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Corrigendum/Addendum to: Sets of Matrices All Infinite
Products of Which Converge

1. Introduction

Our paper [7] contains a number of errata, which we correct here, of which the following are

the most important.

1. The proof of the rightmost inequality in Lemma 3.1 given in [7] is incomplete for some
cases where the set of matrices X is an infinite set. In §3 we give a proof, due to Olga

Holtz, for these remaining cases.

2. The statements of Theorem 4.2 and Theorem 5.1 should read that the projection Py is
an (oblique) projection onto the subspace V away from the subspace F;(X), rather than
being an orthogonal projection. Theorem 5.1 also requires the additional condition that
all generalized 1-eigenspaces of the matrices in ¥ be simple, in order to be a necessary
and sufficient condition. In §4 we state a corrected version of Theorem 5.1 and supply

some additional details of its proof which were omitted in [7, p. 253, line 9].
3. Condition (1) in Lemma 5.2 should read “Sup” rather than “Max.”

4. In Theorem 6.1 the condition (C1) needs an additional restriction to be equivalent to
the other four conditions, which is that the (generalized) left 1-eigenspaces of each A; be
one-dimensional. A corrected theorem and proof, together with an additional equivalent
condition (C1’), are given in §5. Corollary 6.1a also requires a similar correction, given

in §5.

These errata, and further minor errata listed in §6, were bought to our attention by Olga Holtz,
who gave the paper a very careful reading,

We take this opportunity to report in §2 on developments made since our paper appeared
in 1992, and to summarize the current state of knowledge on effective computability of various

computational questions in this area. There have been over 20 papers published on related



subjects. In particular, the two conjectures made in the paper, the Boundedness Conjecture
made in [7, p. 246] and the Generalized Spectral Radius Conjecture made in [7, p. 240], were
both proved in Berger and Wang [2].

Acknowledgments. We thank Olga Holtz for informing us of the errata, for permitting us
to include her correction to the proof of Lemma 3.1, and for the further list of minor errata

given in §6. We thank the referee for useful comments.

2. Recent Developments

Our paper [7] studied RCP sets, which are sets ¥ of n X n matrices with the RCP property
that all right infinite products lim,_, o Mi{Ms...M,, with M; drawn from the set ¥ converge.
The Boundedness Conjecture made in [7, p. 246] asserts that all RCP sets are bounded, i.e.
generate a bounded semigroup. This was proved in Berger and Wang [2, Theorem 1]. Thus
RCP sets X generate a special kind of bounded semigroup Sy of matrices. The subject of
bounded semigroups of matrices has a long history, tracing back at least to Wielandt [36].

Since 1992 various new matrix norm conditions for a finite set of matrices ¥ to have the
RCP property or the RCP property with a continuous limit function have been obtained.
Some sufficient conditions for a finite set of matrices to have the RCP property, in terms
of the existence of a suitable matrix norm were already given in 1990 by Elsner, Kohltracht
and Neumann [14]. They actually worked with the LCP property (all left-infinite products
converge), but the results are interchangeable with the RCP property by taking transposes of
all matrices. In 1997 Elsner and Friedland [13] gave several necessary and sufficient conditions
for a set of two matrices to have the LCP property involving matrix norms. Beyn and Elsner [3]
gave necessary and sufficient conditions for a finite set of m X m matrices to be an LCP set
having a continuous limit function, in terms of the existence of a suitable matrix norm, with
respect to which the matrices in ¥ are paracontracting.

Our paper related the RCP property to various notions of spectral radius of a set ¥ of
n x n real matrices. Recall that a matriz norm is a norm on the set of matrices which is

submultiplicative, i.e. it satisfies

[[MiMa]| < [[Mq[[[[M2]],



see [22, p. 358]. (Submultiplicatively is called the ring property in [1, p. 8].) Recall that the

joint spectral radius p(2) of a set of n X n matrices X is defined by

A(%) = limsup p (%, ||.])) /%, (2.1)
k—o0
where
(S 1) = sup{ MMy .. My ]| : all M; € =), (2.2
in which ||.|| is a matrix norm; the limsup in (2.1) is independent of the choice of matrix norm,

as is easily shown, cf. [7, p. 237]. Lemma 3.1 given in §3 below implies that limsup in (2.1) is
in fact lim. If p(M) denotes the spectral radius of a complex n x n matrix M, for any set ¥ of

n X n matrices set

pr(2) = sup{p(MiMz---My) : each M; € £}.

The generalized spectral radius p(X) is given by
p() := limsup gy () /*. (2.3)
k—o0

(In [7] this quantity was denoted p(X).) Recall that Lemma 3.1 of [7] showed that for all sets

¥ of n X n complex matrices one has

A(3) < ().

The Generalized Spectral Radius Conjecture of [7, p. 240] asserts that for finite sets of
n X n matrices the generalized spectral radius and the joint spectral radius are equal. This
was proved in Berger and Wang [2, theorem 4], and a different proof was given later by
Elsner [12]. Rosenthal and Soltysiak [30] related these two notions of spectral radius to the
geometric joint spectral radius of Banach algebra sets, showing that for a finite set of elements
of a unital complex Banach algebra A the geometric joint spectral radius is no larger than
the corresponding generalized spectral radius. They also prove [30, Theorem 2] that equality
of the geometric joint spectral radius and generalized spectral radius holds for all n-tuples of
elements in A , for all n > 2, if and only if A/rad(A) is a commutative Banach algebra. This
result includes the Berger-Wang result as a special case, where the Banach algebra A is the set

of n x n complex-valued matrices with its standard Banach norm; in that case A = rad(A).



Our paper raised and discussed issues of effective computability for various quantities in-
volving the joint spectral radius, the generalized spectral radius, and the RCP property that all
infinite products taken to the right converge, see [7, p.246]. One may formulate the following
two basic computational problems, using the standard decision problem format of Garey and
Johnson [15, p. 18].

(1) RCP SET

Instance: A finite set ¥ = {Ay, ..., Am—1} of n X n matrices with rational entries.

Question: Is X an RCP set?
(2) CONTINUOUS RCP SET

Instance: A finite set ¥ = {Ay, ..., A;n—1} of n X n matrices with rational entries.

Question: Is 32 an RCP set that has a continuous limit function?

The decidability of both these problems remains open. Qur paper gave necessary and sufficient
conditions for both of these problems to have a “yes” answer, given as Theorems 5.1 and 4.2,
respectively. These criteria do not yield effective algorithms, see the remark at the end of §4
below. Other necessary and sufficient matrix norm conditions of Beyn and Elsner [3] also do
not seem to yield effective decision procedures for either question.

The decidability of CONTINUOUS RCP SET can be related to conjectures concerning the
joint spectral radius and generalized spectral radius of a set of matrices. For the joint spectral
radius one has the following two computational problems.

(3) UNIT JOINT SPECTRAL RADIUS

Instance: A finite set ¥ = {Ao, ..., Am—1} of n X n matrices with entries algebraic

numbers.

Question: Is the joint spectral radius p(¥) < 17
(4) SUBUNIT JOINT SPECTRAL RADIUS

Instance: A finite set ¥ = {Ao, ..., A;m—1} of n X n matrices with entries algebraic

numbers.



Question: Is the joint spectral radius p(X) < 17 Equivalently, is ¥ an RCP set in

which all infinite products are the zero matrix?

In the above problems an algebraic number is a complex number satisfying a polynomial equa-
tion with integer coefficients, and the input consists of the integer coefficients of such a poly-
nomial and a complex approximation of one root sufficient to specify it. The UNIT JOINT
SPECTRAL RADIUS problem is undecidable by a result of Blondel and Tsitsiklis [4, Theorem
1]. It remains an open problem whether SUBUNIT JOINT SPECTRAL RADIUS is decidable.

An effective decision procedure for SUBUNIT JOINT SPECTRAL RADIUS would yield
an effective decision procedure for CONTINUOUS RCP SET, because the criterion (3) of
Theorem 4.2 of [7] could then be effectively tested. Indeed one can effectively determine
the left 1-eigenspace of a rational matrix and determine whether it is simple using algebraic
numbers, and one can also test equality of all such eigenspaces. If they are all equal to E1, Then
one projects onto an algebraic subspace V' of codimension equal to dim(F} ), using the oblique
projection Py away from the common 1-eigenspace F1, to obtain X' := {PyMPy : M € X},
and then uses the effective algorithm for SUBUNIT JOINT SPECTRAL RADIUS to determine
whether p(X') < 1, to complete testing criterion (3).

In 1995 Lagarias and Wang [21] formulated a Finiteness Conjecture concerning the gener-

alized spectral radius, as follows.

FINITENESS CONJECTURE. For any finite set 3 of n x n matrices there exists a finite
1/k

k such that the generalized spectral radius p(X) satisfies p(X) = px(X)
As explained in [21, p. 19], the Finiteness Conjecture would imply that given a finite set 3
of matrices with rational entries, one can effectively decide whether or not the joint spectral
radius p(X) < 1 or p(X) > 1 holds for a finite set ¥ of matrices with rational entries, i.e. it
would give an effective algorithm for SUBUNIT JOINT SPECTRAL RADIUS. Consider next,

the following stronger version of the Finiteness Conjecture, for rational matrices.

EFFECTIVE FINITENESS CONJECTURE. For any finite set 3 of n X n matrices

with rational entries there exists an effectively computable constant ¢ = #(3) such that the



generalized spectral radius p(X) satisfies p(X) = p¢(Z)1/%.

The results of Blondel and Tsitsiklis [4, Corollary 1] show that the Effective Finiteness
Conjecture is false. A related problem previously known to be undecidable is the mortality
problem, which asks: for a given finite set 3 of m X m matrices is some finite product of
matrices drawn from this set the zero matrix? Miller [23] gives an update and references on
this problem.

These results strongly suggests that the Finiteness Conjecture itself is false. A recent
preprint of Bousch and Mairesse [6] announces a disproof of the Finiteness Conjecture.

As a final computational problem, we mention the problem of recognizing bounded matrix
semigroups.

(5) BOUNDED MATRIX SEMIGROUP (or BOUNDED MATRIX PRODUCTS)

Instance: A finite set ¥ = {Ao, ..., A;m—1} of n X n matrices with entries algebraic

numbers.

Question: Is the matrix semigroup Sy, generated by ¥ a bounded semigroup?

This computational problem was raised in 1987 in a control theory context [34]. It is now
known to be undecidable via the reduction of Blondel and Tsitsiklis [4, Theorem 1] to the
emptiness problem for probabilistic finite automata.

(6) PFA EMPTINESS

Instance: A finite set X of n X n nonnegative row-stochastic matrices P; with
rational entries, a zero-one n-column vector v, a non-negative n—column vector
of rational numbers m whose entries sum to one, and a rational number r with

0<r<l.

Question: Does no finite product M = P;, - -+ P;  of matrices in ¥ have 77 My > r?

(Equivalently, do all finite products M have 77 My < r7?)

The PFA EMPTINESS problem has been shown to be undecidable, see [4] for a discussion and

references.



Problems of convergence of infinite products of matrices can also be formulated as control
theory questions. These concern various types of stability of discrete time linear systems which
evolve by a matrix multiplication at each step. This viewpoint was taken by Gurvits [16], who
obtained many fundamental results for different notions of stability. Further results concerning
effective computability and computational difficulty of such stability questions, including NP-
completeness results, were obtained in Gurvits [17], [18], Toker and 6zbay [33] and Tsitsiklis
and Blondel [35].

Various RCP sets have limit functions which can be used to construct compactly supported
wavelet bases of R". The estimation of joint spectral radius of various related sets is important
in analyzing the smoothness of the resulting functions, see Daubechies and Lagarias [8]. Other
work in this area includes [9].

There is some related literature concerning bounded semigroups of matrices. Given a set

Y. of n X n complex matrices, let
¥k = {AjAy---Ag : all Aj € D).

Dehghan and Rajabilipour [11] show that if 3* generates a bounded semigroup, then ©™
generates a bounded semigroup for all m > k. Regarding the structure of bounded matrix
semigroups, Omladic and Radjavi [24] characterize sets of n X n complex matrices ¥ for which
the spectral radius is multiplicative on the semigroup Sy, they generate, i.e. p(ST) = p(S)p(T)
for all S,T € Sy. This can be reduced to problem of characterizing such semigroups having
a constant spectral radius, normalizable to be 1. They prove [24, Theorem 4.1] that any
irreducible semigroup of this kind is necessarily a bounded semigroup, and note this result
was proved earlier in Shneperman [31]. Related questions concerning simultaneous triangular-
izability of matrix semigroups can be found in Dehghan and Rajabilipour [10], Radjavi [26],
[27], Radjavi and Rosenthal [28] and Rosenthal and Radjavi [29].

3. Corrected Proof of Lemma 3.1
Lemma 3.1. For any set of matrices 3, any k > 1 and any matriz norm |||,

pe(2)7F < p(2) < A(D) < pi(S[[INY*. (3.1)



Proof. The proof in [7] is correct except for the proof that the inequality
A(E) < pi(, 1IN (3:2)

is valid in those cases when p1 (X, || - ||) = 0o. (The condition p1 (%, | - ||) = oo can only occur
when ¥ is an infinite set.) The following proof for these remaining cases is due to Olga Holtz.

If pr(%, |- ||) = oo holds for all & > 1, then (3.2) is immediate. Thus we may suppose
Pk(Z, || - 1) < oo for some finite k.

We now show by induction on the dimension n (X C €C™*") that the condition 3k € IN such
that pg(Z, ]| - ||) < oo implies that there exists N > 1 such that §;(3,]|-||) < oo for alll > N.
This property is obviously true for the base case n = 1. For the induction step, suppose n > 1,
that the induction hypothesis holds up to n—1, and that g1 (3, ||-||) = -+ = pe—1(Z, ||-|]) = o0,
and pg(%, || - ||) < oo, for a given k > 1. Let V := spanp;_y,[ranM], where V' consists of column

vectors. Since V' = spanpj_,, [ran M] for some finite subset £’ C ¥, any z € V has the form

z =), Mz for some finite m and some M;,, ..., M; € X', hence
m
sup Mg, - Myl < pe(S5 11 - 1) D Nl < oo,
Mil"'”Mik—lez =1

i.e., the set of all products of k — 1 factors from ¥ is bounded pointwise on V. If V = C", this
would imply, by Banach-Steinhaus, that

Pe—1 (51 1) = sup M, -+ Mgy, || < oo,

i1 7Mik—1 ex
This contradicts the definition of &, so we conclude that V' must be a proper subspace of C".

Completing any basis of V' to a basis of C", we may suppose without loss of generality ( by

making a suitable similarity transformation to the matrices in ¥) that the matrices in ¥ all

A B
M_<0 0) YM e 3.

have the form

A .. A A ..-A B:
M;, ---M —( 210 Tk 1 0%_1 %)

3

and any two norms on C™*" are equivalent, we have

Pr(Elv, [+ lls) = sup[|Ag - - Ag[|s < oo,



where || - ||s denotes the spectral norm, which is defined by

A
Al = sup IAX[:

= o(A*A)/2,
x€Cn ,x#0 ||X||2

where A" is the conjugate transpose of A, see [22, p. 365]. Since dimV < n the inductive

hypothesis applies to show there exists N € IN such that
PrElv, |- ls) < o0 for all [ > N.
But (%, || - ||s) < oo also implies sup ||A;, -+ - Aj,_,Bi,||s < 00, hence

sup [[As, -+ Ay ls < 00

SuP||(Ai1 “'Ailfk)(A "Ai171Bi1)||s <0

U—k+1

which implies p;(%, ||-]|) < oo, for alll > N +k and any norm ||-||. This completes the induction
step.

We now verify that the (3.2) holds for any matrix norm | -|| and any k& > 1. If pr (3, || - ||) =
00, the inequality is immediate. Otherwise we just saw that p;(3, ] -||) < co Vj > N for some
N € IN. In particular, there exists [ coprime to &k s.t. §;(%,]| - ||) < oo. For any n > kl there

exist integers ¢ and s such that n =tk + sl with £ > 0 and 0 < s < k. This implies

n—

5 (3.1 - INY™ < (5 (2. ] - s (51 1)5)H™ 5 (3. || - [NY/*
oS D < (36 ) F A 1)) el - ),

hence §(%) < pr(S, || - NV, O

Remark. Lemma 3.1 establishes that lim sup in the definition of 4(X) in (2.1) is in fact lim .

k—00 k—o0

4. Revised Theorem 5.1

A pair of vector spaces (W,V) are complementing subspaces of R™ if W + V = IR" and
dim(W) + dim(V) = n. Given any pair (W,V) of complementing subspaces there exists a

unique (oblique) projection Py onto V away from W, i.e. P?, = Py with

vPy = v if veV,

wPy = 0 if weW.



Here we view IR" as a space of row vectors. In the statement of Theorems 4.2 and 5.1 of [7]
the projections Py are projections onto V' away from E; = E;(%).

The statement of Theorem 5.1 in [7] requires a modification, which consists of a strengthen-
ing of its condition (2), given below. Given a set ¥ of matrices, a finite product B = MMy - - - My,
is called a block of X if E1(X) = ﬂleEl(Mj) but E{(X) # ﬂ?;llEl(Mj). The set X p consists

of all finite products of matrices in ¥ which are blocks. The set X p is generally infinite.

Theorem 5.1. A finite set ¥ of n X n real matrices is a product-bounded RCP set if and
only if the following conditions (1)-(3) hold.

(1) All strict subsets of ¥ are product-bounded RCP sets.

(2) Each A; € X has a (generalized) 1-eigenspace E1(A;) that is simple, and all B € ¥ have
E(B) = EL (D).

(3) There is a subspace V of R™ with E1(X) +V = R", dim(V) = n — dim(E1(X)) such
that the set PyYgPy = {PyBPy : B € g} where Py is projection onto V' away from

E\(Y), has joint spectral radius

ﬁ(PVzpr) <1. (41)

Remark. It follows by Berger and Wang [2, Theorem 1] that all RCP sets are product-
bounded, so Theorem 5.1 actually gives a necessary and sufficient condition for being an RCP

set.

Proof. We add some details to the proof in [7].

=. The condition in (2) that each A; € ¥ has a generalized 1-eigenspace F;(M) that is
simple holds because, if some A; does not have E1(A;) simple, then [|A¥|| — oo as k — oo,
contradicting product boundedness. This permits the reduction of ¥ by a similarity to the

block form

as given in (5.7) of [7].

10



<. Suppose (1)—(3) hold for ¥, and we must show ¥ is an RCP set. The proof up
to the final paragraph [7, p. 253, line 7] established that ¥p is an RCP set and that ¥ is
product bounded. We note that the condition of simple eigenspaces in (2) was used at the
initial step of reducing ¥ by a similarity to matrices of the form A; = [ Clj £j ] in (5.7),
where | corresponds to the space E1(X). Thus all matrices B € ¥ g also have the block form

B— [ CIB g],with F1(B) = Br(Sp).

We aim to apply Lemma 5.1 to conclude ¥ is an RCP set. Its hypotheses (1), (2) hold, and
it remains to verify hypothesis (3), which asserts that any infinite product of matrices in Xp
has all its rows in E1(Xpg). Let M) = Timy,_, o H?:l B, with all B; € X, where the limit
exists since X p is an RCP-set. Let u; := (0,0,1,... ,0) be the i-th unit vector, with 1 in the
i-th position, and we must show u; M(®) € Eq(%), for 1 <4 < n. Let Py denote projection
onto the subspace V of hypothesis (3) away from E; := E;(X), and let Py denote projection
away from V', acting on row vectors, so that Py + Pg = |. Given w € IR", recursively define
{ej€E1:j=0,1,2,...} and {v; € V:j=0,1,2,...} by the requirements that w = eg + vo

and
viBj+1 = ejr1 +vj41 - (4.2)
Now applying Py (resp.Pg) to this equation yields
vj+1 = vj+1Bj+1Py and ej41 =v;B;11PE.
Since E1(Bj) = Ei is a simple 1-eigenspace, we have
eBj=e forall ecE; .
Together with (4.2) this yields

wBiBy---B, = (60+61+’U1)BQBg---Bk
= (60+61+62+1}2)Bg---8k

= e+te +---t+e+vg. (4.3)

11



Now v; = v;Py hence vj; = v;PyB,; 1Py, and iterating this relation yields
wB1By---BrPy = g
= vo(PyB1Py)(PyByPy ) - (PyBiPy)
= w(PyB1Py)(PyBaPy)--- (PyBiPy). (4.4)

By hypothesis (3), the joint spectral radius p(PyXPy) < 1. This means there is a submulti-

plicative matrix norm || - || and a finite value [ such that
p:=p(PvEPy, | -]) <1. (4.5)
By product boundedness of Y,
|IPyMPy|| < Cp forall MeZXp. (4.6)
For the matrix norm || - || there is a constant C5 such that for all M € Mat, xy,
[wM| < Coljw|[2[M]| - for all w € C*,

where ||w||2 is the lo-norm. We break the product H§:1 B, into |k/l] blocks of length [, with

at most [ — 1 leftover matrices in the right, then (4.4) gives

k
[|wB1Bg---BkPylla < Caflwlls H(PijPV)

j=1
< (max (1,C1))" "' Collwll2p™") .

(vf]2)n

i=1

For fixed w, letting k& — oo gives

[wM®) Py || < lim sup

k—o00

= limsup ||lvg]|2 = 0. (4.7

9 k—o00

Applying this with w = u; for 1 < ¢ < n yields M()Py, = 0 which implies all rows of M(>)
are in Fi(o). Thus hypothesis (3) of Lemma 5.1 of [7] holds, and the lemma applies to show
that ¥ is an RCP set. =

Remark. The criterion of Theorem 5.2 is computationally effective when ¥ p is a finite set.
In general ¥ p is an infinite set, and then this criterion is not effective. It would be desirable to
obtain a strengthened criterion of this type that would show that the collection of finite RCP
sets with rational entries is recursively enumerable. Does there exist, for every finite RCP set

with rational entries, a finite length proof that it is an RCP set?

12



5. Revised Theorem 6.1

The statement (C1) in Theorem 6.1 of [7] requires a stronger hypothesis. We correct it in (C1)

in the revised theorem below, and we also formulate a new equivalent condition (C1’).

Theorem 6.1. For a finite set ¥ = {Po,P1,... ,Pm—1} of n X n column stochastic nonneg-

ative matrices, the following conditions are equivalent.

(C1) ¥ is an RCP set in which each generalized left 1-eigenspace £1(P;) is one-dimensional,

0<2<m—1.

(C1') X is an RCP set having a continuous limit function, whose generalized left 1-eigenspace

E\ () is one dimensional.

(C2) All finite products Py, --- Py, are irreducible and aperiodic.

k

(C3) There exists a finite s such that for all k > s all products P4, Pg, - - - Pq, are scrambling.

k

(C4) There ezists a finite u such that for all products Py, ---Pg, of length k > p have a row

k

with all entries nonzero.

(C5) All left-infinite products from ¥ are weakly ergodic.

Proof. The implications (C2)«<(C3)«<(C4) and (C5)=>(C4) are established in [7]. The im-
plication (C2)& (C4)=-(C1) is given in [7], as the argument there shows that all E;(P;) are
one-dimensional.

(C1")=(C1). Theorem 4.2(2) of [7] implies that all matrices P; in ¥ have the same gener-
alized left 1-eigenspace E;. Now by definition E;(X) := ﬂ?:_(}El(Pj) = F;. It follows that all
E,(P;) = E; are one-dimensional.

(C1)=(C1’). Since all E;(P;) are one-dimensional they are simple eigenspaces. Since
dim(E; (X)) > 1 for any RCP set and E1(X) C E;(P;), it follows that E; (%) is one-dimensional,
and equal to each E;(P;). By Theorem 2.1 (3) of [7], we have E;(B) = E;(X) for all finite
matrix products B. Next, row stochasticity and nonnegativity of the P; imply that X is
product-bounded. By Theorem 5.1 of [7], as amended in §4 above, there is a subspace V' of
R" with dim(V) =n — 1 and E;(X) + V = IR", such that if Py is the projection on V' away

13



from E;(X) then the set PyXPy = {PyP;Py : 0 < i < m — 1} has joint spectral radius
p(PyEXPy) < 1. We have verified that ¥ satisfies condition (2) in Theorem 4.2 of [7], so this
theorem applies to conclude that ¥ has a continuous limit function.

(C1")=(C5). This follows from Corollary 4.2a of [7]. =

We reformulate Corollary 6.1a of [7] using the following decision problem.

(7) CONTINUOUS COLUMN-STOCHASTIC RCP SET

Instance: A set ¥ = {Py,... ,Ppn41} of n x n matrices with rational entries that

are nonnegative and column-stochastic.

Question: Is ¥ an RCP-set with a continuous limit function, with E;(X) being

one-dimensional?

Corollary 6.1a. There is an effective decision procedure for CONTINUOUS COLUMN-
STOCHASTIC RCP SET.

Proof. We can test condition (C4) of Theorem 6.1 effectively. Let Py denote the property

that each product Py, Py, - -- Pg, of length k from ¥ has a row with all entries nonzero. If a

k

set ¥ has property P, then it is easy to see that it has property Py for all k£ > pu. Paz [25]
showed that if (C4) holds, then it holds for some y < p, := %(3” —27+1 1 1), Thus it suffices

to check if property P, holds for some py with 1 < pu < p,,. =

6. Other Errata

1. p.228: The displayed formula following (1.2): sup could be replaced by max.

2. p.230, 1.6 and the next displayed formula: ‘n’ should be replaced by ‘.

3. p.233, Lemma 2.1: The formula following the phrase ‘if in addition ¥ is finite ...

actually holds regardless of whether or not 3 is finite.

4. p.233, Theorem 2.1: Here and hereafter by an “eigenspace” what is meant is “generalized

eigenspace.”

14



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. p-233, 1.-3: Add ‘#£ O’ after ‘vectors vy, vy'.

. p-234, 1.-7: The word ‘finite’ in ‘For any finite subset ... ’ is extraneous.
. p-236: Formula (3.4): the signs ‘<’ must be replaced by ‘<.

. p-237, L.7: ‘6(X¥)’ must read ‘9(X)’; the same happens in formula (4.3).

. p-239, 1-14: ‘W =A;,... ,A;,” must read W=A; ---A;,".

1k
p.239, 1.-10: ‘p;(X) < ...’” should read ‘p;(X) =...".
p-239, 1-8: Put a hat on g in limsup,_, 0i (X)) ...

p.241: The paragraph next to formula (4.4) could be replaced by the observation ‘Directly
from (1), A>®) = 0.

p-242, 1.1: In §4 the term “orthogonal projection” is used erroneously. What is meant is

the projection onto V along Ej.
p.242, 1.12: ‘S™'VS’ must read ‘S V.

p-243: The rightmost part of (4.7) should be

e ]
: a » (f])} (/’t(z))
-max{1, p — .
' 1—p(2)
p.245,1.9: ¢ ... and taking C; = PyA;Pg,, A, = PyA,Py’. This should be:
0 0 _ 0 0 _
PVAiPEI:S(C’i O)Sl’ PvAiPV:S(O AZ->SI'

p.245, 1.-2: Add a tilde over X in ‘po(3, || - ||) .
p-246: Formula (5.1) should also contain Vk € N.

p.248, 1.11: 4’ must be replaced by ‘j’ in ‘If A®) = Hé-zl Ag;’. The same typo occurs on
p.249, 1-11.

p-249, 1.9: the factor (1 — p¢(X))~! must not be in the formula.
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

p-250:, Formula (5.5): the second ‘<’ must be ‘=".

p.251, 1.11: ‘If conditions (1)—(3)’ should be ‘If condition (3)’.

p.252, L-9: instead of ‘||P;||s < 01(XB)’ there should be ‘|D;|| < 0:1(XB)’.
p.252: Formula (5.11) should contain m instead of .

p-252: Formula (5.12): drop the last factor and replace the first by tAZ.
p-253, 11.8-9: ‘Lemma 5.2’ should read ‘Lemma 5.1°. See §4 above.

p-254, 1.4: ‘Section 4’ should read ‘Section 5’.

p-254, 1.9: ‘equal’ should read ‘constant’.

p-256, Fig.2: the ordinate of the point separating segment 2 from segment 3 should be
Yn + 39
p-259: The caption for Fig.3 should contain f(2z + 1), f(2z + 2), f(2z + 3) rather than

f(2x — 1) etc. or, alternatively, the preceding equation should contain —’s rather than

+’s.
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