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1234 | 1234 1234 1234
2345 | 1348 1348 1348
3456 | 3478 1458 1458
4567 | 4578 4578 1568
5678 | 5678 5678 5678

1234 1234 1234 | 1234
1245 1245 1245 | 1238
1458 1458 1256 | 1278
4578 1568 1568 | 1678
5678 5678 5678 | 5678

Table 4.1. d-step paths for C5(8).

There seems to be no obvious pattern to the number of d-step paths for Dantzig figures
having the maximal number of vertices, in 4-dimensional examples. Let Pi denote the noncyclic

polytope with 20 vertices taken from Table 4 of Griinbaum and Sreedharan [4]. Then we have

4 (C3(8), [1256], [3478]) = 12,
4 (P, [2345], [1678]) = 8,
#

(P, [1256], [3478]) = 12 .
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(iii) it suffices to observe that, if the move takes [Y1, X, Y3] to [Y{, X', Y3], then either X' = ()
or X’ contains one of d and d + 1.

To show that case (iv) move cannot occur, we argue by contradiction. If it did occur, it
would produce a vertex v = [Y{, X', Y] containing a ship X' = [i —2m + 1, ...,i] whose largest
index 1 < d — 1. Now Lemma 2.1 says that all moves on a distinguished path remove a vertex
j < d and add a vertex j' > d+1. In particular, no subsequent vertex on the distinguished path
can ever contain either index 2+ 1 or © — 2m, so this ship can never “sail.” On a distinguished
path all vertices eventually are moved to be larger than d, hence there is a first time on the path
after v that some index j in X’ is removed and replaced with j° > d + 1. The resulting address
contains the set of indices X — {j}, and doesn’t contain ¢ 4+ 1,5 and 7 — 2m. Since | X — {j}|
is odd, this address contains a ship with an odd number of elements, which contradicts Gale’s
evenness criterion.

To show that a case (v) move can never occur, we again argue by contradiction. If it did
occur, the vertex reached is v = [Y{, X{, XJ,Y/], in which X{ ={r,r+1,...;r +2m — 1} isa
ship with r — 1 and 7 + 2m < d. Now the ship X' can never “sail,” and we obtain the same
contradiction as in case (iv).

We conclude that every distinguished path consists only of voyage vertices, by induction on
the number steps in a partial path, using Claim 2.

To show that all voyage vertices actually occur in some distinguished path, it suffices to
observe that each move of type (i)—(iii) switches one index j < d to an index j' > d 4 1, and
that each voyage vertex has at least one predecessor and one successor under a move of one of
these types. Thus given such a vertex, we can extend it by predecessors back to [1,2,...,d] and
by successors to [d+ 1,d+ 2,...,2d], and the resulting path takes exactly d steps by the index
switching property. This establishes Claim 1. O

Table 4.1 gives the eight 4-step paths for (C3(8), [1234], [5678]), grouped by the value of
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even number of elements. All of the permitted moves in cases (i)—(iv) produce a new address
that satisfies Gale’s evenness criterion, hence they are legal moves. We must show that they are
exhaustive. Since Y, only contains elements in {d 4+ 1,...,2d} an element in it is never moved,
and cases (i)-(v) cover all possible elements that could be moved from Y; and X.

To verify (i), first note that the index ¢ can move only to d + 1 or 2d, because any move to
d+1 < 7' < 2d creates a ship of length 1, violating Gale’s evenness criterion. For 1 << d—1,
moving ¢ creates a ship starting in position 2+ 1 which extends at least to d, hence ¢ must move
to d + 1 or 2d as necessary to create a ship of even length. Finally for = d a move to d + 1
creates a ship of length 1, which is ruled out, so (i) follows.

To verify case (ii), we again argue by contradiction. If the last index ¢ of Y7 is removed,
and isn’t replaced by an index j’ which is just before the smallest index in Y3 (which is 2d if
Y, = 0), then it either falls adjacent to a ship and changes its length from even to odd, or else
it forms a new ship of length 1, both of which contradict Gale’s evenness criterion.

To verify case (iii), we note that moving the smallest index ¢ in a ship must always be to
the other end j + 1 of the ship, otherwise the length of the ship changes from even to odd.

To verify case (iv), we note that removing an interior index 1 < j < ¢ of the dock Y7 =
[1,...,i] must have j = i —2m. Forif j = i —2m — 1, then the removed index must be replaced
by index j' = 741 to create a ship of even length, and then j' < d, contradicting the hypothesis
that 7/ > d 4+ 1. Thus j = 7 — 2m, and if it is replaced by j’, then 7' = k — 1, otherwise j' is
either a ship of length 1 or is adjacent to the ship X and changes its length from even to odd.

The final case (v) concerns removing some index j of a ship X which is not its smallest
vertex. This vertex cannot be the largest vertex of X because the length of the ship changes
from even to odd. If j is any other index of X, its removal splits the ship into (at least) two
ships. The removed vertex j = r + 2m, in order that the ship [r, 7+ 1,...,7 4+ 2m — 1] has even
length, and the added index must be s+ 1 in order that the second ship [r+2m+1,...,s,+s+1]
have even length. This establishes Claim 2.

It remains to prove Claim 1. We first show that only voyage vertices occur on any distin-
guished path. Such a path starts at [1,2,...,d]. It suffices to show that of the legal moves in
Claim 2, those of type (i), (ii) and (iii) move a voyage vertex to another voyage vertex, and

that moves in cases (iv) and (v) never occur on any distinguished path. For cases (i), (i) and
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Claim 2. The legal moves possible from a voyage vertex v = [Y1, X, Y] which remove an index

j < d and add an index j' > d + 1 are of the following forms.

(i). An “initial move” from [1,2,...,d] replaces an index i (1 < i < d) by 2d if d — i is even,
and by d+ 1 if d — 1 is odd.

(). If Yy = [1,2,...3] # 0 and Yo = [k + 1,...,2d] or 0, then a “docking move,” removes i
and adds k if Yo # 0 and adds 2d if Yy = 0.

(iii). If the ship X = {r,r+1,...,8} #0, withr < d and i # d+ 1, a “sailing move” removes
r and adds s + 1, yielding X' = {r+1, r+2,...,s+ 1}.

(iv). IfYi={1,2,...,i} #0 withi <d and Yo ={k+1,...2d} or D and 1 <i—-2m < i, a
“submarine move” removes i — 2m and adds k if Yo # 0 and by 2d if Yo = 0. This move

produces a ship X' = {i —2m +1,....i}.

(v). If the ship X = {r,r+1,...,8} #0, with r < d, a “shipwreck move” removes some index
r+2m with r < r+2m < d and adds s+ 1. It produces two ships X{ = {r,...,r+2m—1}
and X5 ={r+2m+1,...,s+1}.

In cases (i)—(iii) a legal move from a voyage vertex leads to another voyage vertex. In cases
(iv) and (v) the new vertex is not a voyage vertex. In order to prove Claim 1 we must rule out
moves of either of these types on a distinguished path.

The terminology “ship” and “dock” is motivated by Claim 2. Assuming that case (iv)
and (v) are ruled out, Claim 2 implies that on a distinguished path a ship can be created
only at an initial move, and it then “sails” from X = {i+ 1, i+ 2,....d + 1} to X' =
{d+1, d+2,...2d—i+ 1} by a sequence of d —7 “sailing” moves. A sequence of i — 1 “docking
moves” removes the departure dock Y7 = {1,2,...,i — 1} and reconstructs it as the arrival dock
Yo ={2d — i+ 2,...,2d}. Claim 2 allows this sequence of “sailing” and “docking” moves to
occur in any order, and the number of distinguished paths this accounts for is equal to the
number of different ordered sequences of d — ¢ red balls and 7 — 1 green balls; this number is
('“;.l:ll). Thus Theorem 4.2 follows from Claim 1 and Claim 2.

We prove Claim 2 first. Gale’s evenness criterion (Proposition 4.1) asserts that a sequence

of the form [Y7, X, Y5] is the address of a vertex of C(2d) if and only if the ship X contains an
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We apply Gale’s evenness condition to derive the following result.
Theorem 4.1. For each d > 2, the normalized Dantzig figure (C}(2d), [1,2,....d], [d+1,d+
2,....,2d]) with Q(L%f;ﬁ) vertices has exactly 27~ d-step paths in its graph between [1,2,...,d]
and [d+1,...2d]. 2

We obtain this from the following more detailed result.
Theorem 4.2. Let v; denote the vertex of Cj(2d) reached from [1,2,....,d] along the edge
deleting H;, so that

Vi:[1727"'7i7"'7mi]7 1§Z§d+1 (4.2)

where m; = d+ 1 or 2d according as d — 1 is odd or even. The number of distinguished paths of
(Cr(2d), [1,2,....d],[d+ 1,...,2d]) that pass through v; is (?:11), for1<i<d.

i) =2

Theorem 4.1 follows immediately from Theorem 4.2, since Zle (
Proof of Theorem 4.2. Although C7(2d) has an exponentially large number of vertices, only
a polynomial size subset of them appear in the totality of all distinguished paths. We will
subsequently show that these are a subset of all vertices having addresses which consist of at
most three maximal blocks of consecutive integers; the number of such vertices is O(d?).

To describe these vertex addresses we introduce a suggestive terminology. Call a consecutive

sequence of vertices Y7 = {1,2,...,i} a (departure) dock and call a consecutive sequence Y, =
{k+ 1,k+2,...,2d} an (arrival) dock. We call a maximal consecutive sequence of vertices
X ={r,r+1,....8t with 1 <7 < s < 2d a ship. A general vertex address has indices that
group into either 0,1 or 2 docks and some number of ships, i.e., v =[V¥1, X3, Xo,...,X;,Y5], in
which we permit Y7 or Y, to be the empty set, and j = 0 may occur.
Claim 1. A vertex v occurs in some distinguished path if and only if its address consists of two
docks Y1, Yy and a single ship X, in which up to two of X,Y1,Ys may be the empty set, and
the ship, if present, has an even number of vertices, and contains at least one of the indices d
and d + 1.

Call a vertex of the above type a voyage vertex. To prove Claim 1 we will need to charac-
terize the legal moves possible from a voyage vertex. Recall that Lemma 2.1 states that on any

distinguished path the address of v;41 is obtained from that of v; by replacing one index 5 < d

with an index 7' > d + 1.
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Now we can explicitly write down all the vertices of the resulting truncation polytope ( P, w1, w3)
and check that there is a further permutation o of the facet labels that sends it to (73(2d), [1,2,3,...,d],
[d+ 1, d+2,...,2d].) The permutation o is given by

d+1—k 1<k<i,
d—i+k i+1<k<d,
it1-k d+1<k<2d—i+1,
k—2d+i 2d—i<k<2d.

o(k) =

This completes the proof. O
The unique 4-dimensional Dantzig figure with 14 vertices appears in Table 4 of Griinbaum

and Sreedharan [4] as (P§, [1367], [2458]).
4. Upper Bound Dantzig Figures: Cyclic Polytopes

We recall the construction of a cyclic polytope Cy(n) on n vertices. The moment curve
in R? is the curve {x(¢) = (¢,#%,...t%) : t € R}. A cyclic polytope Cy(n) is the convex hull
of n points on the moment curve, i.e., Cyq(n) = conv{x(t1),....x(t,) : t1 < g < ... < t,}.
Such polytopes have a well-defined combinatorial type independent of the choice of vertices.
The Upper Bound Theorem states that Cy(n) has the maximum number of facets among all
d-polytopes having n vertices. The dual cyclic polytope C}(n) denotes the combinatorial type
of any polytope that is polar to some cyclic polytope Cy(n).

Proposition 4.1. (Gale’s evenness condition) For n > d > 2 the polytope C’j(n) is a simple
d-polytope. Given a d-subset S C {1,2,...,n}, the point
v = ﬂ H;
€S
is a vertex of Cj(n) if and only if for any two elements j; and j, not in S, with j1 < ja, the

number of elements of S between j1 and jy is even, i.e.
2|#{k:k€5,j1<k:<j2}f0rj1,j2€5. (41)

FEquivalently, all mazimal blocks of consecutive elements of S which do not contain either 1 or
n must contain an even number of elements.

Proof. Gale’s evenness condition for facets of the cyclic polytope appears in McMullen and
Shepard [12], p. 84, or in Ziegler [15], p. 14. The proposition states the dual form, which follows

from the fact that polarity reverses incidence structure of all faces, cf. Ziegler [15], §2.3. O
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1234 1234 1234 1234
2346 2346 2346 2346
3467 3467 2456 2356
4678 3567 4568 3567
5678 5678 5678 5678
1234 1234 | 1234 | 1234
1345 1345 | 1245 | 1235
3457 3457 | 2456 | 2356
4578 3567 | 4568 | 3567
5678 5678 | 5678 | 5678

Table 3.1. d-step paths for T4(8).

We conclude this section with a uniqueness result.

Theorem 3.3. For d > 4, there is a unique combinatorial type of d-dimensional Dantzig figure
having d* — d + 2 vertices, which is given by (Tg(2d), [1,2,3,....d], [d+ 1, d+2,...,2d]).

Proof. By Barnette’s result any such Dantzig figure is a truncation polytope P. Let P
be constructed from the d-simplex S; by truncating d — 1 successive vertices. By suitably
renumbering the facets of 5y and the added facets, we may suppose that the distinguished
vertices are wy; = [1,2,...,4,d+ 1,d+2,....2d —i] and wy = [1 + 1,04+ 2,....d,2d — i +
1,2d — i+ 2,...,2d]. In order to create these vertices using d — 1 truncations, the sequence of
truncations leading to wy must add facets Hyyq,...,Hoq—; and delete facets H;yq,...,Hy in
some order, while for wy it adds facets Hog_;y1,...,H2q and deletes Hy,...,H;, in some order.
In particular, no truncation operation for Hgyq,...,Hoq4+i, ever involves a vertex containing
Hog—iy1,...,Haq, hence these truncation operations mutually commute. Thus we may first
make all the truncations Hgy1,...,H24—; (in some order), followed by Hg4_;+1 through Hgyg
(in some order). Next we may relabel these vertices so that they enter in consecutive order
Hyvq,. .. Hoyg—y, followed by Hog—i41,...,Haq. Finally we may relabel the facets of Sy so that
when the facet H;;; enters then the facet H; leaves. This relabelling is a permutation of
{1,2,...,i} and {i+ 1,7+ 2,...,d} separately. The resulting sequence of vertex addresses of

the vertices that are truncated are
[1,2,...0, i+74+1,i+5+2,....dd+1,d+2...d+j], 1<j<d-1,

and

[1,2,....4, i4+1, i4+2,...d, 2d—i—1,...2d—j], 1<j<i.

11



them 1,2,...,2(d — 1), in which d + 7 is mapped to d — i+ 1, and d+ i+ 2 to d — ¢ + 2. Then

v* corresponds to the initial vertex

of Ty_i(2(d — 7)). We now observe that any sequence of legal moves resulting by applying rules
(i) and (ii) starting at the vertex v* of T4(2d) can be exactly matched by the same sequence
of legal moves by applying rules (i) and (ii) to w} of T3_1(2d — 2¢), under the renumbering
above, and vice-versa. This holds because deleted vertices can never be moved again in any
legal d-step path, by Lemma 2.1. For example, a rule (ii) move of type j to fill the “bubble” of

vy gives the next vertex
v=[i+1,i+2,....0,...dd+1,...d+id+i+1],
which corresponds to the vertex

—

vVi=[1,2,.cf— .. d—id—iF 1]

of Tg—1(2d — 27). A case (ii) “end move” to
v=[i+2 i+3,..dd+1,...d+id+i+1, d+i+2]
corresponds to the “end move”

—

vi=[2,3,...d—ild-—i+1,d—i+2],

of Ty_;(2d — 27). This proves Claim 2.
The induction hypothesis for d — ¢ gives that the total number of distinguished (d — ¢)-step

paths in Ty_;(2d — 21) is
d—i—1

1+ Z Qd—i—l—j _ 2d—i—1 )
=1

Thus Claim 2 shows that there are 2771 d-step paths through v; for 1 < i < d — 2, which
completes the induction step. O

Table 3.1 gives the eight 4-step paths for (74(8),[1234], [5678]), grouped by the value of v,.
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(i). If the “bubble” is to the left of the vertical bar, then the only legal move is to replace the
index v by d + v+ 1 if the “bubble” is not at i + 1, and by d + 1 + 2 otherwise. In the
first case the “bubble” stays where it is, while in the second case the “bubble” moves to

the right of the vertical bar, to the position d + 1+ 1.

(ii). If the “bubble” is to the right of the vertical bar, we can remove any element j to the left
of the bar, except 1 and use it to fill the “bubble.” If so, the “bubble” moves to the left
of the vertical bar, to position j. Alternatively, the label i can move to the right of the

vertical bar, to position d + 1 + 1.

We now prove Theorem 3.1 by induction on the dimension d. The base case d = 2 is
easily checked directly. Now suppose that it is true for all dimensions up to d — 1 and consider
dimension d.

First we treat paths which pass through v4 = [1,2,...,d — 1, cz|d + 1]. The “bubble” is to
the left of the vertical bar, hence rule (i) of the claim forces a unique legal move for d — 2 steps,
ending at the vertex with address [d — 1, (?|d +1,...,2d — 1]. There is now a unique legal final
step possible to wg = [d+ 1,...,2d — 1, 2d] hence there is exactly one d-step distinguished path
through vy.

Next, consider paths which pass through vy = [1,2,.. .,d/—\l, d|d+1]. The first d — 2 legal
steps are uniquely forced by rule (i), and end at the vertex with address [d|d+1,d+2,...,2d —
2,27—\1, 2d]. Now there is a unique final legal move to wq, hence there is exactly one d-step
distinguished path through v,_;.

For the cases of paths which pass through v; for 1 <7 < d — 2, the first i — 1 legal steps are

uniquely forced by rule (i), with the path reaching the vertex
v =li+1,i+2,..dd+1,...d+id+it1].

Here v* has the a “bubble” to the right of the vertical bar.
Claim 2. The (d—1)-step legal paths from v* to wy in T4(2d) are in one-to-one correspondence
with distinguished (d — 1)-step paths for the normalized Dantzig figure (Ty—;(2d — 2i), wi,w})

in RI-%,

The one-to-one correspondence arises by deleting the 2: facets labelled 1,2,...,7 and d +
1,.. .,d/—-l—\i, d+ i+ 1 and then renumbering the remaining facets in increasing order, denoting



which have addresses
liyit1,, it ky...i+d], for 1<k<d—1 and 1<i<d. (3.1)

In particular (74(2d), wi,ws) is a normalized Dantzig figure.
Theorem 3.1. For each d > 2, the normalized Dantzig figure (T4(2d), [1,2,...,d], [d +
1,...,2d]) with d*> — d + 1 vertices has exactly 29~ d-step paths in its graph between [1,2,....d]
and [d+1,...2d].

We obtain this from the following more detailed result.
Theorem 3.2. Let v; denote the vertex of Ty(2d) that is reached from [1,2,....,d] along the
edge that deletes H;, which has the address

vi=[1,2,...4,....d,d+1], 1<i<d. (3.2)

The number of distinguished paths in (Tq(2d), [1,2,...,d], [d+ 1,...,2d]) that pass through v;
is 29717 for 1 <i<d—1and is 1 fori=d.

Theorem 3.1 follows directly, since (3.2) runs over all d vertices adjacent to wy, and
1+ E;‘l; 9d—1-j _ 9d—1_

Proof of Theorem 3.2. We first introduce some additional notation concerning vertex ad-
dresses. We add a vertical bar to separate facet numbers at most d from those at least d + 1.
For example, when d = 4, the vertex label [1,2,5,7] becomes [1,2|5,7].

The “non-end” vertices of T4(2d) have labels consisting of d + 1 consecutive facet indices,
from 7 to d+ 1, from which exactly one facet index is omitted, which is neither of the endpoints ¢
or d+1. We call the omitted facet index a “bubble,” since it interrupts the consecutive sequence
of indices of the vertex address.

We call any move between two vertices v and v’ of T;(2d) a legal move if the vertex address
of v/ is obtained from that of v by removing a facet number j < d to the left of the vertical bar
and adding a facet number j > d + 1 to the right of the vertical bar. Lemma 2.1 asserts that
every step in a d-step distinguished path is a legal move.

The following claim is verified by inspection, using (3.1).

Claim 1. The legal moves from a vertex of Ty(2d) to a new vertex depend on the location of

the “bubble,” and are as follows:



(i) before truncation (ii) after truncation

Figure 3.1: Truncating a vertex

For simple d-polytopes with 2d facets, the lower bound is d? — d 4 2 vertices. There are
many combinatorially distinct types of truncation polytopes having 2d facets, and most of them
contain no antipodal vertices, so don’t give rise to any Dantzig figures. We construct below a
particular family of truncation polytopes with n facets for n > d + 1, among which the case
n = 2d gives a Dantzig figure.

Let Hy, Hq, ... ,H, denote the hyperplanes giving the facets of a general truncation polytope
P. We label vertex v of P by the labels of the d hyperplanes determining v, numbered in
increasing order. To construct P, we start with the d-simplex P determined by hyperplanes
Hy, Hy, ... ,Hgyq1,sothat Py has the vertices with addresses {[1,2,....1,...,d+1]: 1 < i < d+1},
where the symbol 7 means that i is omitted from the address. Among these vertices, the
lexicographically minimal vertexis [1,2,...,(d—1),d],and the lexicographically maximal vertex
is [2,3,...,d,(d+ 1)]. At step k, for 1 < k < n —d — 1 we truncate polytope P;_; with a
hyperplane Hgyx41, to obtain a new truncation polytope Pgyq. Then P = P,_;_4.

The mazimal truncation polytope Ty(n) is the truncation polytope with n facets obtained
as above, by choosing the lexiographically maximal vertex of P;_1 to truncate at step k. Thus
at the k-th step, the vertex truncated has address [k+1,k+2,...,k+ d] and the d new vertices
of P41 have addresses {[k + 1,...,k/—|—\i,...,k +d,k+d+1]:1<i<d}.

For the case n = 2d, the d* — d + 2 vertices of T;(2d) consist of the two distinguished “end

vertices” wy = [1,2,...,d] and wy = [d+ 1,d + 2,...,2d] plus the d*> — d “non-end” vertices



Lemma 2.1. Let (P,w1,w3) be a normalized Dantzig figure. The following are equivalent:

(i). The set of vertices vo = W1, V1,Va,...,Vq = Wq is a d-step path in the graph of P, i.e. a
distinguished path.
(ii). The set of vertices vo = w1,v1,...,vqg = Wy of P has each vertex address v;y1 obtained

from v; by removing one facet index j with 1 < j < d and adding one facet index j' with

d+1<j <2d.

Here (ii) implies that the vertex labels on any such distinguished path are lexicographically
increasing. Based on (ii), we sometimes call the change of addresses from v; to v,41 a move of
7 to j'.

Proof. (i) = (ii). An edge deletes one facet, and a new vertex adds exactly one facet. In going
from wy to wg we must add the facets Hyyq,...,H2q and we must remove the facets Hy,...,H,.
Since there are only d-steps (ii) follows.

(ii) = (i). We need only check that [v;, v;+1]is an edge of P, i.e. is not interior to any k-face of
P for k > 2. But (ii) shows that conv[v;, v;+1] lies in the intersection of d — 1 facet hyperplanes
given by the d — 1 common facet indices for simplicial polytopes with n vertices. Since P is a

simple polytope, any k-face for £ > 1 is contained in exactly d — k facets. O
3. Lower Bound Dantzig Figures: Truncation Polytopes

Barnette [1] proved that any simple d-polytope having n facets has at least n(d — 1) —
(d 4 1)(d — 2) vertices. He also proved that for dimension d > 4 equality is attained only for
truncation polytopes, which are polytopes recursively constructed from a d-simplex by adding
facets, one at a time, each of which cuts off a single vertex of the previous polytope. More
precisely, we have a sequence of polytopes Fy, Pi,...,P,_4_1, in which Py is a d-simplex, and
P; is obtained from P;_; by “truncating” one vertex by a facet that replaces it by d vertices,
see Figure 3.1. (This construction is sometimes given in its dual form for simplicial polytopes,

and the resulting polytopes are called stacked polytopes.)



figures.

2. Dantzig Figures and d-Step Paths

Our terminology on polytopes follows that of Ziegler [15]. All polytopes are bounded. A
d-polytope is simple if every vertex lies in exactly d facets. A d-polytope is simplicial if each
facet is a (d—1)-simplex. The polar polytope P* of a polytope P reverses the incidence ordering
of all faces; if P is a simplicial polytope then P* is a simple polytope. The graph of a polytope
P is the undirected graph giving the incidence structure of its 0-faces (vertices) and 1-faces
(edges) of P. Let conv(vy,...,vi) denote the convex hull of vy, vy, ... ,vg.

The combinatorial type of a d-polytope is the set of incidence relations among all its faces. It
can be described either by saying which facets contain each face, or, equivalently by specifying
which vertices are contained in each face. Two polytopes have the same combinatorial type
(or are combinatorially equivalent) if there is an one-to-one onto, incidence-preserving mapping
of faces of one to faces of the other. The combinatorial type of a Dantzig figure (P, w1, w3)
is defined similarly, except that incidence-preserving mappings between Dantzig figures are
required to take distinguished vertices of one to distinguished vertices of the other. The truth
of the strong d-step conjecture for a particular Dantzig figure (P, w1, w3) depends only on its
combinatorial type. Henceforth in this paper the word “polytope” or “Dantzig figure” refers
only to its combinatorial type.

We describe the incidence structure of Dantzig figures using facets. Let Hy, Hs,....Hoq
denote the hyperplanes determined by the 2d facets of a Dantzig figure (P, w1, wz). We address

each vertex v of P by the indices of the facets determining it. The vertex address
vi=[in,dg, .. d], i <ia <L <dg (2.1)

means that v = H;,,NH;, N...N H;,, with 7; < iy < ... < i4. A normalized Dantzig figure is

[FE)

one in which wy = HiyNHaN...N Hygand wo = Hyy1 N Hypo N ... N Hyg, so that
wy =[1,2,....d]and wo=[d+ 1, d+2,...,2d]. (2.2)

A distinguished path is a Dantzig figure (P, wq, wz) is a d-step path between wy and wy in

the graph of P. We use the following simple characterization of distinguished paths.



or minimal number of vertices possible among (d, 2d)-polytopes.

The minimal number of vertices possible for a simple d-polytope having 2d facets is d? —
2d + 2. This is a special case of the Lower Bound Theorem proved by Barnette [1], who also
showed that for d > 4, the set of polytopes attaining the bound are the truncation polytopes —
that is, polytopes obtained from a d-simplex by successively truncating vertices, one at a time.
There are exponentially many different combinatorial types of truncation polytopes, but in §3
we show that this class of polytopes includes a unique combinatorial type of Dantzig figure. We
prove that this Dantzig figure has exactly 29=1 d-step paths between its distinguished vertices.

(Theorem 3.1).

L%d—%J)
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This is a special case of the Upper Bound Theorem of McMullen cf. [12], [15]. All d-polytopes

The maximal number of vertices possible for any d-polytope having 2d facets is 2(

which attain this bound are simple, and they comprise exactly the duals of all simplicial neigh-
borly d-polytopes. (A polytope P is neighborly if every set of [%] vertices determines a facet of
P.) Among such polytopes is the dual C(2d) of the cyclic polytope C4(2d) on 2d vertices. The
d-step conjecture has been verified for all dual cyclic polytopes by Klee [7], but is apparently
still open for the class of all duals of simplicial neighborly d-polytopes, see [8, p. 750]. We prove
that the Dantzig figure given by (C%(2d), [1,2,,...,d], [d+ 1,d + 2,...,2d]) has exactly 24!
d-step paths between its distinguished vertices. The vertices [1,2,...,d] and [d+1,d+2,...,2d]
of C7(2d) correspond to the facets of Cj(2d) determined by its (ordered) vertices 1,2,...,d and
d+1,d+2,...,2d, respectively. (Theorem 4.1).

The upper bound case differs from the lower bound case in that there are many different
15d-3]
[34]
polytope C%(2d) itself has other sets of antipodal vertices which give Dantzig figures that are

combinatorial types of Dantzig figures having 2( ) vertices. When d is even, the cyclic
combinatorially distinct from (C(2d), [1,2,....d], [d+ 1,...,2d]), and in addition there are
such Dantzig figures coming from other dual simplicial neighborly d-polytopes, see [2], [13]. In
dimension 4 some of these have 8 d-step paths, while others have 12 d-step paths.

The combinatorial structure of the 29=1 d-step paths are quite different in the minimal
vertex case and maximal vertex case; compare Theorem 3.2 and Theorem 4.2.

In Section 2 we present basic definitions and facts about Dantzig figures and d-step paths.

Section 3 deals with lower bound Dantzig figures and Section 4 with upper bound Dantzig



conjecture and hence the Hirsch conjecture can be restated as:

Hirsch conjecture: For every d > 1, and for every d-dimensional Dantzig figure (P, w1, w3),
#(P7W17W2) Z 1.

For the main results on and several equivalent versions of the Hirsch conjecture, see [8], [9],
[10], [15]. Several natural generalizations of the Hirsch conjecture are known to be false. For
example, the unbounded version of the Hirsch conjecture [9] as well as the monotone version [14]
fail in dimension 4, while the generalization of the dualized Hirsch conjecture for triangulated
spheres fails for 11-dimensional spheres [11]. These and other negative results detailed in [8]
led to the general belief that the Hirsch conjecture is also false, and perhaps fails in dimension
as low as 12, cf. [8, p. 733].

Lagarias, Prabhu and Reeds [10] recently studied the number of d-step paths between ver-
tices of Dantzig figures. They observed that #(P, wy,wz) < d!. (The d-cube shows this bound
is sharp.) They presented extensive computational evidence, in dimensions up to 15, which
suggested the truth of the following strong form of the d-step conjecture.

Strong d-Step Conjecture. For every d > 1, and for every d-dimensional Dantzig figure
(P,w1, W),

#(P7 W17W2) Z 2d_1 .

This conjecture was proved for d = 3 in [10]. Holt and Klee [5] then proved it for d = 4, but
showed that it is false in all higher dimensions, by constructing d-dimensional Dantzig figures
for d > 5 with #(P, wy,w3) = % .41,

It is interesting that the Holt-Klee result still leaves open the possibility that #( P, wy, wy) >
0(2%) as d — oo, although we see no convincing reason to suspect this is true. We believe that
further investigation of the number and structure of d-step paths in d-dimensional Dantzig
is warranted, before one concludes that the computational results of [10] were fortuitously
misleading. In any eventuality, the results of [10] suggest that “most” Dantzig figures have
many d-step paths.

In this paper we continue an investigation of the number and structure of d-step paths
between antipodal vertices in d-dimensional Dantzig figures. Specifically, we count the number

of d-step paths for certain Dantzig figures which are extremal in the sense of having the maximal
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1. Introduction

The (bounded) Hirsch conjecture asserts that the diameter of the graph of any d-polytope
having n facets is at most n—d. Let A(d, n) denote the maximal diameter of any (d, n)-polytope;

the Hirsch conjecture asserts that
A(d,n)<n—dforal n>d>0.
The d-step conjecture is a special case of the Hirsch conjecture and asserts that
A(d,2d)=d for all d.

Although seemingly less general, the d-step conjecture is known to be equivalent to the Hirsch
conjecture. Klee and Walkup [8, Theorem 2.8] showed that A(d,2d) is attained by some simple
(d, 2d)-polytope. They also showed that to prove the Hirsch conjecture it suffices to prove it for
d-dimensional Dantzig figures. A d-dimensional Dantzig figure is a triple (P, wy, wy) where P
is a simple (d, 2d)-polytope with two distinguished vertices wy and wy which are antipodal in
the sense that they have disjoint sets of facets incident on them. Klee and Walkup showed that
A(d,2d) equals the length of the shortest edge path between the distinguished vertices of some
d-dimensional Dantzig figure. Let #(P, w1, w3) denote the number of edge-paths of length d

between vertices wy and wy in the d-dimensional Dantzig figure (P, wy, wz). Then the d-step
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Abstract

The d-step conjecture asserts that every d-polytope P with 2d facets has a edge-path of at
most d-steps between any two of its vertices. Klee and Walkup showed that to prove the d-step
conjecture, it suffices to verify it for all Dantzig figures ( P, w1, w3), which are simple d-polytopes
with 2d facets together with distinguished vertices w; and wy which have no common facet,
and to only consider paths between w; and wy. This paper counts the number of d-step paths
between wy and wy for certain Dantzig figures (P, wy, wy) which are extremal in the sense that
P has the minimal and maximal vertices possible among such d-polytopes with 2d facets, which
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respectively. These Dantzig figures have exactly 2%~ d-step paths.

are d*> — d + 2 vertices (lower bound theorem) and 2( ) vertices (upper bound theorem),



