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1. Introduction

A Descartes configuration is a configuration of four mutually tangent circles in the plane, in
which no three circles have a common tangent. The possible arrangements of such configura-
tions appear in Figure 1; we allow certain degenerate arrangements where some of the circles
are straight lines. Suppose the radii of the circles are r1,79,73,74. The reciprocals of these are

the curvatures (or “bends”) b; = 1/r;. A straight line is assigned infinite radius, so its “bend”
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Figure 1: Descartes configurations

It is an old problem to determine relations between the circles in Descartes configurations.
Relations among the radii for some particular Descartes configurations of type (b) appear in
Greek mathematics, concerning the geometrical figure called an arbelos, or shoemaker’s knife,
in a proposition attributed to Archimedes [19, Prop. 6, p. 102].

In a 1643 letter to Princess Elizabeth of Bohemia, Rene Descartes stated a relation con-

necting the four radii [12, pp. 45-50]. This relation can be written as a quadratic equation



connecting the four curvatures:

Theorem 1.1 (Descartes Circle Theorem) In a Descartes configuration of four mutually

tangent circles, the curvatures satisfy
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Descartes considered only the configuration (a) in Figure 1. He did not state the result in
this form, but gave a more complicated relation that is algebraically equivalent to (1.1), and
his sketched proof is incomplete. In 1826 Jakob Steiner [30, pp. 61-63] independently found
the result and gave a complete proof. Another independent rediscovery with a complete proof
was given in 1842 by H. Beecroft [4], and is described in Coxeter [8]. Many other proofs have
been discovered (and rediscovered), some of which are given in Pedoe [24].

The Descartes Circle Theorem applies to all Descartes configurations of types (a)-(d),
provided we define the curvatures to have appropriate signs, as follows. An oriented circle is
a circle together with an assigned direction of unit normal vector, which can point inward or
outward. If it has radius r then its oriented radius is r for an inward pointing normal and —r
for an outward pointing normal. Its oriented curvature (or “signed curvature”) is 1/r for an
inward pointing normal and —1/r for an outward pointing normal. By convention, the interior
of an oriented circle is its interior for an inward pointing normal and its exterior for an outward
pointing normal. An oriented Descartes configuration is a Descartes configuration in which the
orientations of the circles are compatible in the following sense: either (i) the interiors of all
four oriented circles are disjoint, or (ii) the interiors are disjoint when all orientations are
reversed. Each Descartes configuration has exactly two compatible orientations in this sense,
one obtained from the other by reversing all orientations. The inward pointing orientation of a
Descartes configuration is the one in which the sum of the signed curvatures is positive, while
the outward pointing orientation is the one in which the sum of the curvatures is negative.
(It is an interesting exercise to prove that the sum of the signed curvatues cannot be zero.)
With these definitions, the Descartes Circle Theorem remains valid for all oriented Descartes
configurations, using oriented curvatures.

In 1936 Frederick Soddy (who earned a 1921 Nobel prize for discovering isotopes) published

in Nature [28] a poem entitled “The Kiss Precise” in which he reported the result we have just



described and a generalization to three dimensions. The following year Thorold Gossett [14]
contributed another stanza that gave the general n-dimensional result. To state it, we define
an n-dimensional Descartes configuration to consist of n+ 2 mutually tangent (n—1)-spheres in
R™ in which all pairs of tangent (n—1)-spheres have distinct points of tangency, and orientation

is done as in the 2-dimensional case.

Theorem 1.2 (Soddy-Gossett Theorem) Given an oriented Descartes configuration in

R™, if we let bj = 1/r; be the oriented curvatures of the n + 2 mutually tangent spheres, then

n+2 1 n+2
> b= )% (12)
j=1 " j=1

The case n = 3 of this result appears in an 1886 paper of Lachlan [22, p. 498] and his proof is
given in the 1916 book of Coolidge [7, p. 258]. Thus in calling this result the “Soddy-Gossett
Theorem” we are continuing the tradition that theorems are often not named for their first
discoverers; see [32]. Proofs of the n-dimensional theorem appear in Pedoe [24] and Coxeter [9].
Pedoe observes that this result is actually a theorem of real algebraic geometry, rather than of
complex algebraic geometry, in dimensions 3 and above. That is, the theorem depends on the
fact that the number of real spheres, simultaneously tangent to each of n+ 1 mutually tangent
real spheres with distinct tangents, is exactly two. However the total number of complex
spheres with this tangency property is two in dimension n = 2 but typically exceeds two when
n > 3.

In this paper we present some very simple and elegant extensions of these results, which
involve the centers of the circles. We show that there are relations, similar to (1.2), that involve
the centers, and the curvatures in the combination curvaturexcenter. Furthermore, all these
relations generalize to arrangements of n+ 2 mutually tangent (n— 1)-spheres in n-dimensional
Euclidean, spherical and hyperbolic spaces, and have a matrix formulation, provided we use
an appropriate notion of “bend” in spherical and hyperbolic space. In the process we recover
spherical and hyperbolic analogues of the Soddy-Gossett Theorem; these were first obtained by
Mauldon [23] in 1962. In §2 and §3 we state successively more general theorems, without giving
any proofs, finally arriving at our most general result, the augmented Euclidean Descartes

Theorem 3.3. Then in §4 we state and prove an analogue in spherical geometry, the Spherical



Generalized Descartes Theorem, which has a remarkably simple proof. In §5 we deduce from
it the Augmented Euclidean Descartes Theorem by stereographic projection. In §6 we treat
the hyperbolic geometry analogue.

The vast literature on this subject spans two centuries, but (so far) we have not found our
matrix formulations in it. In spirit many of the ideas trace back at least to Wilker; [35, p.

390], see the remark at the end of §4.

2. The Complex Descartes Theorem

Given any three mutually tangent circles with curvatures by, be, b3, there are exactly two other
circles that are tangent to each of these; each gives a four-circle Descartes configuration. See
Figure 2 for the possible arrangements of the resulting five circles; the three initial circles are

given by dotted lines.
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Figure 2: Circles Tangent to Three Tangent Circles

The curvatures of these two new circles are the roots of the quadratic equation (1.1),
treating by as the variable. Suppose these roots are by and ). Both can be positive, as in

Figure 2(b), or one may be negative, as in Figure 2(a). From (1.1) we have
by + by = 2(by + by + b3). (2.1)

Thus, starting from a Descartes configuration, we can select any one of the four circles and
replace it by the other circle that is tangent to the remaining three; this gives a new Descartes

configuration, which may be called a Descartes reflection of the original configuration. (The
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new configuration is obtained from the old by a Mobius transformation that is an inversion with
respect to the circle through the three tangent points of the other three circles.) The curvature
of the new circle can be obtained from the original four by using (2.1). This operation can be
repeated indefinitely; doing it in all possible ways gives a packing of circles that fills either (i)
a single circle, as for example in Figure 3, or (ii) a strip between two parallel lines, or (iii) a
half-plane, or (iv) the whole plane. Such a figure is called an Apollonian packing, in honor of
Apollonius of Perga, who considered (about 200 BC) the eight circles that are tangent to each
of three given circles in general position [21]. An Apollonian packing is completely specified
by any three mutually tangent circles in it.

In constructing the Apollonian packing pictured in Figure 3, we started with four circles
with oriented curvatures -1, 2, 2, and 3. Each circle has been labelled with its curvature; all
are integers. It is clear from (2.1) that whenever we start with a Descartes configuration with
all curvatures integral, then in this construction all the curvatures in the packing are integers.

In 1998, while computing Figure 3 with the center of the outer circle located at the origin,
we noticed that the centers of all the circles are rational; in fact in this figure, if a circle has
curvature b and center (z,y) then (it appeared) bz and by are always integers. Following this
clue, we were led to the following generalization of (1.1), in which the centers are taken to be

the complex numbers z; = z; + 1y;.

Theorem 2.1 (Complex Descartes Theorem) Any Descartes configuration of four mu-

tually tangent circles, with curvatures b; and centers z; = x; + 1y; satisfies

4
J]=

4
(bj2)” = 5(3 bym)* (22)
1 j=1

The relation (2.2) has the same form as the original Descartes relation (1.1). The Complex
Descartes Theorem implies both the Descartes Circle Theorem (1.1) and a third relation

4 4 4

byby2) = (3 b byz), (2.3
j=1

1 j=1

J
These results are obtained by replacing z; by z; +w in (2.2), where w is an arbitrary complex

number, and identifying coefficients of powers of w.
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The Complex Descartes Theorem also implies a relation similar to (2.1) that connects the

centers of two circles, each of which is tangent to each of three given mutually tangent circles:
b4Z4 + bﬁlzfl = 2(b1Z1 + bQZQ + b3Z3). (24)

Thus in the iterative construction of an Apollonian packing, both the curvatures and the
centers of the new circles can be obtained by simple linear operations (followed by divisions).
This makes it very easy to draw figures such as Figure 3 using a computer.
The relations in the Complex Descartes Theorem can be expressed in an elegant form using
the matrix
1 -1 -1 -1
Q=n-gaf=_| 1 171 (25)
-1 -1 -1 1

in which 1, denotes a column of n 1’s, and Qs is the coefficient matrix of the Descartes

quadratic form
1
Q2(x1, T2, T3, %4) = x'Qox = (x% + :1:% + mg + .IZ) — §(m1 4+ xo + 3 + x4)2.

The subscript 2 in Q9 refers to the dimension of the space we are considering,
If b = (by, bg, b3, bs)T denotes the column vector of curvatures and ¢ = (by 21, boza, b3 23, bazs)?,

then the Descartes Circle Theorem asserts that

b’ Qyb =0, (2.6)
and the Complex Descartes Theorem asserts that

¢’ Qqc = 0. (2.7)

The Complex Descartes Theorem does not completely characterize Descartes configurations in

the Euclidean plane, but a slightly stronger result does:



Theorem 2.2 (Extended Descartes Theorem) Given a configuration of four oriented
circles with non-zero curvatures (by, ba, b3, bs) and centers {(z;,y;) 1 < i <4}, let M

be the 4 x 3 matriz
b1 bz biyr
by bezo boys
M := . 2.8
b3 b3r3 b3ys (28)
by bizs bsys

Then this configuration is an oriented Descartes configuration if and only if

000
M'QM=|[0 2 0. (2.9)
00 2

If one or two curvatures b; are zero, and the corresponding centers are infinite, then M can be

defined in such a way that (2.9) remains true.

The Complex Descartes Theorem follows from this result by writing the vector ¢ = x+ ¢y,
where x and y are the second and third columns of M. The extended Descartes Theorem

generalizes gracefully to n-dimensions, to which we turn next.

3. Descartes Configurations in n-Dimensional Euclidean Space

An n-dimensional oriented Descartes configuration consists of n + 2 mutually tangent oriented
(n — 1)-spheres S; in n-dimensional space R™, having distinct tangencies, whose orientations
are compatible in the sense that all interiors are disjoint, either with the given orientation or
with the reversal of all orientation vectors. Here we suppose that n > 2; the one-dimensional
case is treated in §8. We often regard a hyperplane as a limiting case of a sphere, having
zero curvature, with orientation given by a unit normal vector. In what follows an “oriented
sphere” includes the hyperplane case unless otherwise stated.

The Soddy-Gossett Theorem (1.2) relates the curvatures of such a configuration of mutually

tangent n-spheres, and can be written
Qn(b) := b7 Q,b =0,

where b = (by,...,b,12)T and Q,(x) = xT Q,x is the n-dimensional Descartes quadratic form

whose associated symmetric (n + 2) X (n + 2) matrix Q, is
1
Qn = Int2 — Eln+21£+2- (3.1)

8



The Soddy-Gossett Theorem has a converse.

Theorem 3.1 (Converse to Soddy-Gosset Theorem) Ifb = (b1,...,b,2)7 is a nonzero

real column vector that satisfies
b’'Q,b =0, (3.2)

then there exists an oriented Descartes configuration whose oriented curvature vector is b.
Furthermore any two oriented Descartes configurations with the same oriented curvature vector

are congruent; that is, there is a Fuclidean motion taking one to the other.

A Euclidean motion is one that preserves angles and distances; it includes reflections. We

do not know an easy proof of Theorem 3.1; a proof appears in [17].

n+2
=1

The geometry of Descartes configurations is encoded in the curvature vector b. If Y 7" b; >
0, then one of the following holds: (i) all of by, bo, ..., b,t2 are positive; (ii) n+ 1 are positive
and one is negative; (iii) n+ 1 are positive and one is zero; or (iv) n are positive and equal and
the other two are zero. These four cases correspond respectively to the following configurations
of mutually tangent spheres: (i) n + 1 spheres, with another in the curvilinear simplex that
they enclose; (ii) n + 1 spheres inscribed inside another larger sphere; (iii) n + 1 spheres with
one hyperplane (the (n + 2)-nd “sphere”), tangent to each of them; (iv) n equal spheres with

two common parallel tangent planes.

Definition 3.1. Given an oriented sphere S in R", its curvature-center coordinates consist

of the (n + 1)-vector
m(S) = (b,bz1,...,bzy,) (3.3)

in which b is the signed curvature of S (assumed nonzero) and x(S) = x = (£1,z2,...,Ty) is its
center. For the degenerate case of an oriented hyperplane H, its curvature-center coordinates

m(H) are defined to be
m(S) = (0, h), (3.4)

where h := (hy, h2,...,hy) is the unit normal vector that gives the orientation of the hyper-

plane.



To see the origin of this definition in the degenerate case, let the point of H closest to the
origin be z = ah for some real value a. For ¢t > |a|, let S; be the oriented sphere of radius
t centered at (¢t + a)h, which has center in direction h from the origin and contains z. As
t — oo the oriented spheres S; clearly converge geometrically to the oriented hyperplane H,
and m(S;) = (},(1+ %)h) - m(H) = (0, h).

Curvature-center coordinates are not quite a global coordinate system, because they do not
always uniquely specify an oriented sphere. Given m € R**! | if its first coordinate a is nonzero
then there exists a unique sphere having m = m(S). But if a = 0, the hyperplane case, there

is a hyperplane if and only if Y h? = 1, and in that case there is a pencil of hyperplanes that

have the given value m, which differ from each other by a translation.

Theorem 3.2 (Euclidean Generalized Descartes Theorem) Given a configuration of
n+2 oriented spheres S1,S2,...Sp+2 in R* (allowing hyperplanes), let M be the (n+2) x (n+1)
matriz whose j-th row entries are the curvature-center coordinates m(S;) of the j-th sphere.
If this configuration is an oriented Descartes configuration, then

0 0

T _
M Q"M_[o 21,

] = diag(0, 2, 2,..., 2). (3.5)

Conversely, any real solution M to equation (3.5) is the matriz of a unique oriented Descartes

configuration.

The curvature-center coordinate matrix M of an oriented Descartes configuration deter-
mines it uniquely even if it contains hyperplanes, because the other spheres in the configuration
give enough information to fix the locations of the hyperplanes. This result contains the Soddy-
Gossett Theorem as its (1,1)- coordinate. We derive the “if” part of this theorem from the
next result. However the converse part of this theorem seems more difficult, and we do not
prove it here; see [17, Theorem 2.3].

We proceed to a further generalization, which extends the (n + 2) x (n + 1) matrix M to
an (n 4+ 2) X (n + 2) matrix W obtained by adding another column. This augmented matrix
incorporates information about two oriented Descartes configurations, the original one and one
obtained from it by inversion in the unit sphere, as we now explain. The definition of W may
seem pulled out of thin air, but in §5 we observe that it arises naturally from an analogous

result in spherical geometry, which is how we discovered it.
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In n-dimensional Euclidean space, the operation of inversion in the unit sphere replaces

the point x by x/|x|?, where |x|? = > acjz Consider a general oriented sphere S with center
x and oriented radius 7. Then inversion in the unit sphere takes S to the sphere S with center
% = x/(|x|> — r2) and oriented radius 7 = r/(|x|2 — r2). If |x|*> > r2, then S has the same

orientation as S. In all cases,

(3.6)

<M
=0 M

and

2
b= X 7. (3.7)

T

Definition 3.2. Given an oriented sphere S in R, its augmented curvature-center coordinates

are the (n + 2)-vector
w(S) := (b,b,bz1,...,bz,) = (b, m), (3.8)

in which b = b(S) is the curvature of the sphere or hyperplane S obtained by inversion of S in
the unit sphere, and the entries of m are its curvature-center coordinates. For hyperplanes we

define

w(H) := (b,0,h1,...,h,) = (b,m), (3.9)

where b is the oriented curvature of the sphere or hyperplane H obtained by inversion of H in

the unit sphere.

Augmented curvature-center coordinates provide a global coordinate system: no two dis-
tinct oriented spheres have the same coordinates. The only case to resolve is when S is a
hyperplane, i.e., b = 0. The relation (3.6) shows that (b,bz1,...,br,) are the curvature-center
coordinates of S, and if b # 0, this uniquely determines S; inversion in the unit circle then
determines S. In the remaining case, b = b = 0 and S = S is the unique hyperplane passing
through the origin whose unit normal is given by the remaining coordinates.

Given a collection (51,52, ..., Sy+2) of n+ 2 oriented spheres (possibly hyperplanes) in R”,
the augmented matriz W associated with it is the (n+ 2) X (n 4+ 2) matrix whose j-th row has

entries given by the augmented curvature-center coordinates w(S;) of the j-th sphere.
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The action of inversion in the unit sphere has a particularly simple interpretation in aug-
mented matrix coordinates. If W is the augmented matrix associated with a Descartes con-
figuration, and if W’ is the augmented matrix associated with its inversion in the unit sphere,

then it follows from (3.6) that

0 1
W=W |10 (3.10)
00

o O
;1

Theorem 3.3 (Augmented Euclidean Descartes Theorem) The augmented matric W

of an oriented Descartes configuration of n+ 2 spheres {S;: 1 <i <n+ 2} in R satisfies

0 -4 0
wiQqw=|-4 00 |. (3.11)
0 0 2I,

Conversely, any real solution W to (8.11) is the augmented matriz of a unique oriented

Descartes configuration.

We prove the Augmented Euclidean Descartes Theorem in §5. In the “if” direction it in-
cludes as special cases the “if” direction of each of the theorems stated so far, and represents
our final stage of generalization of the Descartes Circle Theorem in Euclidean space. In par-
ticular, the “if” part of the Euclidean Generalized Descartes Theorem is just (3.11) with the
first row and column deleted. However in the converse direction the Augmented Euclidean
Descartes Theorem is not as strong as the converse in the Fuclidean Generalized Descartes
Theorem, nor does it imply the converse to the Soddy-Gossett Theorem; these results require
separate proofs.

The augmented Euclidean Descartes Theorem gives a complete parametrization of all ori-
ented Descartes configurations, which shows that the moduli space of all such configurations
has the structure of an affine real-algebraic variety.

We discovered the Augmented Euclidean Descartes Theorem while studying analogues of
the Descartes Theorem in non-Euclidean geometries. In the next section we formulate and
prove an analogue in spherical geometry, and then in §5 deduce the Augmented Euclidean

Descartes Theorem from it.
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4. Spherical Geometry

The standard model for spherical geometry S™ is the unit n-sphere S™ embedded in R**! as

the surface
S"={y: 3+l +--+y2 =1} (4.1)

with the Riemannian metric induced from the Euclidean metric in R**! by restriction. In this
model, the distance between two points of S™ is simply the angle a between the radii that join
the origin of R**1 to the representatives of these points on S™. This distance « always satisfies
0<a<lm.

A sphere C in this geometry is the locus of points that are equidistant (at distance a say)
from a point in S™ called its center. The quantity o = «(C) is the spherical radius or angular
radius of C; it is the angle at the origin 0 of R**! between a ray from 0 to the center of C' and
a ray from 0 to any point of C. There are two choices for the center (and the angular radius)
of a given sphere; these two choices form a pair of antipodal points of S™. The choice of a
center amounts to orienting the sphere. In this model the interior of a sphere is a spherical
cap, cut off by the intersection of the sphere S™ with a hyperplane in R"*!, so (by abuse of
language) we also call an oriented sphere a spherical cap.

The two spherical caps determined by a given sphere are called complementary and the
sum of their angular radii is 7. The interior of an oriented sphere contains all points of S™ on
the same side of the hyperplane as the center of the sphere. If we describe a hyperplane by a

linear form

n
Fy) =Y fiwi—f, (4.2)
i=0
normalized by the requirement
n
f+Y =1 (4.3)
i=1

this provides an orientation by defining a positive half-space F(y) > 0. The sphere has center
f := (fo, f1,---,fn) and has positive radius if and only if |f| < 1. The radius « satisfies

cosa = f, and the interior of the spherical cap it determines is the region where the linear

13



form is positive. A spherical cap can be specified either by a pair (f, @) or by the pair (—f, a—7),
while (—f, 7 — ) determines the complementary spherical cap.

A spherical Descartes configuration consists of n+ 2 mutually tangent spherical caps on the
surface of the unit n-sphere, such that either (i) the interiors of all spherical caps are mutually

disjoint, or (ii) the interiors of all complementary spherical caps are mutually disjoint.

Theorem 4.1 (Spherical Soddy-Gossett Theorem) Consider a spherical Descartes con-
figuration of n + 2 mutually tangent spherical caps C; on the n-dimensional unit sphere S™

embedded in R*T1 | with spherical radius o subtended by the j-th cap. Then the spherical radii

satisfy
n+2 1 n+2
Z(cot ;)% = —(Z cot o;)? — 2. (4.4)
i=1 n i=1

This theorem was found by Mauldon [23, Theorem 4] in 1962, as part of a more general
result allowing non-tangent spheres. He also established a converse: each real solution of (4.4)
corresponds to some spherical Descartes configuration, and two spherical Descartes configura-
tions with the same data in (4.4) are congruent configurations in spherical geometry. We will
deduce Theorem 4.1 from the next result.

The Spherical Soddy-Gossett Theorem is intrinsic, i.e., it depends only on the Riemannian
metric for spherical geometry, and not on the coordinate system used to describe the manifold.
However we can establish it as a special case of a result that does depend on a particular choice
of coordinate system. If C is a spherical cap with center y = (yo, Y1, Y2, - - - ,Yn+1), and angular
radius «, we define its spherical curvature-center coordinates w (C) to be the row vector

Yo W1 Y
w, (C) := (cot a, sne’ sna’ sinna)' (4.5)

Here the name “curvature-center coordinates” is chosen by analogy with the Euclidean case;
the appearance of the “center” in it is clear, and the “bend” is cot «, which can be interpreted
as a geodesic curvature; see [13, pp. 180-192]. We can also regard 1/sina as a kind of
curvature in that it is a monotone decreasing functions of the angular radius of the sphere. No
two spherical caps have the same coordinates w, since « is uniquely determined by the first

coordinate, and then the y; are uniquely determined using the other coordinates.
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To any configuration of n+ 2 caps C1,. .., Cp1o we associate the (n+2) x (n+2) spherical

curvature-center coordinate matric W, whose jth row is w(Cj).

Theorem 4.2 (Spherical Generalized Descartes Theorem) Consider a configuration of
n+2 oriented spherical caps C; that is a spherical Descartes configuration. The (n+2) X (n+2)

matric W1 whose j-th row is the spherical curvature-center coordinates of C; satisfies

-2 0 0
WiQW,.=| 02 0 |=diag(-22.2,...,2). (4.6)
0 0 27,
Conversely, any real matriz W that satisfies (4.6) is the spherical curvature-center coordinate

matriz of some spherical Descartes configuration.

The (1,1)-entry of the matrix relation (4.6) is the Spherical Soddy-Gossett Theorem.
This theorem has a remarkably simple proof, which is based on two preliminary lemmas.

Let J,, be the (n + 2) x (n + 2) matrix

—1

0 0
Jn = 1 0 | =diag(-1,1,...,1). (4.7
0

0
0 I,

Lemma 4.3. (i) For any (n + 2)-vector w, there is a spherical cap C with w1 (C) = w4 if

and only if
wiJ,wh = 1. (4.8)
(#i) The spherical caps C and C' are externally tangent if and only if
w (C)Iwy (C)" = 1. (4.9)
Proof. (i) If w, comes from a spherical cap with center y and angular radius «, then

r —(cosa)® + 370 oy7 _1—(cosa)?

wiJ,w, = 5 7 — =1

(sina) (sin )
so (4.8) holds.
Conversely, if (4.8) holds, then one recovers a unique o with 0 < o < 7 by setting cot « :=

(W4)1, and one then defines a vector y = (yo,...,¥Yn+1) Vvia y; := (W4);/sina, noting that
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sina # 0. The equation (4.8) now implies that |y|? = 1, so y lies on the unit sphere, and we
have determined a spherical cap that gives the vector w.

(ii) Two spherical caps with centers y,y’ with angular radii a, o/ are externally tangent if
and only if the angle between their centers, viewed from the origin in R**!, is a + o'. Since y

and y’ are unit vectors, this holds if and only if

y(y')T = cos(a + o).
Now
w, (C) I, w, (C"T = ;(— cosacosa’ +y(y'))
sin « sin o/

and this gives (4.9), using cos(a + o) = cosacosa’ —sinasina’. O

Lemma 4.4. If A, B are non-singular n x n matrices and WAW?T = B, then W/ B~IW =
AL

Proof. The matrix W is non-singular since B is non-singular. Now invert both sides, and

multiply on the left by W and on the right by W. O

Proof of the Spherical Generalized Descartes Theorem. If the caps C; touch exter-

nally, Lemma 4.3 ensures that
W I, Wh =2L,0 — 1n4017 5 =2Q,". (4.10)
Then applying Lemma 4.4 (with A = J, and W = W) we obtain
WiQ, W, =23, =27,. (4.11)

Conversely, (4.11) implies (4.10) by Lemma 4.4. Looking at the diagonal elements of
W_J, W7 which are all 1’s, Lemma 4.3(i) guarantees that the j-th row of W is a vector
w (C}) for some (uniquely determined) spherical cap C;. Since the off-diagonal elements are
all —1, Lemma 4.3(ii) ensures that the caps touch externally pairwise, so they form a spherical

Descartes configuration. O
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Remark. Wilker [35, pp. 388-390] came tantalizingly close to obtaining the Spherical Gen-
eralized Descartes Theorem. He termed a spherical Descartes configuration a “cluster”, and
introduced spherical curvature-center coordinates. In a remark he noted our Lemma 4.3 and
stated equation (4.10). However he did not invert his formula, via Lemma 4.4, and so failed

to formulate a result in terms of the Descartes quadratic form.

5. Stereographic Projection and the Augmented Euclidean Descartes
Theorem

We derive the Augmented Euclidean Descartes Theorem from the Spherical Generalized Descartes
Theorem, using stereographic projection. The resulting derivation is reversible, so the Spheri-
cal Generalized Descartes Theorem and the Augmented Euclidean Descartes Theorem may be
viewed as equivalent results.

Consider the unit sphere in R"™!  given by > " ;y? = 1. Points on this sphere can be
mapped into the plane yo = 0 by stereographic projection from the “south pole” (—1,0,...,0);
see Figure 4. (We use the hyperboloid in the figure later.)

This mapping (yo, - --,Yn) = (£1,...,Ty) is given by

g =
T 14y’

The spherical cap C with center (py,...,pn) and angular radius « is the intersection of the

1<j<n.

unit sphere with the plane
n
Z Pjyj = cos a.
j=1

The sterographic projection of this cap in the hyperplane yo = 0 is the (Euclidean) sphere S

with center (z1,...,z,) and radius r, where
) ] sin
xj:pij, 1<j<n, and r=——.
Po + Cos & Po + cos o

If the boundary of the cap C' contains the south pole, the corresponding sphere S has infinite

radius, i.e., it is a hyperplane.

Proof of the Augmented Euclidean Descartes Theorem. The spherical coordinates of
the spherical cap C are given by the row vector

Po y4! Dn )
)

w(C) = (cot e sina’ sina’ " sina
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é pole = (-1,0,...,0)

Figure 4: Stereographic projection-hyperplane, sphere and hyperboloid
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We relate this to the augmented Euclidean curvature-center coordinate vector w(.S) associated
with the corresponding projected sphere S in the plane yy = 0, given by (3.8). We have

zj/r =pj/sina, b= 1/r = cot a + py/sin, and we find

b=cota— ,po .
sin o
Thus
bo Po y4! DPn
= — = )G 5.1
w(8) = (cota sma’COta+ sina’ sina’ ’sina) w+(O)G, (5.1)
where
11 0
G=|-11 0 |. (5.2)
0 0 I

n

In fact (5.1) can be used to define (Euclidean) augmented curvature-center coordinates in
terms of spherical curvature-center coordinates; this is how we found them. The matrix (5.2)
is uniquely determined by requiring (5.1) produce the curvature-center coordinates of S in its
last n + 1 positions.

Suppose we have a configuration of n + 2 spherical caps Ci,...,Cpto on the unit sphere.
These project stereographically into a configuration of Euclidean spheres Si,...,Sp+2 in the
equatorial plane yo = 0, and conversely every configuration of Euclidean spheres lifts to a
configuration of spherical caps. The map sends spherical Descartes configurations to Euclidean
Descartes configurations. We assemble the corresponding rows w (C;), w(S;) into matrices

W, and W, respectively. Then
W =W.,G, (5.3)

and, using the Spherical Generalized Descartes Theorem 4.2, we have

0 -4 0
w'Q, W =G'"WiQ,W,G = G'diag(-2,2,...,2)G=| -4 0 0 |,
0 0 2I,

which proves the Augmented FEuclidean Descartes Theorem 3.3. O
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6. Hyperbolic Geometry

There are many models of hyperbolic space H", of which the three most common are the
(Poincaré) unit ball model, the half space model, and the hyperboloid model. (In two
dimensions we say “unit disk” and “half-plane” for the first two models.) The unit ball and
half-space models are described in [3] and [5, Chapter 19]. The hyperboloid model, which is
less well known, but is in some ways simpler than the others, is described in [3, Section 3.7],
[25], and [26]. The unit ball and half-space models are embedded in R", though with different
metrics, while the hyperboloid model is embedded in R**!, endowed with a Minkowski metric.
Here we need only the unit ball and hyperboloid models. A sphere in hyperbolic n-space H"*
is the locus of points that are equidistant (in the hyperbolic metric) from some fixed point in
H", the center.

The unit ball model consists of the points (y1,...,y,) in R" with Z?Zl y? < 1, with the

ideal boundary being 2?21 y? = 1. In this model, the hyperbolic metric is
n
ds® = (dy; + -+ +dyp) /(1= _y3).
j=1

and the hyperbolic distance between two points y,y’ satisfies

cosh(d(y,y) = [ 1+ 3w +> ") 4> i | /[ A=Y vHa = 4" |- 6.1)
j=1 j=1 j=1 j=1 j=1

In this model a hyperbolic sphere (of finite radius) is a Euclidean sphere contained strictly
inside the unit ball; however, its hyperbolic center and hyperbolic radius usually differ from
the Euclidean ones.

Points in the hyperboloid model are represented in R**! as points on the upper sheet H?

(ug > 0) of the two-sheeted hyperboloid H} cut out by the equation

uf =1+ud 4+l

where HY = H UH" with H" = —H"'. However, the metric on H} is not that induced from
the Euclidean metric on R**!, but rather is that induced from the space R™»! endowed with
the Minkowski metric

ds? = —dud + du? + - - - + du?;
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see [3, p. 49]. A Minkowski metric is not Riemannian, but the induced metric on the hy-
perboloid is Riemannian, and the formula for the hyperbolic distance d(u,u’) in this metric is

given by
cosh(d(u,u’)) = wpuy — ugu) — -+ — uyul; (6.2)

see [25, (6.10)]. One can go between the hyperboloid model and the ball model by the change

of variables

U,j .
;= for 1<45< n,
Yj 1+ an s>
and in the opposite direction by
2 2y, .
Uozz—l and ujzxj, 1<5<n,

where
n
A=1-— Z u?‘
=1

From (6.2) we see that in this model a hyperbolic sphere is represented by the intersection
of H? with a hyperplane G(u) = 0, where
n
G(u) = gouo — Y _ giui — g, (6.3)
i=1
and where g := (go,91,...,9n) is the center of the hyperbolic sphere and lies on H", so it

satisfies
n
B=1+> g (6.4)
i=1

and gy > 0. Its radius s has ¢ = cosh s, hence g > 1 so that the (oriented) hyperbolic radius
is real. We define the “bend” associated with a hyperbolic sphere to be coths; it has an
interpretation as a geodesic curvature. As in the spherical case, we define the interior of the
hyperbolic sphere to be the region on the same side of the plane G(u) = 0 as the center, i.e.,
the region where G(u) > 0. Note that as geometrical figures in R**! all hyperbolic spheres
are (n — 1)-dimensional Euclidean ellipsoids on the hyperboloid H'.

We also allow degenerate hyperbolic spheres, which consist of the horoballs that touch the
ideal boundary (absolute) in the ball model of hyperbolic geometry, as well as the ideal bound-

ary itself. In the two-dimensional case, parabolas on the upper sheet correspond to horocycles;
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in the unit disc model, these are (Euclidean) circles that are tangent to the bounding circle.
They have infinite radius. In the disc model their centers are on the bounding circle, and in
the hyperboloid model their centers are at infinity. The boundary of the disc model (absolute)
corresponds to a circle at infinity in the hyperboloid model. A degenerate oriented hyperbolic
sphere together with its interior is specified as the intersection of the hyperboloid with a closed
half-space; the degenerate sphere itself is the intersection of H? with the hyperplane giving the
boundary of the half-space, but the linear equation defining it cannot be normalized to satisfy
(6.4). We define the “bend” of a degenerate oriented hyperbolic sphere to be +1, with +1
chosen if the interior is inside the horoball and is all of H for the absolute, and —1 otherwise.

An oriented hyperbolic Descartes configuration is any set of n+ 2 mutually tangent oriented
hyperbolic (n—1)—spheres in H", having the property that either (i) all interiors of the spheres
are disjoint, or (ii) the interiors of each pair of spheres intersect in a nonempty open set. We

also allow the hyperbolic spheres to include the degenerate cases.

Theorem 6.1 (Hyperbolic Soddy-Gossett Theorem) The oriented hyperbolic radii
{s; + 1< j < n+2} of an oriented Descartes configuration of n + 2 spheres in hyperbolic
space H" satisfy

n+2 n—+2

1
> (coths;)? = E(Zcoths]-f +2. (6.5)
=1 j=1

This result was found by Mauldon [23]. The Hyperbolic Soddy-Gossett Theorem is intrinsic,
depending only on the hyperbolic metric. We derive it as a special case of a result that does
depend on a specific coordinate system, namely that for the hyperboloid model.

If S is a hyperbolic sphere in H? with center u = (ug, u1, u2, . . ., u,), and hyperbolic radius

s, we define its hyperbolic curvature-center coordinates w_(.S) to be the row vector

U Un

up
_ = th
w—(5) = ( coths, sinhs’ sinhs’ "’ sinhs

)- (6.6)
Once again the name “curvature-center coordinates” is chosen by analogy with the Euclidean
case; it contains a “center” and the “bend” is coth s, which can be interpreted as a geodesic

curvature; see [13, p. 284] and [33, p. 190]. To a configuration of n + 2 hyperbolic spheres

S1,...,Sn+2 we associate the (n + 2) x (n + 2) matrix W_ whose jth row is w_(S}).
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Theorem 6.2 (Hyperbolic Generalized Descartes Theorem) Consider a configuration
of (n + 2) oriented hyperbolic spheres that is a hyperbolic Descartes configuration. The asso-

ciated matric W _ whose rows are the hyperbolic curvature-center coordinates of the spheres

satisfies
2 0 0
WIQW_=|0 -2 0 | =diag(2,-2,2,...,2). (6.7)
0 0 2I,

The converse of Theorem 6.2 does not hold, because some matrices W_ that satisfy (6.7)
do not correspond to proper hyperbolic Descartes configurations. However, one can obtain a
converse by defining a generalized notion of “virtual Descartes configuration” that uses both
sheets of the hyperboloid, based on stereographic projection from the spherical model.

To do this we first define a notion of “virtual oriented hyperbolic sphere”. Take any oriented
spherical cap C on S™, together with its interior, and define the associated wvirtual oriented
hyperbolic sphere S = S(C) to be its image on the two-sided hyperboloid H} = H? U H"
under stereographic projection through the “south pole” (—1,0,0,...,0) in R**!  together
with its interior. Every virtual hyperbolic sphere S(C) (with its interior) is the intersection of
the two-sheeted hyperboloid with some closed half-space, and the spherical cap C is uniquely
determined by S(C). We define the hyperbolic curvature-center coordinates of S(C) to be

01 0
w_(S)=wy(C)| 1 0 0 |. (6.8)
0 0 I,
If the spherical cap C lies entirely in the open upper half-sphere S™* = {(ug,u1,...,u,) €
S™ : ug > 0, the image S(C) is a genuine hyperbolic sphere plus its interior, and all genuine
oriented hyperbolic spheres arise this way. One can check that the formula (6.8) for hyperbolic
curvature-center coordinates agrees with the definition (6.6); this can be proved along the lines

of §5. In terms of the hyperplane defining (6.3) and (6.4) defining S we have

W,(S):( g go 3 In )

V@ -1 V@ -1 "¢ -1
If that C lies in the closed upper-half sphere and touches the boundary uy = 0, the image

S(C) is a horoball, while if C is an oriented spherical cap with boundary consisting of the
part of S with ug = 0, then the image S(C) is the absolute. The hyperbolic curvature-center
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coordinates (6.8) of any virtual hyperbolic sphere that is not a genuine hyperbolic sphere are
always real, and one may reverse-engineer a hyperbolic radius and center using (6.6), but s
and the centers are then non-real complex numbers.

One now defines a wvirtual oriented hyperbolic Descartes configuration as the set of virtual
oriented hyperbolic spheres resulting from stereographic projection on the two-sheeted hyper-
boloid H* of any spherical Descartes configuration. (We view genuine hyperbolic Descartes
configurations as a special kind of virtual hyperbolic Descartes configurations.) If the associ-
ated hyperbolic curvature-center coordinate matrix W_ is defined in (6.8), and if W contains
the spherical Descartes coordinates associated with the spherical Descartes configuration, then
they are related by
01 0
10 0
0 0 I,

Given this relation, one immediately deduces Theorem 6.2 from Theorem 4.2, plus a converse

W_ =W, (6.9)

if “virtual Descartes configurations” are included; these allow projections onto the full two-
sheeted hyperboloid.

In applying stereographic projection, the locus of a genuine hyperbolic (n — 1)-sphere on
the hyperboloid is mapped to the locus of a spherical (n — 1)-sphere on the unit n-sphere, and
also to the locus of a Euclidean (n — 1)-sphere in the plane zy = 0. The hyperbolic center,
the spherical center of the associated spherical cap, and the Euclidean center of the Euclidean
sphere are typically all different in the strong sense that they usually lie on three different lines

through the “south pole” (—1,0,...,0) in R**1,
7. Apollonian Packings

Using stereographic projection we have a recipe to pass between Euclidean, spherical, and hy-
perbolic Descartes configurations. It gives a one-to-one correspondence between configurations

W, W, and W_ given by (5.2) and (6.9), namely

11 0 -11 0
W=W_| -11 0 |=W_ 11 0|, (7.1)
0 0 I, 0 0 I,

where we use “virtual Descartes configurations” in the hyperbolic case; they are viewed as

lying on the full two-sheeted hyperboloid. This recipe clearly lifts to Apollonian packings.
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Since the Spherical and Hyperbolic Soddy-Gossett Theorems involve quadratic forms, an
analogue of the relation (2.1) holds in spherical and hyperbolic geometry. This permits easy
calculation of the “bends” cot a (respectively coth s) of circles in spherical (respectively hy-
perbolic) packings. There is a notion of “integral Apollonian circle packing” for such “bends”
that makes sense in spherical and hyperbolic geometry. Furthermore, analogues of the relation
(2.4) hold in spherical and hyperbolic geometry as well, which permit easy calculation of the
centers in spherical (respectively hyperbolic) Apollonian packings.

Thus the standard Euclidean Apollonian packing pictured in Figure 3, with center at the
origin, has a corresponding hyperbolic packing obtained by stereographic projection in which
the coth s’s are all integers, but not the same integers as in the Euclidean packing, calculated
using W_ in (7.1). The bounding outer circle is assigned the “bend” —1; see Figure 5.

The circles that are tangent to the bounding circle are known as horocycles, and have infinite
hyperbolic radius, so the corresponding value of coth s is 1. This explains the large number of
circles assigned the value 1 in Figure 5, namely all those that touch the outer circle.

Similarly, in the spherical packing associated with the standard Euclidean packing in Figure
3, the cot a’s are all integers, different from both the Euclidean and hyperbolic cases, starting
from (0,1, 1,2); see Figure 6.

One may notice interesting numerical relations among the integers in these three pack-
ings. Consider a “loxodromic sequence” of spheres as studied in [9] and [11], where each
sphere is produced by Descartes reflection of the largest sphere of the preceding Descartes
configuration. For the curvatures, one obtains for the Euclidean packing the infinite sequence
E : (-1,2,2,3,15,38,...), for the spherical packing S : (0,1,1,2,8,21,...), and for the hy-
perbolic packing H : (—1,1,1,1,7,17,...). Note that S+ H = E, since this is so for the
initial values, and each sequence satisfies the same fourth-order linear recurrence relation,
Tnt1 = 20n + 2Tp_1 + 2Tp_o — Tp_3, by (2.1).

In the Euclidean case, infinitely many different kinds of Apollonian packings have integer
curvatures for all circles; see [18]. The same occurs for both hyperbolic and spherical Apollonian
circle packings. In the hyperbolic case we also include among such integer hyperbolic circle
packings some packings that are “virtual packings”. Figure 5 is generated from the basic

configuration having coth’s (—1,1,1,1), and the next simplest hyperbolic case is (-2, 3,5, 6).
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Figure 5: A hyperbolic Apollonian packing
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Figure 6: A spherical Apollonian packing
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The Apollonian construction works also in higher dimensions, but gives sphere packings
only in dimensions two and three; in dimensions four and higher we do not get proper packings;
after several steps the spheres overlap; see [6]. However “Apollonian sphere ensembles” continue
to exist in all dimensions as collections of Descartes configurations; see [17].

There is a considerable amount of mathematics devoted to circle packings; Kenneth Stephen-
son’s bibliography of circle-packing papers lists over 90 papers since 1990 [31]. For further
relations of Apollonian packings and the relation of integer Apollonian circle packings to the

integer Lorentz group O(1,3,Z), see [1], [29], [15], [16], [17], and [18].
8. Conclusion

We have extended the Descartes Circle Theorem, well known for n-dimensional Euclidean
space, to n-dimensional spherical and hyperbolic spaces. We presented matrix generalizations
of the Descartes Circle Theorem, which characterize Descartes configurations in all three ge-
ometries and require for their formulation the use of a particular coordinate system in each of
these geometries. Mauldon [23] generalized the Soddy-Gossett Theorem in all three geometries
to apply to sets of n + 2 equally inclined spheres, as measured by an inclination parameter
v, with v = —1 for touching spheres; our matrix theorems can be extended to the case of
arbitrary v as well.

All these theorems have one-dimensional analogues. For the Euclidean case in one dimen-
sion a “circle” consists of two points bounding an interval, and two “circles” are tangent if

they have one point in common. The one-dimensional Descartes form is

0 —1 -1
Q:=L-131Y=| -1 o0 -1]. (8.2)
-1 -1 0

A one-dimensional Euclidean Descartes configuration consists of two touching intervals,
and a third “interval” that is the complement of their union, so that the three intervals cover
the line R. Call the third “interval” the infinite interval, and define its “length” to be the
negative of the length of its complement, which is the union of the first two intervals. The

radius is half the “length”. The radii 71, r2, 73 of the three intervals then satisfy
r1+ro+1r3 =0,
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which is equivalent to the Descartes relation

1 1 1 2 2 2
Qi(——,—)=~— — - =0. (8.3)
Ty T2 T3 r17r2 T3 T2T3

The value of curvature xcenter of the infinite interval is defined to be the curvaturexcenter of
the finite interval obtained by reflection sending z — 1/z. This describes a positively oriented
Descartes configuration; a negatively oriented one is obtained by reversing all signs. One can
now define a 3 x 3 augmented matrix W exactly as in the Augmented Euclidean Descartes

Theorem, and one finds that

0 —4 0
wiQw=| -4 0 0]. (8.4)
0 0 2

Conversely, every solution W to (8.4) corresponds to a one-dimensional Descartes configura-
tion. There is even a notion of Apollonian packing in dimension n = 1, but it consists of
a single Descartes configuration because only one circle is tangent to a pair of tangent one-
dimensional circles. That is, the Descartes equation (8.3) is linear in each curvature variable
a; = 1/r; separately, instead of quadratic, hence there is no Descartes reflection operation that
generates new circles to add to the Apollonian packing. Finally, there are one-dimensional
spherical and hyperbolic analogues of these results, defined via (7.1) (taking n = 1), which can
be established by stereographic projection.

The main results in this paper are theorems in inversive geometry, as described in [35],
[2], and [27]. Inversive geometry preserves spheres and their incidences, and consists of the
study of geometric properties preserved by the group Moéb(n) of conformal transformations of
the space R = R” U {oo} &~ S™. The set of inwardly oriented Descartes configurations form a
single orbit under the action of the conformal group, and this group appears in our results as

a subgroup of index 2 in the (real) automorphism group

Aut(Qr) == {N € My 12 n42(R) : N"Q.N = Qn}

of the Descartes quadratic form @, which is a real Lie group that is isomorphic to O(1,n+1);
see [35, Corollary, p. 390] for the isomorphism. The three generalized Descartes theorems
given here are invariant under the action of Aut(Q,). One can ask the question: Is there a
“natural” conformal geometric characterization of the global coordinate systems (curvature-

center coordinates) used in the generalized Descartes Circle Theorems presented here?

29



We summarize our results in the following verse, whose first stanza is taken from Soddy [28],

to be read in the Queen’s English.

The Complex Kiss Precise

Four circles to the kissing come.

The smaller are the benter.

The bend is just the inverse of

The distance from the center.

Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

Yet more is true: if all four discs
Are sited in the complex plane,
Then centers over radii

Obey the self-same rule again.

Suppose the circles now appear

Upon the surface of a sphere.

Then if by “bend” we mean to say
Cotan of radius, no more,

Then square of sum of “bends” becomes
Two times the sum of squares, plus four.

Now in the hyperbolic plane,

We try to make it work again.

It turns out now by “bend” is meant
The hyperbolic cotangent.

And if we square the sum of those,
Twice sum of squares, less four, it goes.

And more such wonders can be found
In n dimensions, if allowed.
Rene Descartes would have been proud.
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