 Average Curvature Theorem

Proof of Theorem 1.1. We argue by contradiction. The combination of Lemma 2.2, Theorem
4.1 and Theorem 5.1 shows that if there is a counterexample, then there exists a boundary C'X-
polygon P = (vg,v1,...,0,-1) such that all edges of P lie in the set dconv(P). The polygon
P can be partitioned into a set of monotone boundary paths, with a reversal marking the ends
of each such path. A reversal is a set of consecutive boundary edges [v;, v;41] and [v;11, vit2]
with v;49 = »;. If a monotone boundary path contains a subpath that completely encircles
Jdconv(P), then we can snip that piece out using Lemma 5.2, and still have a C'X-polygon.
Thus we may suppose all such monotone boundary paths have at most n — 1 segments. If P
had no reversals, then P is parametrization-equivalent to k*d(convP) for some nonzero integer
k, hence M(P) = m. This contradicts P being a C'X-polygon.

Now suppose that P contains m > 1 reversals. Then m > 2, since P is closed. We prove that
there exists a boundary C' X-polygon with no jumps and fewer than m reversals. By downwards
induction there exists one with no reversals, which is impossible.

For the induction step, suppose first that 7 contains two adjacent reversals, i.e. a subpath

[Vi, Vg1, Vig2, Vi3] With v,49 = v; and v;43 = v;41. Then the new polygon
!
Plr= 00y« ey Uiy Vig1s Vit -« oy V1]

is a boundary polygon with no jumps and it has two fewer reversals. It is a C'X-polygon since

K(P') K(P) -2
T L(P) T L(P) = 2l|vig1 — vil| <M(P),
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(i). Critical configuration (ii). Nested cones

Figure 5.8: Sub-induction step

L1, that
Cry1 Nconv(P) G Cy N conv(P) . (5.2)

In particular, if reduction J5 never applies, then we cycle through all jumps and come back to
(1, to obtain
C1Nconv(P) G CyNconv(P),

a contradiction that will complete the sub-induction step.

It remains to prove (5.2). For notational convenience we suppose that k = 1. Set O3 :=
Ctlzy;21 — iy, v, — z1]. It is a cone pointed at z; with boundary in ¢; U {3, which contains
the monotone path [v;,41,...,v;,]. Let C7 := CT[zy;v;, — 21,21 — v;,] be the cone obtained
from C by reflection about zy, see Figure 5.8(ii). Then the monotone paths [vi,11,. . ., vi,]
and [v;, 41,...,v;] both lie in C] and are disjoint, for if they overlap then reduction J5 applies
to the jumps at v;, and v;;. We next show that v;,4; lies in the interior of C;. Certainly v;, 41
lies in C; UCY because [v;,, vi,41] crosses [v;,, vi,41] in the interior of conv(P), say at the point

z9. Also vi,41 € C'1+ or else v;,4+1 € {v,41,...,vi,}, in which case reduction J5 applies to the
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less jump.

(2). We may suppose that any two consecutive monotone boundary paths Qp and Qpyq
are oppositely oriented on the boundary dR, otherwise the jump [v;,, v;, +1] could be removed
using reduction J1. It follows that there are an even number of jumps.

(3). We next reduce to the case that every (monotone) boundary path Qy = [v;, 41, ..., i, ]

has
vZk € {U'ﬁk+17 ttt vlk+1} . (5.1)

For if this condition is violated for Qp, then we may apply Lemma 5.3, to get a C' X -polygon
P" in which the jump [v;,,v;,+1] is shifted and replaced with a reversed jump [v;, 41,v;]. If
Lemma 5.3 applies once more to the jump [v;, 41,v;,] in P’, then, as in step (1), P would
contain a complete monotone circuit of dconv(P) and we could delete it using Lemma 5.2, thus
decreasing n and completing the sub-induction step in this case. Now assume that Lemma
5.3 applies only once at the k-th jump, so that it eliminates the violation of (5.1) at the k-th
path Q. In applying Lemma 5.3 we note that only Q;_; and Qp are changed, hence it could
introduce a new violation of (5.1) only at Q;_;. The monotone boundary path Qj_; is extended
by concatenating toit [v;,v;_1,...,v;,+1], where v; = v;, and j € {ix+1,9,+2,...,t541}. Thus,
if (5.1) applies to the (k — 1)-st path in P’, but not to the (k— 1)-st path in P, then necessarily
v;,_, € Qp, and reduction J5 applies to the pair of jumps [v;, _,,v;,_,+1] and [v;,,v;,41] in P,
and removes a jump. Thus there remains the case where this operation makes (5.1) hold for
Qp, and does not change whether (5.1) holds or doesn’t hold at any other Q,. Repeating this
procedure, at most m applications of Lemma 5.3 guarantee that (5.1) holds at all k. (The role
of (5.1) is to allow reductions J4 and J5 to be applied.)

(4). We now consider two consecutive jumps [v;,,v;, 41] and [v;,,,, i, 41]. If they do not
cross then reduction J4 applies to these jumps, since (5.1) holds.

(5). The final case remaining is where every two consecutive jumps [v;, , v;,41] and [v;, ,,, v, ]
cross. Call their intersection point zp. We show that reduction J5 must apply to some
pair of consecutive jumps. The critical configuration is depicted in Figure 5.8(ii). The lines
Ly i= L[vi,, vy 41] and Lpqy = v, , vi,, 41] partition R? into four cones, each pointed at zy.
Of these we let C}, denote the closed cone C*[zg; v, 41 — i, Vi, 41 — Tk, see Figure 5.8(ii).

We will prove that, under the assumption that reduction J5 does not apply to the jumps £ at
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Thus Py is a boundary C X-polygon with at most two jumps, and reduction J1 can be applied
to Py if necessary to reduce the number of jumps to zero.

Induction Step. We may assume that P = (vg,v1,...,v,-1) is a boundary C' X -polygon with
no three vertices collinear. We produce a boundary C' X-polygon on a subset of the vertices of
P which has fewer jumps.

Suppose that the location of the m jumps of P are [v;,, vi,41], [Viy, Vig41]s - -+ [Vipns Vi1,
where 0 < 41 < ... < %, < n— 1. We proceed by a sub-induction on the number of edges n
in P, and show either that n can be decreased while holding the number of jumps constant, or
else a jump can be removed. In particular, this process must eventually halt with a jump being
removed, thus completing the induction step.

For the sub-induction, we consider cases.

(1). We show that each boundary arc Qj := [v;, 41, Vi, 42, - ] can be taken to be a

s Vi
monotone boundary path, having at least one line segment, or else a jump can be removed.
(This includes the wrap-around case k& = m, where we define i,,11 = 7;.)

To establish this, we can assume that there are no two consecutive jumps in P or else
reduction J2 can be applied. Next, if some boundary arc Qp contains a complete monotone
traversal of the boundary dconv(P), then we can apply Lemma 5.2 to remove it, thus reducing
n and completing the sub-induction step. If not, and if P contains a non-monotone boundary
arc Qg = [y, 41,- -+, Vi, |, then Qp must contain a reversal. The first line segment [v;, 11, v;, 4]
in Qi must have the opposite boundary orientation to [v;,_1,v;,] or else reduction J1 can be
applied. If the boundary arc Qj reverses direction at some vertex v;, which is at or before the
vertex v;,, then reduction J3 applies. Otherwise Qj is a monotone boundary path all the way
to a vertex v; = v;,, and there is no reversal at v;, i.e. v;41 = v;,—;. In that case, we may
apply Lemma 5.3 to obtain the boundary C'X-polygon P’ which is obtained from P by replacing
the jump [v;,, v;,4+1] and the boundary arc Qj with the reversed arc Q" := [vj,vj_1,...,;,41]
followed by the reversed jump [v;,41,v;,], then followed by the (non-reversed) boundary arc
Q) == [v5,v541,...,0;,41]. Now P’ has the same number of jumps as P, and its boundary arc
Q). contains a reversal that it inherited from Qj. This reversal must occur before vertex v;, 41 is
reached, otherwise Q. would have contained a complete monotone transversal of the boundary

dconv(P). It follows that reduction J3 applies to P’, to give a boundary C' X-polygon with one
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The polygon P = (vg,...,v,_1) is a concatenation of the polygonal arcs
Py = [vhvvh-}-lv ces U Uiy e o 5 Vg Vg1, - '7?]]6]

and

Py = [Vky Vkg1s -« s Vne1s V05 U1y - - - Vp] -
We associate to these the boundary polygons

P = (Vhy Vhg1y -y Vko1)

Ph = (VkyUkgtly-e ey Uy U0y . vy Vho1) -
We obviously have

L(P1) + L(P3) = L(P1) + L(P2) = L(P) .

Using the fact that [vy, vp41] and [vg_1, vg] are boundary edges, a calculation of exterior angles
at v = vy yields

K(P))+ K(P)) < K(P) .

Combining this with the last equality yields
min(M(P7), M(P3)) < M(P) .

If M(P)) < M(P) then Pjis a CX-polygon, and it has two fewer jumps than P. If M(P;) <
M(P), then Pj is a C' X-polygon, and it also has fewer jumps than P, unless P} has no jumps.

There remains a final case in which P{ is a C' X-polygon with two jumps, and P} has no
jumps. We consider two subcases according as v;41 # v;+1 or not. In the “general case” where

vj41 # vi41 we can immediately apply Lemma 3.2 to conclude that M(P]") < M(P]), where
P{/ = <'Uh7 Vht1s -5 Uiy Uy Vg1 o+ oy Vi1 U1, Vg 25 - oy 'Uk—1> .

Thus Py is a boundary CX-polygon, but it may still have two jumps, namely [v;,v;] and
[vi41,v;41]. However both these jumps occur in an arrangement where they can be eliminated
by reduction J1, completing the “general case.”. Finally, in the “special case” where v; 11 = v;41,
we use Lemma 3.2 with a limiting argument (using a distinct v;4; and letting v;41 — v;41) to

conclude that M(Py') < M(P]), where
"
7)1 = <'Uh7 Vhd1y- -5 V05,0515« 53 Vid13 V54254 - -, 'Dk—1> .
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There remains the “special case” where v;41 = v;, pictured in Figure 5.6(ii). As in the
case above, v;49 lies in the open half-space separated from v;41 by £[v;,v;41]. We consider the
boundary polygon

Pl = (00, s Uiy Vjg2s - - o5 Op)

which has two fewer jumps than P. We conclude that P’ is a C'X-polygon by an application
of Lemma 4.4 to P, with Q@ = [v;, vit1,...,0;,vj41].

Reduction J5. P contains a monotone boundary path [vy, vpi1, .. ., v;], followed by the jump
[vi, Vi1], followed by a monotone boundary path [viyq,...,v;] followed by a jump [v;,v;41]
which either crosses [v;,vit1], i.€., (v, vi41) N (v;,vj41) # @, or else viy1 = vip1. This is
then followed by a monotone boundary path [vj11,vi42,. .., v such that vy = vy,. Furthermore
v; & {Vit1,...,0;}.

First, reductions J1 or J2 can be used to remove one or the other of the two jumps unless
Q1 = (Vi41,Vig2,...,v;) and Qo = (Vj41,..., 0% = Vp, Vht1,...,v;) are both convex polygons
whose convex hulls are disjoint, except in the “special case” v;41 = 941, in which case they
intersect in a point. The situation is pictured in Figure 5.7(i) and (ii). The path pictured in

the “general case” is exactly the generalized crossing quadrilateral in Lemma 3.2.

Vi+2

Vig1 = Vj41

Vp = Uk

Uh41

Uy

(1). General case (vj41 # Vj41) (ii). Special case (vig1 = vj41)

Figure 5.7: Reduction J5
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We apply Lemma 4.3, taking Q = (v, vi41,...,0;41), to conclude that P’ is a C'X-polygon.
However, it may be that [v;,v;41] is a jump so that the number of jumps has not decreased.
But if so, then reduction J1 immediately applies to this jump, so it can be removed.

Reduction J4. P contains the jump [v;, v;41], followed by a monotone boundary path [vi4, . . .v;],
then [v;,v;41] is a jump which either does not touch [v;,v41], or else v;11 = v;. Furthermore
v; & {Vit1,...,0;}.

Here v;_1 and v;42 are in opposite open half-spaces determined by ¢(v;,v;+1), otherwise

reduction J1 or J2 applies. The resulting situation is pictured in Figure 5.6.

Vi41 Vi41

U5 Uj+1

(1). General Case (v; # vj41) (ii). Special Case (v; = vj41)

Figure 5.6: Reduction J4

Consider the “general case” that v;41 # v;, pictured in Figure 5.6(i). If v;4, is in the closed
half-space containing v; with boundary line £[v;, v;41], then the jump [v;,v;44] can be removed
by reduction J1. (This includes the case v;42 = v;.) So suppose v;49 is in the opposite open
half-space from v; determined by the line {[v;,v;11]. Now the hypotheses of Lemma 4.3 are

fulfilled for P with Q = (v;, v;41,...,vj41), so we conclude that the boundary polygon
Pl =00,y Uiy Vjgye ey Un)

is a C'X-polygon. Since P’ removes two jumps and possibly adds one jump with respect to P,

it has fewer jumps.
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has fewer jumps. Convexity forces v;_1 and v;43 to be in the same closed half-space determined

by the line £[v;, v;42], so the hypotheses of Lemma 4.3 hold for P with Q = (v;, vit1, viy2),

hence P’ is a C' X -polygon.

Reduction J3. P contains a jump [v;,vi41], the path [vi41,vi42,...,vj41] is a monotone

boundary path followed by a reversal vj1o = v;, and in addition v; & {viy1,...,v;}.

We may assume that v;49 and v;_; are on opposite sides of the line {[v;, v;41], otherwise
reduction J1 applies. This situation is pictured in Figure 5.5.

Vit1

Vi42

Vi = Vj+2

v =~ 7 Vjt1

Figure 5.5: Reduction J3 (case v; # vj41).

If v; = vj41, then consider the boundary polygon
!
P = <f007 s U V42, V543, - - '7vn—1> )

which has one less jump than P. Now the hypotheses of Lemma 4.4 apply to P with Q =
[V, Vig1,- - -, Vj+1]), hence P’ is a C'X-polygon.

If v; # vj41, then consider instead the boundary polygon

!
P = <’L)0,...7’02',‘?]]‘_}_1,’0]‘_}_27...7’Un_1> .
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Vi42

V; = U
\\H—l 4
~N

Figure 5.3: Reduction J1

First, v;_1; and v;39 must be an opposite open halfspaces determined by ([v;, v;11], or else
reduction J1 applies. Similarly »; and v;43 are in opposite open half-spaces determined by

L[vi31, vip2], or else reduction J1 applies. We now have the configuration pictured in Figure 5.4.

Vi41

Vi—1

U; Vit2

Figure 5.4: Reduction J2

The boundary polygon

I
P = (vo,. .., Vi, Vig2, Vit3y -+ Vpe1)
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Case (a) is where v;_q and v;41 are in the same open half-space determined by {[v;, v;41] or else

vj41 is on this line (which means v;41 = v41). A calculation? of the external angles at v; gives
K(P')=K(P).

Case (b) is where v;41 and v;_y are in opposite open half spaces determined by ([v;, v;41].
We then have

K(P)=K(P)-20 < K(P),

where 6 = angle (v;41,v;,vj41), see Figure 5.2(ii). (In case (b) v;41 necessarily coincides with
some vertex in vi4g,...,0;-1.)

In either case we have

so M(P') is a CX-polygon. a
Proof of Theorem 5.1. It suffices to show that if there exists a boundary C'X-polygon P
having m > 1 jumps, then there exists a boundary C X-polygon P’ having less jumps.

We give five situations below under which a boundary CX-polygon P’ with fewer jumps
can be constructed from P. Then we prove that given any boundary CX-polygon, we can
construct another boundary C X-polygon having the same number of jumps, to which one of

the reductions J1-J5 below applies.

Reduction J1. P contains a jump [v;, viyq1] such that v;_y and vy are in the same closed
half-space of L[v;, vit1].

In this case, since [v;,v;41] is a jump there are vertices of P in the open half-space of
L[v;,vi31] not containing v;_; and v;3o. By ordering them properly we get a convex path

Uy = vy, Ug,...,u; = vy see Figure 5.3. Take the boundary polygon
!
Pl= (00, ..y Dis1; Ulyen oy Uj; Vg, ...y Up) -

Then K(P’) = K(P) but clearly L(P’) > L(P). Hence M(P') < M(P), and P’ is a boundary
C X -polygon with one less jump.

Reduction J2. P contains two consecutive jumps [v;, v;11] and [viy1, vig2].

2This holds even if [vi—1,v;] is a jump.
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Now L(P') = L(P) — L(P"), and we also have
K(P)< K(P)-2r,

by direct computation of external angles at v; and »;. Thus

n K(P) K(P)-2r
M) = L(P") = L(P) — L(dconv(P)) < M(P),

hence P’ is a C'X-polygon. |

Lemma 5.3 Let P = (vg,...,v,_1) be a boundary CX -polygon. Suppose that P contains a
Jump [v;, vi41], with vertices viyo and v;_y in opposite open half-spaces determined by the line
L[v;, vi41], followed by a monotone boundary path [viy1,viy2,. .., v;] having v; = v;. Then

7)/ = <'007 ey V13U, V1, V=2 - - s Vi1, Ui U150 - 1 'Un—1>

is a boundary CX-polygon, and M(P') < M(P).

Proof. Here P’ is obtained from P by replacing [v;,vjt1,...,v;] by following the reversed
monotone boundary path [v;,v;_1,v;_9,...,v,41] and then taking the reversed jump [v;41, v;].
There are two possibilities, depending on the location of v;_; and v;4; with respect to the line

L[v;, viy1], see Figure 5.2.

Uj+1
Vi41 Vi1

Vi42 Vi42

Vi-1 Vi1

Vi = vy Vi-1 U = Uy Vi-1

(i). Case (a) (ii). Case (b)

Figure 5.2: Configurations in Lemma 5.3.
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v} = v;. After this is done, all midpoint vertices in a set of collinear vertices are moved radially

outward slightly from a chosen point 0 € Int (conv(P)), see Figure 5.1.

Viy1 = Yy

Vit2

(i). Before (ii). After

Figure 5.1: Eliminating collinear vertices

A sequence of properly chosen small deformations will preserve the C' X-property, and de-
stroy collinearity.

We next prove two lemmas which, when they apply, simplify the C'X-polygon P, while
leaving the number of jumps unchanged. We define a monotone boundary path to be a path
[vi, Vit1, .. ., viy;] Where all edges are in dconv(P) and no (undirected) edges are traversed twice,
i.e., all vertices in the path are distinct, except possibly the end vertices of j > 3. Such a path

has an orientation, either clockwise or counterclockwise.

Lemma 5.2 If P = (vg,v1,...,0,-1) is a boundary CX-polygon which contains a monotone
boundary path [v;,viy1,...,v;] that completely traverses Oconv(P), then
7)/ = <1007 V1yee ey Ui—1, Vg, ’U]‘_|_1, ey ‘?Jn_1>

is also a boundary CX-polygon.

Proof. By hypothesis »; = v; and the polygon P” = (v;, vi41,...,vj_1) is parametrization-

equivalent to dconv(P). Since P is a C'X-polygon,

M(P") = 7 2 = M(dconv(P)) > M(P) .

(dconv(P))
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(7).

There remains the case that vy lies in the open cone C°[vs;v3 — vg,v3 — v1], which is
marked B in Figure 4.7. In this case v3 is in the interior of the triangle (v1,v2,v4), hence

it is an interior point of P.

We can now repeat the argument of steps (1)—~(7), starting with the configuration
v1, Vg, V3,04 in which wv3 is strictly inside the triangle (vq,vq,v4). Here we note that
(1)-(7) did not use the full strength of the property that v, was a boundary point, but
only used in step (4) the weaker property that vg ¢ C°[v1; v1 —v2, v1 —v3]. The equivalent
property that vy & C°[ve;ve — v3,v3 — 4] follows from w3 being in the interior of the
triangle (v1, v2, v4). (Here C°[vg; v3 — v3, v3 — v4] is the open cone labeled C' in Figure 4.7.)
We conclude that at least one of the reductions 11-I3 applies, unless 4 is strictly inside

the triangle (vq, v3,v5). Thus v4 is an interior vertex.

. Continuing similarly, we get a reduction unless v;49 is contained in the interior of triangle

(vi, viy1, Vigs), for all 4 > 1. Thus all vertices v;15 are interior vertices, which contradicts
the fact that P has at least one vertex on dconv(P). This contradiction shows that one

of the reductions I11-I3 must apply. a

5 Reduction Theorem: Removing Jumps

We now have reduced to the case of a C'X-polygon P having all vertices »; on its boundary

dconv(P), i.e., P is a boundary CX-polygon. Given a line segment [v;,v;11] in P, we call it a

Jump if it is not entirely contained in the boundary dconv(P). In this section we prove the

following reduction theorem.

Theorem 5.1 If there exists a boundary CX-polygon, then there exists a boundary CX-polygon

which has no jumps.

As a preliminary simplification, we show that we may suppose that the boundary C' X-polygon

has no three collinear vertices. To achieve this, we first add extra vertices so that no edge

contains any vertex v; of the polygon in its interior. That is, if the interior of an edge [v;, vi41]

passes through a vertex v;, then this edge [v;,v,41] is split in two by adding a new vertex
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that vy9 and vz are in opposite open half-spaces determined by £[vy,v3], as pictured in

Figure 4.7.

Figure 4.7: Non-reducible configuration

. If w9, v3, v4 are collinear and v3 is an interior point, reduction I1 applies.

. Suppose vy, v3, v4 are collinear and that vs € dconv(P). Then v4 is on the same side of the

line £[vq, v3] as vy. If 2 did not lie on the same side of the line £[v1, v3] as vg, then (by (2))
vo must lie in the open cone C°[vy; vy — ve, v; — v3], which is marked A in Figure 4.6. If
so, then vy lies strictly inside the triangle (vg, vq, v3), contradicting v; € dconv(P). Thus
v must lie on the same side of the line £[vy, v3] as vy, hence vy and vy are on the same

side of the line [[vq, v3], so reduction I3 applies to [vg, v1, vo, v3, v4].

. There remains the case that vy, v3, v4 are not collinear. If v, is in the same open half-space

as v, with respect to the line {[vy, v3], then reduction 12 applies. Thus we may suppose

that v4 is in the open half space on the other side of £[vq, v3].

. If v4 is also in the closed half-space determined by ([vy,v3] that contains vy, hence v,

then reduction I3 applies to [vg, v1, vo, v3, v4].
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in an open half-space determined by {[v;_1, v;]; we allow the possibility that v;, v;41,v;42 are
collinear. Now extend the ray £*[v;_1;v; — v;_1] until it hits the boundary dconv(P) at a point
w. There are two cases.

Case (a). The ray (*[v;11;vi41 — v;42] does not intersect the open line segment (v;, w). See
Figure 4.6(i). Set

!
P = <v07' s U1, Wy Uiy 1, - - '7vn—1> .

Then K(P') = K(P) and L(P’) > L(P), while conv(P’) = conv(P), so P’ is a C'X-polygon
with the same number of vertices as P and one fewer interior vertex.

Case (b). The ray (*[v;11; vit1 — 42| intersects the open line segment (v;, w) at a point
w', see Figure 4.6(ii). Now w’ is an interior point of conv(P), hence v;11 must be an interior

point of conv(P). Set

! !
P = (vo,...,vic1, W iy, .., Vpe1)

Then K(P') = K(P) and L(P') > L(P), while conv(P’) = conv(P), so P’ is a C'X-polygon
with one fewer vertex and one fewer interior vertex than P.

Reduction I3. P contains an arc [v,_1,v;, Vi1, Vita, Vigs] Such that (v;,vi41,vi42) is a
triangle and v,41 is an interior point of conv(P). Furthermore v;_y lies in the closed cone
CHlvg;v; — vigo, vig1 — v and vig3 lies in the closed cone CV[vi1g; vige — Vi Vig1 — Viga).

In this case Lemma 4.3 applies with @ = (v;, vi+1, vi42), to conclude that
Pl = (00, V1, -« oy Vet Viy Vig2y e -+ Un1)

is a C' X -polygon. Also conv(P’) = conv(P) since v; is an interior point of conv(P), and P’ has
one fewer vertex and one fewer interior vertex than P.

Induction Step. We assume that 7 has at least one interior vertex, and without loss of
generality suppose that v; € dconv(P) and that vy is an interior vertex. We now claim that at

least one of reductions I1, I2 or I3 applies to P. To show this, we consider cases.

(1). If v1, 3, v3 are collinear then reduction I1 apples to remove vy as an interior vertex. Thus

we may suppose that v3 does not lie on the line £[vq, vo].

(2). If g and w3 lie in the same closed half space determined by {[v,v2], then reduction 12

applies, since v3 lies in an open half-space determined by £[v1, v3]. Thus we may suppose
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Case (b). If v;_1 and v;41 lie on the same side of {[v;_1, v;] from v;, then the polygon P has
exterior angle 7 at v;. Now prolong the ray £*[v;_1;v; — v;_1] until it hits a boundary point w

of conv(P). Replacing v; with w, we obtain
!
P = <7-707 Vige s oy Vi1, Wy Vi1 - - 4y lvm—1>

and K(P') = K(P) since there is still an exterior angle = at w, while L(P’) > L(P). Thus
M(P") < M(P) so P'is a C X-polygon.

Reduction I12. P contains an arc [v;_1, v;, Vi1, Viy2] such that v;_y and v;1o are on the same
side of the line L[v;,vi11], i.e., are in the same closed half-space. Furthermore at least one of
v; or viy1 1S an interior point of conv(P) and at least one of v;_1 and vy2 is not on the line
Llvi, vip].

This situation is pictured in Figure 4.6. For definiteness let »; be an interior point. If

Vit2 Vit2 Vi—1

Vi—1

(i). Case (a) (ii). Case (b)

Figure 4.6: Reduction 12

Vi—1, V5, Vi1 are collinear then reduction I1 applies. Therefore we may assume that v;4q is
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while

L(P)— L(P'") = L(Q) = L(dconv(Q)) < L(dconv(P)) .

Then, since P is a CX-polygon,

M(P') = 12((77))//)) < L(P)Ii(i()(?_co%l?i/(P)) < M(P) < M(dconv(P)) < M(dconv(P')) ,
so P’ is a CX polygon. O

Proof of Theorem 4.1. It suffices to show that if there exists a C'X-polygon P which has
m > 1 interior vertices, then there exists a C'X-polygon having strictly fewer than m interior
vertices. The theorem then follows by downward induction on m.

We give three reductions below. Each reduction produces a new C X -polygon P’, in which
P’ has fewer interior vertices than P, and which every vertex of P’ is a vertex of P. Later we
prove that one of these reductions applies to any C' X-polygon P.

Reduction I1. P contains three collinear vertices v;_1,v;, vi+1 such that v; is an interior
vertex.

This situation is pictured in Figure 4.5.

Vi—1
Vi—1 Ui-1 /
v; Vig1
U; A
W\
\i
) \
Vit1 Vit1 It 9P
w
(i). Case (a) (ii). Case (b)

Figure 4.5: Reduction I1

Case (a). If v; separates v;_1 from v;41 then we may just delete v;.
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Since conv(Q) C conv(P), we have

2T 2T < 2(02' + 0]')

MP) < FacomP)) < Q) = T(Q) - Ao — o]l

where Lemma 2.1 and Lemma 4.2 were used. However, this yields

I((P) - 2(02' + (9]‘)
L(P) = (L(Q) = 2[[v: — v[)
Since conv(P’) C conv(P), (2.4) gives M(dconv(P’)) > M(dconv(P)), hence P’ is a

M(P') =

< M(P), (4.7)

C X -polygon. O

For later use we state a limiting case of Lemma 4.3.

Lemma 4.4 Let P = (vg,v1,...,0,-1) be a CX-polygon. Suppose that v; = v; for some i and
J with 2 < j—1i < n—2, the polygon Q = [v;,vi41,...,v;] is convex, and there is a supporting
line ([v;,w] to Q at v;, such that w lies on the same side of {[v;, vi41] as vj_1, the vertex v;_4
lies in the closed cone C*|v;;v; — w,vip1 — v;], and the vertex vjy1 lies in the closed cone
CHlvj;w —vj,vj—1 — v;]. Then P = (v, v1,...,0i,Vit1s. ., 0p—1) has M(P') < M(P), and

P is a CX-polygon.

Proof. The situation is pictured in Figure 4.4.

Figure 4.4: Configuration in Lemma 4.4.

This situation arises from Lemma 4.3 in the limit as v; — v; along the support ray {*[v;; w — v;].
Note that both »;_y and v;4; are permitted to lie on the support line {[v;, w].

By considering internal angles at v;, we find that
K(P)—- K(P') > 2r,

16



Thus, using (3.4)

which proves (4.6).

Lemma 4.3 Let P = (vg,v1,...,0n-1) be a CX-polygon. Suppose that, for some i and j with
2<j—1i<mn-—2, the polygon Q = (v;,viy1,...,v;) is convez, the vertex v,_q lies in the closed
cone

C™Hvi; vi— vj, vi41 — v;| and that the vertex vjyy lies in the closed cone Ct[vj;vj —v;, vi—1 — vj].

Then P’ = (vg, ..., 005,041, .., Vp—1) has M(P') < M(P), and P’ is a CX-polygon.

Remark. Note that this lemma applies in “degenerate” cases where v;4; lies on the line
l[v;—1,v;] and where v;_4 lies on the line ([v;, v;41].

Proof. The hypotheses are pictured in Figure 4.3.

Vi+1

Figure 4.3: Configuration in Lemma 4.3.

Note that v; # v;, and v;_; may lie on {[v;, v;] to the left of v;, and v;41 may lie on the line to
the right of v; (in Figure 4.3).
Let 6; = angle (v;41,v;,v;) and 6; = angle (v;,v;,v;_1). Certainly
L(P') = L(P) = (L(Q) — 2Jvi — vj]]) -
and the convexity of Q yields
K(P)=K(P)—2(0;+6,) .

Now the C' X-polygon property of P states that

K(Oconv(P)) 27
M(P) < L(dconv(P))  L(dconv(P))

15



The key inequality (4.4) in the proof of Lemma 4.2 also has an integral-geometric proof
which relates it to Lemma 3.1, as was observed by the referee.

Let I denote the line segment [vg, v1] in triangle 7. Crofton’s formula gives v([I]) = 2||vo —
v1||, and also gives v([7]) = L(7), because v-almost every line that hits 7 hits it twice. Thus

(4.4) is equivalent to

>

g . (4.6)

Consider now a configuration @ consisting of the triangle 7 together with a copy 7’ of 7

obtained by rotating 7 by angle m around its vertex w, with vertices v{, v, w, see Figure 4.2.

Vo

0"

Figure 4.2: Reflected Triangle

Now, p is the probability that a line that hits 7 also hits I, so its complement ¢ = 1 — p is
the probability that a line that hits 7 hits both [vg, w] and [v, w]. The nonconvex quadrilateral
Q' = [v],v1,v{,v0] (not the quadrilateral pictured in Figure 4.2) has interior angle ¢ = 7 — .
The lines that hit @’ four times are exactly the lines that hit 7 in both [vg, w] and [vy, w] or
that hit 7" in both [v{, w] and [v], w], while those that hit Q" twice are exactly those lines that

hit [vg, 1] or [v), '], hence v([Q']4) = 2v(W), where
W:={leH: {N[vg,w]# 0 and £ N [vy,w] # 0}.
Since every line that hits @’ hits 7 or 77 or both,
v([Q) < v(IT]) + v([T']) = 2v([T])
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Since 6y + 6, < 7 there is a triangle T having side [vg,v1] and angles 6y and 6, at vertices
vg and vy, respectively. The convexity of P implies that the curve P lies inside or on T, i.e.,

conv(P) C conv(T), see Figure 4.1. Thus L(T) > L(P), by Lemma 2.1. Therefore it suffices to

prove
lo1 —woll 6
LTy — 2«

where 8 = m — 0y — 61 is the apex angle of triangle T, see Iigure 4.1.

(4.4)

w

(i) General case (ii)

Figure 4.1: Circumscribing triangle T’ for P

Holding 6 fixed, the largest value of L(7T)/||vo — v1]| is attained for an isosceles triangle, as can
be seen by making a small variation in 6. For this triangle

1
L(T) = |lvo — o] <— 7+ 1) 7
sin 5

2

cf. Figure 4.1. To prove (4.4) it thus suffices to show that

6 1 -
— < +1 . 4.5
< () )
! by sin £ 4cos? &
Now, f(#) := < Lo+ 1) is strictly concave on [0, 7] since f() = —%%, and (4.5)
sin 2 sin g
follows easily. O

13



Lemma 3.2 Let P = (vg, v1; U1, ..., U; v, 035 W1, ..., w;) be a convexr polygon having no three

collinear vertices, and set
r._ e - : .
P = (00,025 Uy Uim1y - ooy UL} V1, V33 W, .oy W)

Then
M(P) > M(P) . (3.5)

Proof. The situation is pictured in Figure 3.3, where we assume a counterclockwise orientation
of P for definiteness. The proof given for Lemma 3.1 goes through in the generalized case. Note

that K(P') = 2(7 + ¢) is still valid. ]
4 Reduction Theorem: Removing Interior Vertices

We will prove Theorem 1.1 by contradiction. By Lemma 2.2 we may assume the existence
of a polygonal counterexample. The basic strategy of the proof is to deduce the existence of
simpler and simpler polygonal counterexamples, until a contradiction is obtained. Henceforth

a CX-polygon P is a polygonal counterexample to Theorem 1.1, i.e., one with
M(P) < M(0conv(P)) . (4.1)

Our object in this section is to prove:

Theorem 4.1 If a C X -polygon exists, then there exists a C' X -polygon P’ such that all vertices
of P' lie on dconv(P’).

We call such a polygon P’ a boundary CX-polygon. We begin with two preliminary lemmas.

Lemma 4.2 Let P = (v, v1,...,0n-1) be a convex polygon. If 6y and 6, denote the interior
angles at vg and v1, respectively, then

2(00 + 01) > 2T

LP) = 2l — ol = L(P) ° (4.2)

Proof. If 6y + 6; > 7 the inequality is immediate. So suppose 6y + #; < 7, in which case the

inequality to prove becomes
471'||’01 — ‘?Joll Z 2(71' — 00 - 01)L(P) . (43)

12



hence

v(A') 1 ¢
=—(1- =)).
V(A) 2 ( COS( 2 ))
A similar bound holds for l;((g)), hence we obtain
!
,y4 - < 1—cos(?).
vy + vy 2
We conclude that (3.4) is implied by
¢ ¢
=>1- = .
> 605(2),0<¢><"r
This follows easily by the strict convexity of 1 — cos(%) for 0 < ¢ < 7. a

For later application we generalize Lemma 3.1 to cover the case of a quadrilateral contained

inside a larger convex polygon, see Figure 3.3.

uZ Ul
Vo U1
U3 U3 Yo
wl e o o w]
(i). Convex P (ii). Nonconvex P’

Figure 3.3: Generalized quadrilaterals P and P’
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cf. [12, p. 31] and Steinhaus [15]. Let v; = v([P]i) and v;, = v([P’]x). Now, each line that hits
P also hits P’ and conversely, and, excluding a set of v-measure zero, such a line hits P in two
points and hits P’ in either two or four points. Crofton’s formula gives, £L(P) = vy = v} + v}
and L(P') = v} 4+ 2v} hence the inequality (3.3) is equivalent to

!

v

¢ S 4

/ 7t
T Vytuy

(3.4)

We now define some sets of lines associated to the nonconvex quadrilateral P’. For £ € H let
a € [0, 7) denote the angle through which the vector v; — v3 must be rotated counter-clockwise
to become tangent to ¢ and let 3 € [0, 7) denote the angle through which the vector vg — vy

must be rotated clockwise to become tangent to £, see Figure 3.2. We set

A = {f€H:/ hits segment [vy, v3]}
A = {éeH:EeAandOS(Jzég}
B = {f€M:{ hits segment [vg, ve]}
B = weHﬁeBmmosﬁﬁgk

Now, £ € [P']4 implies that
at+f=¢,
see Figure 3.2. At least one of a or 3 is < %, hence, [P’]4 C A" U B’ which yields
vy < v(A)+ v(B).
Next, A C [P'] and B C [P’], hence
v(A) < vy +vy,

and
v(B) < v +vj.

Thus

vy o vA)+uB) _vA) (B
vh+ vy~ vh + v} ~v(A)  v(B)

Since v(-) is invariant under Euclidean motions, we may treat {[v;, v3] as the z-axis centered at

v1 = (0,0) with v3 = (L,0) to obtain v(A) = 2 L = 2||v; — v3|| while
v
v(A') = / / sin(a) dadz ,
o Jo
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where ¢ is the interior angle where the two edges of P’ cross, see Figure 3.1. Thus the inequality

(3.1) is equivalent to
2(m + ¢) N 27
Lpy — LP)

(3.3)

0
Vo

N

(%) U3

Figure 3.2: Line £ hitting nonconvex quadrilateral.

We prove the inequality by an integral-geometric argument. Let H denote the set of (un-
oriented) lines in R? and v denote the Haar measure for sets in H (invariant for Euclidean
motions). If we parametrizes line £ in R? by the data (z,6) indicating that ¢ hits the z-axis at

the point (z,0) with angle # then the kinematic density dv is given by
dv = |sin(0)| dz df ,
(see Santalo [12, p. 29]). For a set S C R? and k£ > 1 let
[S]:={teH: (NS #0}, and [Slp:={fecH:|[{NS|=k}.
For a polygon P with m sides Crofton’s formula gives

£P) = 23 k(P
k=1



(4.) C*[vp; v1,v2] is the (closed) cone {vg + A\1v1 + A2v2 : A1, A2 > 0}, which is pointed at vg.

C°[vg; v1,v2] is the open cone {vg + Ayvy + A2vg 1 Ay > 0, A2 > 0}, which is pointed at vg.

(5). angle(wg, v1, v2) denotes the measure (in radians) of the angle determined by lines [vg, v1]

and [[vq, v3], with 0 < angle(vg, v1,v2) < 7.
3 Quadrilaterals

The simplest polygonal case of the inequality of Theorem 1.1 is that between a convex
quadrilateral P and nonconvex quadrilateral P’ having the same convex hull. These are pictured
in Figure 3.1, where for convenience we view the vertices of P oriented counterclockwise. We

0 U1
Vo

Vo U3

Figure 3.1: Convex and nonconvex quadrilaterals.

prove the following result.

Lemma 3.1 Let P = (vg, v1,v2,v3) be a convex quadrilateral and let P’ = (vg, va, v1, v3) be one
of the two nonconvex quadrilaterals (with two crossing edges) that have the same convex hull as

P. Then

M(P') = L’(P,) > L’(P) — M(P) . (3.1)
Proof. We have K(P) = 27 while
K(P') = Z(W —0;) =41 — (21 — 2¢) = 2(7 + @) (3.2)



where V(D, B) is the mixed volume of D and the unit ball B. Now (ii) follows from the
monotonicity of mixed volumes in their arguments, cf. Schneider [13], (5.1.23). O

Lemma 2.1 implies that if Dy and Dy are convex sets and Dy C Dy, then

27 27
= > = . .
M(9Dn) 2(0Dy) = L(0Dy) M(9D,) (2.4)
Thus, to prove Theorem 1.1, it suffices to prove that
M(vy) > M(dconv(7)) . (2.5)

We next reduce Theorem 1.1 to the special case of polygons.

Lemma 2.2 If there exists a rectifiable curve v contained in a convex set D such that

M(7) < M(OD), then there exists a closed polygon P such that M(P) < M(dconv(P)).

Proof. Let v and D satisfy the hypothesis of the lemma. As observed in (2.3), there exists
a sequence of polygons P; inscribed in v such that M(P;) — M(v). Choose P = P; with i
taken so large that M(P;) < M(9D). Since conv(P) C D, we have M(9D) < M(dconv(P))
by (2.4), hence M(P) < M(conv(P)). a
We will prove Theorem 1.1 in the polygonal case by contradiction, showing that any polyg-
onal counterexample implies the existence of simpler polygonal counterexamples, until we in
effect reduce to a critical case: a convex quadrilateral versus a nonconvex quadrilateral with
the same vertices. In §3 we show there are no counterexamples in the critical case. Then, in
§4-86, we give the series of reductions culminating in Theorem 1.1.
Notational Conventions. In the remainder of the paper we use the following notation for

polygons, rays and cones.

(1). [vo,...,vn—1] denotes a polygonal arc consisting of n— 1 (oriented) line segments [v;, v;11],
0 < ¢ < n—2. (Wesometimes group vertices using semicolons, e.g. [vg, ..., v; w1, ..., w;].)
(2). (vg,...,v,—1) denotes a (closed) polygon P. It consists of the n line segments [v;, v;11],

0<i<n—1, with v, = vg.

(3). l[vg, v1] is the line through vy and v;.

[*[vo; v1] is the (closed) ray {vo + Avy : A > 0}



This definition was suggested by Fox, see Milnor [10]. For C%-curves it coincides with the
definition (1.1).

If P; and P, are polygons inscribed in a closed curve 7, let P’ denote their common refine-
ment, i.e., P’ is the inscribed polygon having vertices v} = v(¢.) where ¢! runs over all values of

t; for both P; and Py. Then
L(PY > max(L(Py), L(Py)),

K(P) > max(K(P1),K(Ps)) .

Consequently for any rectifiable curve =, there exists a sequence {P/} of polygons inscribed in
7, such that L(P!) — L(v) and K(P}) — K(v) as ¢ — oo. Thus there exist inscribed polygons

P! in v with
M(P]) — M(vy) as i— . (2.3)

The parametrization equivalence class of a curve v consists of all strictly monotone reparametriza-
tions of 7. If v is a closed curve, we also allow a shift of base point ( mod (b—a)) as an admissible
reparametrization. Both definitions 2.1 and 2.2 are invariant under such reparametrizations.

From now on we consider only curves and sets in the plane R%. Given a set S let conv(5)

denote the convex hull of 5. We first reduce Theorem 1.1 to the case that D = conv(7y).

Lemma 2.1 (i) If D is a bounded convex set in R? then
K(0D)=2r .
(ii) If D1 C Dy are convez sets in R? then
L(0D1) < L(0Dy) ,

Proof. (i) This follows from Santal6 [12], p. 113, observing that the curvature of dD has
constant sign if D is convex.
(ii). This follows by integral geometry, using Crofton’s formula for L(7). Alternatively, for a

convex set in B2 we have

L(OD) = %V(D,B)



of a polygonal curve P by

m—1
LP)= > o1 — vill
=0

where ||-|| is Euclidean length. The total absolute curvature K (P) of a polygon P = (vg, v1, ..

L] vn—1>

is the sum of all the external angles between the oriented line segments [v;, v;1+1] and [v;41, viyo]

in the planes they determine, where by definition [v,,_1,v,,] = [v_1, vo], i.e.

—

m—

K(P)= E (m — angle (vi—1,v;,vi41)) ,

=0

where we adopt the convention that

0 < angle(v;—1,v;,v41) <™

Thus external angles lie between 0 and 7, see Figure 2.1. If v;_1, v;, v;41 are collinear, then the

external angle is 0 if »; lies between v;_y and v;41, and is ™ otherwise.

Vit2

Vi1

Figure 2.1: External angles

Vi42

Vi1

A polygonal curve is inscribed in a curve v if v; = y(t;) where a < t; <ty < ... < 1, <b.

The definition of length above extends to curves by

L(v) :=sup{L(P): P is inscribed in 7}

(2.1)

For Cl-curves L(7) is equal to the usual definition of length. We say that v is rectifiable! if

L(v) < co. For closed curves we define total absolute curvature by

K(v) :=sup{K(P): P is a polygon inscribed in v} .

(2.2)

!The image or trace of the curve v is ¢ = v([a, b]). A curve is called rectifiable if the one-dimensional Hausdorff
measure H'(c) < oo. This coincides with the definition above, although L(v) > H'(c) may occur, when the

parametrization traverses parts of ¢ more than once.



where (k1,- -, k,—1) are the curvatures at a point of y. We define the average mean curvature
by

M(7) = Hlxﬁil(zv)) : (1.9)

where H"~1 () is the (n — 1)-dimensional Hausdorff measure of v, which satisfies H"~!(y) < oo

since v is a C'?-immersion. The n-dimensional analogue of Fary’s inequality, that
M, (0D) < My (7) (1.10)

where v C D = B,(r) = {z € R" : ||z|| < r} is a result of Burago and Zalgaller [3, Theorem
28.2.5]. Their result applies to v that are C'?-smooth immersions of manifolds with angles. We
note that there is a polyhedral analogue of mean curvature, which traces back to work of Steiner
[14] in 1840, and for which see Banchoff [1], [2], Chern [6]. For other curvature measures for
polyhedra, see Flaherty [8] and Cheeger et al [4], [5].

It would seem natural to try to prove Theorem 1.1 using methods of integral geometry.
There are elegant formulae for length (Crofton’s formula) and also for total curvature, the
latter appearing in Richardson [11]. At present we do not see how to obtain a proof of Theorem
1.1 using integral geometric methods. We have included integral-geometric proofs of some
special cases (Lemmas 3.1 and 3.2) which are due to Joel L. Weiner, and replace our original
elementary proofs.

Acknowledgments. We are indebted to Serge Tabachnikov for bringing this subject to our
attention. He encountered the problem in the special case of the circular disk D as a Moscow
Mathematical Olympiad problem, see Galperin and Topygo [9, Problem #33]. We are indebted

to a Joel L. Weiner for several corrections.
2 Basic Facts and Preliminary Reductions

An (oriented) curve v is a continuous mapping 7 : [a,b] — R™ It is closed if v(a) = v(b).
We define length L(7) for curves and total curvature K(7) for closed curves using polygonal
approximations that respect the parametrization. A polygonal curve P = [vg, v1,..., V] is
specified by its ordered set of vertices {v; : 0 < i < m}, and its image consists of the set of
oriented line segments [v;, v;41]. It is closed if v,, = vy and we then call P a polygon and denote

it P = (v, v1,...,0m-1). We linearly parametrize P by arclength. We define the length L(P)



(i). Region S, (ii). Curves with M(y) = 2Z

1
Figure 1.1: Nonconvex region S,(0 < a < 1)

analogue of Theorem 1.1 may hold.

Conjecture. For % < a < 1, and for any rectifiable closed curve v contained in S,
M(05,) < M(7v) . (1.7)

This conjecture, if true, might conceivably be proved using arguments in the spirit of this paper.
However there are definitely some extra complications to overcome. Figure 1.1 (ii) pictures some
curves v attaining equality M(vy) = M(05,) = %TW' One of these curves contains a “jump,”
(using the terminology of §5) and this shows that the arguments of §5 cannot apply in this case.
The existence of extremal curves with a “jump” also implies that the set of extremals would be
strictly larger than the (conjectured) set of extremal curves for a convex set D.

There may well be valid n-dimensional generalizations of Theorem 1.1. For a convex body
D in R™ the set 0D is a convex closed hypersurface. There are subtle issues in formulating

n-dimensional analogues of total curvature, so we restrict attention to the case of closed (n—1)-

dimensional submanifolds v that are C2-immersed in R™. The total mean curvature of 7 is

Kon(7) ::/|H|dV, (1.8)
v
in which H is the mean curvature
H = L(k + -t kpo1)
= n+ 1 1 n—1) 5



0D denote the parametrized curve obtained using the parameter 8, 0 < § < 27, where dD(8)
denotes the point of intersection with the ray at angle  from the centroid of D. Thus 0D is a

closed curve tracing out the boundary of D counterclockwise. Qur main result is as follows.

Theorem 1.1 . Let D be a compact convex set in R? with nonempty interior. If v is any

closed rectifiable curve contained in D, then
M(OD) < M(7) . (1.4)

This result has long been known in the special case that D is a circular disk, where it follows

from an inequality of Fary [7] proved in 1950, which states that

L(y)<rK(v) (1.5)

where r is the radius of the smallest circular disk containing 7. More generally, Santal6 [12,

(3.26)] proves for closed piecewise C'?-curves v the inequality

< KO) _ gy, (1.6)

L(v)

in which Ap, is the maximal breadth of the convex hull D of y. This inequality gives

2
Am

2
A < M(0D) ,
which shows that the inequality (1.4) is a strengthening of (1.6).

We prove Theorem 1.1 for curves v that are closed polygons P, and then obtain the general
case by a limiting argument. The proof for polygons is an argument by contradiction, which is
given in §3 — §6. This proof does not settle the case of equality. We conjecture that equality
holds if and only if v is contained in 0D, and is parameterization-equivalent to k* 0D for some
integer £ # 0. (Here k + 0D denotes the curve that traverses dD k times, where negative k
connotes a reversal of the direction of traversal.)

Is convexity an essential hypothesis in Theorem 1.17 Consider for example the non-convex

set S, which consists of a unit square with a smaller square of side a removed from its upper

right corner, which has M(9S5,) = 2F, cf. Figure 1.1(i). For 0 < a < 2 the largest convex
polygon P, inscribed in S, has M(9P,) < %’r, but in the remaining range % <a < 1an
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1 Introduction

A curve 7 is a continuous map v : [a, b] — R% Tt is rectifiable if its length L(«y) is finite, and

if it is C'2 then its total absolute curvature K(7) is

K(7)i= [ Ix(s)lds (1.1)

where ds is arclength. More generally, we can define K () for rectifiable curves using polygonal
approximations, in which case K(v) = +oc is possible, see §2.

The average curvature M(7y)is defined by

M(7) = 2 (1.2)

(More precisely M(r) is the average absolute curvature.) The quantity M(y) is well-defined up
to strictly monotone reparametrization of the curve. It is invariant under Euclidean motions

and satisfies

M(ry) = %M(ﬂy) forr > 0. (1.3)

The quantity M(7) is a global invariant rather than a local invariant of 7, in the sense that
locally a small arc of 4 can have substantial length with little curvature (e.g. it can be a line
segment), or alternatively, can have little length and substantial curvature.

The object of this paper is to prove inequalities for M(7) related to convexity. Let D be

a convex set with nonempty interior, with boundary 0D. By an abuse of notation we also let
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Abstract

The average curvature of a rectifiable closed curve in R? is its total absolute curvature
divided by its length. If a rectifiable closed curve in R? is contained in the interior of a convex
set D then its average curvature is at least as large as the average curvature of the simple closed
curve 0D which bounds the convex set.
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