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Summary. We describe connections between the de Branges theory of Hilbert
spaces of entire functions and the Riemann hypothesis for Dirichlet L-functions.
Assuming the Riemann hypothesis, for each L-function there exists a particular de
Branges space with interesting properties, and conversely. These de Branges spaces
are shown to have associated “Hilbert-Polya” operators of a classical kind.

1 Introduction

The object of this paper is to formulate a connection between Hilbert spaces
of entire functions and the Riemann hypothesis for various L-functions. Louis
de Branges has long advocated the applicability of his theory of Hilbert spaces
of entire functions to the Riemann hypothesis. He has proposed several ap-
proaches to the problem, including [11], [12]. The approach we present here
is different from these. We associate to the Riemann zeta function the entire
function

Byo(e) = £(5 — i2) + €5 — i2)

in which £(s) = 3s(s — l)w_s/zf(g)g(s) is the Riemann ¢-function, and &'
denotes its derivative with respect to the s-variable. More generally, to each
Dirichlet L-function with a primitive character x we associate the entire func-
tion
1 1
Ey(2) = &(5 — i) + & (5 — i2),

in which &, (s) denotes the Dirichlet L-function completed with its archimedean
factors, multiplied by a certain constant of modulus one which makes £(s) real
on the critical line R(s) = ;. Our main observation is that for each x, Ey(z)
is the structure function of a de Branges space H(E,(z)) if and only if the
Riemann hypothesis holds for L(s, x). Furthermore it gives a strict de Branges
space (defined below) if and only if the Riemann hypothesis holds for L(s, x)
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and all its non-trivial zeros are simple zeros. Thus, assuming the Riemann hy-
pothesis holds, these associated de Branges spaces exist, and we then explore
what de Branges’s theory implies about such spaces.

The de Branges theory associates to each de Branges space an integral
transform which we term here the de Branges transform. For the spaces above
this transform produces a “Hilbert-Polya” differential operator together with
self-adjoint boundary conditions that give an eigenvalue interpretation of the
zeros of these L-functions. The Riemann hypothesis is interpretable as a pos-
itivity property of the coefficient functions of this “Hilbert-Polya” operator.
This allows the possibility of approaching the Riemann hypothesis by finding
a direct construction of this operator.

The approach described here differs from those taken in de Branges [11],
[12]. These papers present certain general theorems that conclude that any
de Branges space that satisfy their hypotheses necessarily has a structure
function E(z) that has all its zeros on the horizontal line $(z) = —3. His
hope was that these results might apply to the de Branges space H(E) with
structure function E(z) = £(1 — iz), where the conclusions of his theorems
would yield the Riemann hypothesis. However Conrey and Li [13] later showed
that the de Branges space with E(z) = £(1 —1z) fails to satisfy the hypotheses
of these general theorems.

This paper presents one theorem and sketches consequences of it. An ex-
panded version of this paper, with additional results, is in preparation [20].
In particular the approach extends to automorphic L-functions, i.e. principal
L-functions for GL,,. The research in this paper was done while the author
worked at AT&T Labs.

2 Hilbert Spaces of Entire Functions

We give a brief review of the de Branges theory of Hilbert spaces of entire
functions. This review formulates some of de Branges’s results in [10] into
an operator-theoretic language, using the terminology of canonical differential
systems as in Remling [22] or Sakhnovich [23], rather than in terms of integral
equations as in de Branges’s formulation. In places it makes some simplifying
assumptions, and for technically precise statements of the results, see [10] as
indicated. The complex variable used is 2 = x + iy and z,y always denote real
variables.

A structure function or a de Branges function E(z) is an entire function
having the property that

|E(2)| > |E(2)| when $(z) > 0. (1)

This property implies that E(z) has no zeros in the upper half plane. We say
it is a strict de Branges function if E(z) has no zeros on the real axis. This
class of functions has a long history, see Chapter VII of Levin [21], who uses
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the term Hermite-Biehler functions, and M. Krein [17, Theorems 9 and 11].
The de Branges theory makes use of a decomposition of the structure function
E(z) into entire functions that are pure real and pure imaginary on the real
axis, namely

E(z) = A(z) —iB(z),

given by

B(z) = o (E(z) - m) .

A crucial observation of de Branges is that the condition (1) implies: For a de
Branges function E(z) = A(z)—iB(z), the functions A(z) and B(z) have only
real zeros, and these zeros interlace. If E(z) is a strict de Branges function,
then all the zeros are simple zeros (de Branges [7, Lemma 5]).

One associates to any de Branges function E(z) a de Branges Hilbert space
‘H(E) of entire functions, as follows. The Hilbert space scalar product is

= {@)g@)

<fag)E: - |E(.’L‘)|2

(2)
(conjugate-linear in the second factor). The entire functions f(z) that belong
to the space are those which have a finite norm ||f||g and whose growth with
respect to E(z) is controlled in the upper half-plane C* := {z : $(2) > 0}

and in the lower half-plane. We require that ]’;(é)) and ]’;((’?) be of bounded

type and nonpositive mean type in Ct. A function h(z) is of bounded type if
it can be written as a quotient of two bounded analytic functions in C* and
it is of nonpositive mean type if it grows no faster than e for each € > 0
as y — oo on the positive imaginary axis {iy :y > 0}. One can show there
always exist such functions, so the space H(E) is always nontrivial. There are
examples where it is a finite-dimensional Hilbert space, but in the cases we
will consider here it will always be infinite-dimensional.

A de Branges space H(E) is a reproducing kernel Hilbert space, with a
kernel function Kg(w,z) having the property that for each f(z) € H(E),
there holds

fw) ={f(2),K(w,2))g for all w € C.

That is, evaluation of a function in #(E) at the point w is a continuous linear
functional on H(E) and is therefore represented by a scalar product with
some function g,,(2) € H(E) and we have K(w, z) := gy (2). (Only values of z
on the real axis are used in computing the scalar product.) The reproducing
kernel is

If we consider the de Branges space to be determined by its reproducing
kernel, then there is some freedom in the choice of de Branges functions E(z).
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For k € R the function Ey(z) = kA(z) — 1B(z) gives the same reproducing

kernel, and for 0 < § < 27 so does Ey(z) = e E(z) := Ag(z) — iBg(2). This
gives an SL(2, R)-action on structure functions that preserve the reproducing
kernel. In the case of strict de Branges functions, we can remove this ambiguity
by requiring that E(0) = 1, and E'(0) € iR, i.e. A(0) =1, A'(0) = 0, and
B(0) = 0. It proves convenient to only partially remove this ambiguity and
call a structure function normalized if E(0) = 1, with no condition imposed
on A'(0).

There is an additional degree of freedom in that one can remove zeros on
the real axis from the structure function without changing the de Branges
space in an essential way. Indeed if E(z) has a zero on the real axis, at z = zg,
say, then the form of the Hilbert space norm in (2) shows that every function
in H(E(z) must have a zero at the same location, so we can divide all functions
in the space by z—zy and obtain a new Hilbert space of entire functions having
structure function ”H(f_(;z)), preserving the Hilbert space inner product. The
reproducing kernel changes, with the new reproducing kernel obtained from
the old by dividing by (z — x¢) (@ — o). In this way we can in principle reduce
to the case of a strict de Branges space, one where the structure function E(z)
is a strict de Branges function.

There is an abstract theory of de Branges spaces. An (abstract) de Branges
space is a nonzero Hilbert space H whose elements are entire functions, such
that H(FE) satisfies the axioms:

(H1) Whenever f(z) is in the space and has a non-real zero zp then g(z) :=
f(z)j:ig is in the space and has the same norm as f(z).

(H2) For every nonreal number w € C, the linear functional on H defined
by f(z) — f(w) is continuous.

(H3) If f(z) € H then f*(z) := f(Z) belongs to H and has the same norm
as f(z)-

Two abstract de Branges spaces are isomorphic if there is an isometry
between them that preserves properties (H1)—(H3). Then any (abstract) de
Branges space is isomorphic to some de Branges space H(E) ([10, Theorem
23]). Each such space is isomorphic to a de Branges space H(E(z)) for which
E(z) is a strict de Branges function that is normalized, i.e. E(0) = 1.

A de Branges space H(E) comes with an unbounded operator (M., D(M,))
in which M, is “multiplication by 2” and its domain is

D(M) ={f(z) e H(E) : z2f(z) € H(E)}.

This domain is either dense in H(E) (the “dense” case) or has closure of codi-
mension 1 in H(E) (the “non-dense” case). We are interested here only in the
“dense” case; the property of being “dense” can be read off from properties of
E(z) on the real axis. The operator M, is symmetric and closed (i.e. its graph
is closed in H(E) @ H(E)). In the “dense” case the operator has deficiency
indices (1,1), and so has a family of self-adjoint extensions parametrized by
the group U(1) = {e? : 0 < 8 < 27}.
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One interpretation of the de Branges theory is that it supplies a “canonical
model” for a particular subset of closed symmetric operators with deficiency
indices (1,1). This class of operators contains the class of “entire operators”
introduced by M. Krein (see [15]). The “canonical model” allows various
properties of the operator M, to be read off by inspection.

First, from the normalized structure function E(z) we obtain a description
of all self-adjoint extensions of the operator M,. These extensions all have
discrete, simple spectra, as we describe below.

Second, the “canonical model” exhibits a complete (and unique) chain of
invariant subspaces for the operator, which consists of a nested family of sub-
spaces which are themselves de Branges spaces. Associated to this chain of
invariant subspaces is an integral transform somewhat like the Fourier trans-
form, which we will call here the de Branges transform, with a corresponding
inverse de Branges transform. The de Branges transform gives an isometry of
a de Branges transform Hilbert space (M) (defined below) onto the Hilbert
space H(E), with inverse transform going the opposite direction. (See [10,
Theorem 44].) The inverse de Branges transform takes the multiplication op-
erator M, is to a (generalized) linear differential operator ! D, acting on a
system of 1 x 2 vectors of functions, whose dependent variable ¢ runs over
an interval of the real line R, which can be taken to be (0,b] with b finite,
parametrizing the chain of invariant subspaces.

A major theorem of de Branges used in the construction of this transform
is the total ordering theorem which says if two de Branges spaces H(E;) and
H(E>) are isometrically embedded in a de Branges space H(E) (i.e. their
reproducing kernels are obtained by restriction) then either H(E;) C H(E>)
or H(E>) C H(E1) ([10, Theorem 35]). The order type of the resulting chain
of subspaces can be either discrete, where the dimension jumps by 1 at some
points, or continuous, or some mixture of discrete and continuous. In any case
we can embed such an order type in an interval, and write the family as H(E;)
where 0 < t < b, say, with H(E;,) C H(Ey,) if t1 < t2. In a parametrization
by an interval, some values of ¢ correspond to members of the chain, and
other values of ¢t do not, being filler values to permit parametrization of the
chain by an interval on the real axis. For this de Branges introduces notions of
“regular” and “singular” values of a parametrization ([10, p. 136]) in which a
“regular” value of ¢t apparantly corresponds to belonging to the chain. For the
discussion here we shall suppose that we are dealing with a pure continuous
case, and also that it is legitimate to differentiate and obtain the canonical
system (3) below.

! More accurately, the de Branges theory uses a 2 x 2 matrix integral equation in
the parameter ¢. If the integral equation could be differentiated, then one obtains
the canonical differential system (3) (4) given below, see for example Dym [14, p.
396]. The matrix M (t) in (4) is related to de Branges’s symmetric 2 x 2 matrix
m(t) with entries (a(t),B(t),y(t)) given in [10, Theorem 38] by M (t) = %m(t).
The canonical differential equation formalism works more generally by allowing
M(t)dt = dm(t) to be a 2 x 2 matrix-valued measure, see Remling [22].
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For a given normalized strict structure function E(z) it is possible to find a
family of normalized strict structure functions of the de Branges chain H(E,),
denoted by E;(z) := A(t,z) — iB(t,z) parametrized with 0 < ¢ < b, that
satisfy 2 a “canonical differential system” (see [23]) for each z € C,

gl o
et J= [‘1) _(1]] and M(t) = [;Eg fég] ' (4)

such that at the right endpoint Ey(z) = E(z) for all z € C, and at the left
endpoint satisfies
lim A(t,z) =1 and lim B(t,2) =0 5
Jim A(t,z) =1 and  lim B(t,2) =0, (5)
see [10, Theorem 40]. A principal feature is that for (almost all) ¢ the matrix
M (t) is real, symmetric and positive semidefinite. The right endpoint is “reg-

ular” in a sense defined by de Branges [10, p. 136]. The Hilbert space KX(M)
consists of vector-valued functions [A(t), B(t)]T on an interval, say [0, b], with

norm -
1), gDy = /[f <)[%]dt.
The de Branges transform T : K(M H(E) is:
VD) = (10.90) — T = 1 [ 10 s [ 2D ar, )

see [10, Theorems 43 and 44]. Note that A(¢, Z) = A(t, ) and B(t, Z) = B(t, 2).

The de Branges direct theorem asserts that: Any canonical differential
system (3) with “initial condition” (5) with the property that the 2 x 2
matrix function M (t) is measurable and positive semi-definite symmetric
for all ¢ € (0,b], and which is integrable over the interval, has solutions
{(A(t,2),B(t,z)) : 0 < t < b, allz € C} such that each E(t,z) =
A(t,z) —iB(t, z) with t constant and z € C is a strict, normalized de Branges
structure function. This is proved ([10, Theorem 41]) provided some growth
conditions are imposed on the coefficients of M (t). These growth conditions
characterize those (strict, normalized) de Branges functions belonging to the
Polya class. The Polya class consists of those de Branges functions whose
modulus is nondecreasing on each vertical line in the upper half-plane, see
[10, Sect. 7]. The de Branges functions which are entire functions of expo-
nential type are exactly the class for which the canonical differential equation

2 A a differential equation of the general form (3), (4) for a fixed z is called a
canonical differential equation. A “canonical differential system” is a family of
such equations where z varies.



Hilbert Spaces of Entire Functions and Dirichlet L-Functions 7

(3) is regular at its left endpoint for each z € C. For de Branges functions of
faster growth this endpoint is singular.

The de Branges inverse theorem asserts the following: For any strict nor-
malized de Branges structure function E(z) = A(z) —iB(z) in the Polya class,
there exists a set of real coefficient functions (&(t), 5(t),7(t)) such that the
real matrix M (¢) is positive semidefinite for almost all ¢ in a finite half-open
interval (0, b] and the solutions to the canonical differential system (3) at the

left-endpoint satisfy (5) and at the right endpoint ¢ = b have
A(b,z) = A(2) and B(b,z) = B(z). (7

In addition the right endpoint is a “regular” value in de Branges’s sense. The
precise assertion (see [10, Theorem 40]), is an extremely strong inverse spectral
theorem which subsumes many known inverse spectral theorems, see Krein [18]
and Remling [22, Theorem 7.3]. The canonical differential system (3) can be
made essentially unique by reparametrizing it to have T'r(M(t)) = 1 almost
everywhere. With this reparametrization the interval may become infinite to
the left, with an endpoint at —oo.

We now describe the self-adjoint extensions of the operator M, assum-
ing that we are in the “dense” case. The structure function E(z) specifies
two particular self-adjoint extensions associated to A(z) and B(z), respec-
tively. Recall that A(z) and B(z) have real zeros and these zeros interlace.
The self-adjoint extension M, associated to A(z), denoted M, or M, (A),
has pure discrete simple spectrum located at those zeros of A(z) that have
multiplicity exceeding that of B(z) at the same point, and for each such

zero p an eigenfunction f,(z) = (:‘f‘;gj, where A(z) has a zero of order j

at z = p. The domain D(M,(A)) = D(M,) & C[f,,] for any single func-
tion f,,. We obtain all self-adjoint extensions of M, by considering instead
{A4p(2) : 0 < 0 < 27}, obtained from Ey(z) = € E(z). Now suppose that E(z)
is a strict de Branges function, in which case j = 1 always, and the functions
{fo(z) = ‘:(sz) : A(p) = 0} form an orthogonal basis of H(E(z)) ([10, Theorem
22]). This orthogonal basis gives rise to a “summation formula” expressing the
Hilbert space norm of an arbitrary function f(z) € H(E),
2

s _ [T |f@ ), T £
@ik = | W‘E(x) =2 50 ‘E(p)

in which the phase function ¢(t) is given by E(z) = e~ () Ey(z), with Eo(x)
real-valued.

The operator Dy on the de Branges transform space (M) having defi-
ciency indices (1, 1) can be formally written as

1,14 1| 0O 4
Dyi= M) S =M@ |, W
dt

2
’

(8)

dt

under the extra assumption that M (¢) is invertible everywhere. Theorem 45
of [10] gives a description of the range of the symmetric operator D;. In
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the de Branges transform space (M) is a corresponding orthogonal basis of
eigenfunctions V,(t) := [A,(t), B,(t)]T of D; defined indirectly by T(V,) =
fﬁzg, where A(p) = 0. Expanding members of the Hilbert space (M) in this
basis is an “eigenfunction expansion” associated with the de Branges theory.

There is further content to the de Branges theory not covered here. Some

of this is to be discussed in [20].

3 de Branges Spaces associated to Dirichlet L-Functions

Associated to the Riemann zeta function is the Riemann ¢-function, given by

£(s) = (s~ D 3T(S)C(s).

It is an entire function, real on the real axis and on the critical line ®(s) = 1,
satisfies the functional equation £(s) = &£(1 — s) and its zeros are exactly
the nontrivial zeros of the Riemann zeta function, those in the critical strip
0 < R(s) < 1. We write £(s) := &, (s) where xo is the identity Dirichlet
character.

We can similarly associate to each Dirichlet L-function L(s,x) with a
primitive character x of conductor ¢ a corresponding {-function &, (s). We
define the completed L-function

L) = () T 0 ER 16,0,

in which K = 0if x(—1) = 1 and k = 1 if x(—1) = —1. This is an entire
function which satisfies the functional equation

Ly(s) = e Lx(1 = 9),

in which y is the complex conjugate of the character x and €(x) := ey

q2
is a constant of absolute value 1, see for example Davenport [6, Chap. 9].

The fact that L, (s) transforms under complex conjugation as Ly (s) = Ly(3)
together with the functional equation implies that L, (s) has constant modulus
(mod 7) on the critical line, i.e. there is a constant e such that IA/X(% +it) =
e?g, (t) for some continuous real-valued function g,(t). There remains an
ambiguity of a sign in the choice of e? which is removed by requiring that
&x(s) be positive on the critical line in the upper half-plane just above s = 1.
We then define the modified function

&(s) == e L(s,x), (9)

which is real-valued on the critical line, and satisfies the functional equation

& (s) = & (1 — ).
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The zeros of the function &, (s) are exactly the non-trivial zeros of the Dirichlet
L-function in the critical strip, counting multiplicities.

In the following result the notation f'(s) denotes the derivative with re-
spect to the s-variable, following standard usage in number theory.

Theorem 1. For each primitive Dirichlet character x including the trivial
character xo, set E,(z) = Ay (2) —iBy(2) with

A(e) =& (5 — 7). Byle) =i £ —i2).

Then these functions are real on the real axis, and the following holds.

(i) Ex(2) is a de Branges function if and only if the Riemann hypothesis
holds for L(s,x)-

(ii) Ey(z) is a strict de Branges function if and only if the Riemann hy-
pothesis holds for L(s,x) and all its nontrivial zeros are simple zeros.

Proof. The function A,(z) is real on the real axis since &, (s) is real on
the critical line. Then B, (2) inherits this property under differentiation.

(i) If Ey(2) is a de Branges function then by de Branges’ lemma both
A, (z) and By (z) have only real zeros, which interlace. The reality of zeros of
A, (z) is the Riemann hypothesis for &, (s).

Now assume that the Riemann hypothesis holds for &, (s) . Then A, (2) has
real zeros. Since A, (z) is an entire function of order 1 (and infinite type), La-
guerre’s theorem ([16, Theorem 5.7]) applies to show that B, (z) = —d%AX (2)
has real zeros and they interlace with those of A, (z).

We show that the Riemann hypothesis for L(s, x

£) r
%(£X(3)> >0 for R(s) >

This fact is well known for the Riemann &-function, see Lagarias [19]. Starting
from the Hadamard product factorization

&(s) =P (1 - f) ev,

) P

~—

implies that

DN | =

. (10)

and the logarithmic derivative we obtain

& (s) 1 1. 1 1
gx(s):gx(s)—B+2pf(s_p+;)—(B+pr;)+zpf(s_p),

where the sum is not absolutely convergent in the last equality and must be
viewed as taken over |p| < T and then letting T" — oco. Taking the real part of
this sum, one can check term by term that §R(Si—p) > 0 whenever R(s) > R(p).
We also have R(B+3_, %) = 0, which is deduced from the functional equation

gx(s) = —gx(1 — s). By hypothesis R(p) < 1, and (10) follows.
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Now (10) gives S (ﬁigzg) =9 igl(%ﬂlz)) > 0 when §(z) > 0. Then

£(5—i2)
By(2) | . _ Bx(2) By(2) | .
+1 > -1 = — +1
ENORAEE e R NOR
under the same condition. Thus for &(z) > 0,
_ . . By(?)
|Ex (2)| = | —iAx(2)|li + Ax(z)l
o, Bx(2) _
> | —iA, (3)||i + =X=2| = |Ey ()],
=i @i+ 3= 1B (2

so that E, (z) is a de Branges function.

(ii) This is straightforward. O

Assuming the Riemann hypothesis, it can be shown that the functions
E, () belong to the Polya class, and that the associated de Branges spaces
fall in the “dense” case. We now consider the consequences of having a strict
de Branges space, where we can make use of the de Branges transform.

First, the self-adjoint extension M, of M, corresponding to the function
Ay (2) = & (3 —i2) has a complete orthogonal set of eigenfunctions given by

5)((1 B 7,2:) . 1 .
fo(2) == ;_777 with p = 5 T

where p runs over all the zeros (assumed simple) of &, (s).

Second, the de Branges summation formula applied to this set of orthog-
onal eigenfunctions gives for all f(z) € H(Ey), putting F(3 —iz) = f(z),

s _ |F'(p)|?
||f(z)||EX - W{ng%zo} |£;((p)|2’

The right side of this formula resembles the spectral side of the “explicit for-
mula” of prime number theory. Viewed this way, the positivity of the Hilbert
space norm appears to encode “Weil positivity,” compare [1, Sec. 4].

Third, the associated de Branges transform gives an encoding of the Rie-
mann hypothesis plus simplicity of the zeros as a positivity property. To show
a given E,(z) is a strict de Branges function, it suffices to show that a cor-
responding normalized function EY (z) = koE(2) (with constant ko chosen so
that EY (1) = 1) is a normalized strict de Branges function. The de Branges
inverse theorem then says there exists data

[a B
MW‘[&Q«J'

which is real, symmetric and positive semidefinite, and whose canonical dif-
ferential system, suitably parametrized, produces on the interval (0,b] the
function
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N N ‘DN
E(2) = A} (b,2) —iB, (b, 2)

at its right endpoint. (The T'r(M) = 1 reparametrization would necessarily be
on an infinite interval (—oo,b] in this case.) If these coefficient functions are
found, then the de Branges direct theorem certifies that Eiv (2) is a strict de
Branges function, so that E, (z) is as well, whence A(b, z) = &, (4 —iz) has real
simple zeros. Thus the Riemann hypothesis plus simple zeros is encoded as
the positive semidefiniteness property of the coefficient matrix M (¢) on (0, b].
It seems reasonable to expect that for these particular de Branges spaces the
matrix M (t) will always be positive definite. We note that the fact that EY (2)
is not a bandlimited function implies that the canonical differential system for
it will necessarily be singular at the left endpoint ¢ = 0, with v(¢) — oo as
t—0.

Fourth, the de Branges transform produces a “Hilbert-Polya” operator, by
which we mean a self-adjoint differential operator on a Hilbert space whose
eigenvalues encode the zeta zeros. We take the operator D; to be the self-
adjoint extension of the differential operator Dy on (M) that corresponds to
the extension M, of the de Branges operator M, under the de Branges trans-
form. It is possible to describe this operator and its domain more concretely.
There are particularly interesting forms for it in the case of a real primitive
character y, the self-dual case.

According to the de Branges theory there has been so far no loss of in-
formation. That is, if the Riemann hypothesis plus simple zeros holds, then
the objects above all exist, if properly interpreted as integral equations rather
than differential equations, and conversely. Some inferences on what the co-
efficient functions of M (t) might look like for the Riemann zeta function case
H(E,,) can be obtained by analogy with those of certain Sonine spaces of
entire functions, cf. de Branges [8], [9], Burnol [3], [4]. Burnol has also stud-
ied some other Hilbert spaces associated to the zeta function and Dirichlet
L-functions [2] [5].

4 Conclusions

We have formulated the Riemann hypothesis for Dirichlet L-functions in terms
of the existence of particular de Branges spaces. This provides a possible
approach to the Riemann hypothesis plus simplicity of the zeta zeros, namely
to construct these hypothetical spaces directly in a way that certifies they are
de Branges spaces with the correct structure function.

There are at least three ways to construct a de Branges space. The first
way is to find a structure function E(z) for the space, and directly prove E(z)
has the defining property (2). The second way is to obtain the de Branges
transform data {M(t) : 0 < t < b}, verify that each 2 x 2 matrix M (¢)
is real and positive semi-definite symmetric, and integrable over the specified
interval. The third way is to construct in some fashion a Hilbert space of entire
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functions and show directly that it satisfies the axioms (H1)—(H3), without
obtaining either the structure function or the de Branges transform. This
last approach can sometimes be taken using a weighted Mellin transform, as
in de Branges [9] and Burnol [3]. In following the latter two approaches, an
additional necessary task is to establish that the resulting de Branges space
has the desired structure function E(z).

The usefulness of this reformulation of the Riemann hypothesis will likely
depend on whether information coming from number theory, either from arith-
metical algebraic geometry, automorphic representations, or from some other
source entirely, can be applied to show the existence of these particular (hy-
pothetical) de Branges spaces.
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