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which also holds with probability 1, implies
(d—1)t+2(d=1)(d-2)u—2(d—1) 2w+ (d—1)t+2(d-1)(d-2)v=0.

and so, up to a scalar multiple of ¢, the entire covariance structure of vg is determined.

It is easy to construct or simulate such an invariant Gaussian measure vg. Let GG be a random
d x d matrix whose matrix entries are i.i.d. Gaussian random variables. The distribution of G is
invariant under the action G — P,G P;, but of course (G is, with probability 1, not in M.

Let A = (s;;) be the matrix of the orthogonal projection onto (), that is, onto the subspace of
vectors in R whose entries sum to 0, see (4.8). The matrix A commutes with all d x d permutation
matrices P,, so P,AP;! = A. Consequently the random matrix 7 = AGA has the desired
invariant Gaussian distribution on M.

As a final remark, we obtain a measure on the set of (d — 1) X (d — 1) matrices that is invariant

under the action of 5 x S by applying the map ¢(7Z) = M of Lemma 5.1.
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Appendix A. Sym(d) x Sym(d)-invariant Gaussian probability measure on the
parameter space M.

There is, up to dilation, only one Gaussian probability measure v on the space My of d by d
matrices whose row and column sums vanish, invariant under the actions (0,7) : Z — P.Z P, for
7,0 € Sym(d).

In the first place, the mean of such a measure must be an element Z € My, fixed under the
Sym(d) X Sym(d) action. But this already implies that 7 is the zero matrix: invariance implies that
all the components of 7 are equal, and Z € M, then implies that their common value is zero. So
the mean of any invariant measure vg on My must be 0.

Since mean 0 Gaussian probability measures are completely classified by their covariances, it
suffices to show that the quantities

Cijrs = E[ZZ]ZTS]

are, up to a scalar multiple, uniquely determined, where Z = (Z;;) is a random element in My,
distributed according to probability law vg.

Invariance of v implies that ¢;j s = ¢o(i)7(j),0(r)r(s), for all o,7 € Sym(d). Hence there are
four real numbers £, u, v, and w, such that

Cijps = t ifr=tands=7j
= u fr=tands#j
= v fr#itands=j

= w ifr#tands#j

The identity Eileik = 0, which holds with probability 1, implies
0= E[(X¢_Zyp)Y = dt + (d? — d)u
and so u = —t/(d — 1). Similarly,
0= E[(%f_1Zr;)°] = dt + (&> — d)v

so v = —t/(d — 1), as well. Finally, the identity

0 = oy Zin— Sty Zij

d d
Zk:l Zik - Ek:l ij
k#j k#i
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critical paths are distributed among the edges exiting from wy as 4, 2, 1, 1 for the v(P) = 14 case
and as 3, 1, 1, 3 in the v(P) = 20 case.

A final observation is that further numerical experiments with the modified “twisted” distribu-
tion suggest that the number # (P, wy, wy) = 2971 is attained for Dantzig figures associated to
matrices M just “inside” the region (e, e) and also for nearby M just “outside” it. (These experi-
ments were done by setting L;_; 1 to a small positive value and to a small negative value.) In such
cases there must necessarily be another region Q(o, 7) sharing a boundary with (e, €), because the
permutation (e, e) ceases to give a legal exchange sequence as one passes through the boundary
of (e, e). This observation suggests that there may be some kind of obstruction determining the
29=1 hound.

Acknowledgment. We thank V. Klee, G. Ziegler and an anonymous referee for helpful com-
ments and references. Part of the work was done at the Oberwolfach meeting on Applied and

Computational Convexity, January 1995.
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Table 8.1 below gives data from 50 samples of the “twisted” distribution for dimensions 4 <
d < 8. It records the number of values having #(M) = 29-1, and for these it lists the maximum,
minimum and median values of v(P). For comparison purposes Table 8.1 also lists the extreme
values possible for v( ) according to the lower bound theorem and the upper bound theorem. The

median value of v(P) seems to increase at an exponential rate ™ with # > 2. In odd dimensions

all values of v( P) observed were even.

#d-critical  #Distinct Lower | Upper
dimension figures v(P) Min Median Max | Bound | Bound
4 49 3 16 18 20 14 20
5 44 5 34 38 42 22 42
6 44 18 80 89 100 32 112
7 37 20 166 202 222 44 240
8 30 26 422 461 499 58 660

Table 8.1. Vertex numbers for d-critical Dantzig figures (“twisted” distribution).

Table 8.2 below gives similar data from 50 samples each of the modified “twisted” distribution
in dimensions 4 < d < 8. The distribution of vertex numbers v(P) is strikingly different from
that of Table 8.1. The median value of the vertex numbers observed seems to be increasing at an

exponential rate " with 1.7 < # < 1.9. In odd dimensions all values of v(P) observed were even.

#d-critical  #Distinct Lower | Upper
dimension figures v(P) Min  Median Max | Bound | Bound
4 49 6 14 16 20 14 20
5 48 6 26 32 36 22 42
6 48 15 48 57 66 32 112
7 44 16 86 102 120 44 240
8 42 33 159 187 220 58 660

Table 8.2. Vertex numbers for d-critical Dantzig figures (modified “twisted” distribution).

The diversity of d-critical polytopes increases rapidly with the dimension. For the case d = 7 we
ran the modified “twisted” distribution with parameter a = 20 for 500 trials, obtaining 458 d-critical
polytopes, and these were all combinatorially distinct (using the vertex-face incidence matrix). The
smallest vertex number obtained was 82, the largest 130. The wide range of combinatorial types of
d-critical Dantzig figures is encouraging evidence for the strong d-step conjecture.

Another feature that varies over the set of d-critical Dantzig figures is the incidence structure

of the 29~ d-step paths between antipodal vertices. For example, in Figures 8.1 and 8.2 the 8 d-
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Distance from w

4

Figure 8.2: Graph of 20-vertex 4-polytope with #( P, wq, wq) = 8.
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Figure 8.1: Graph of 14-vertex 4-polytope with #( P, wq,w14) = 8.
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Comparing the strong d-step conjecture with the random permutation mapping heuristic embod-
ied in Lemma 6.1, we see that it asserts that there is a positive correlation (actually a nonnegative
correlation) between any two permutation mappings ®37 and W3, of §6, as far as “fixed points” are

concerned.
8. Numerical Experiments: d-Critical Dantzig Figures

We call any Dantzig figure (P, wy, wy) in R? with #(P,wy,wy) = 2971 a d-critical Dantzig
figure.

Our numerical experiments implicitly found d-critical Dantzig figures for dimensions 4 < d < 15.
Recall that from the data M it is easy to construct (Ay, 7), and from this the graph of the associated

Dantzig figure (P, w1, w3). The vertex set of

d d 2d
P = P(Ad,Z) = {(/\17---7/\2d) : Z/\isi —I'Z’\H-dzi =0, Z/\Z =1, N> 0}
=1 =1 =1

is located by setting A; = 0for € 5, where 5 ranges over all (Qdd) subsets of size d of {s1,...,84,21,...

and then solving the invertible linear system:

S wisi + Y pivazi =0, with gy =0ifi€ S .
(8.1)
E?il pi =1

If all 1; > 0, this is a vertex of P, otherwise not. The set S specifies what facets this vertex belongs
to, which determines the graph of P.

We computed the vertex sets and graphs of P for d-critical Dantzig figures found using the
“twisted” distribution and modified “twisted” distribution with parameter a = 20. The vertices of
such P were located in a numerically stable way, by solving the linear system (8.1) using Gaussian
elimination with complete pivoting. These computations permit an independent verification that
#(M) = 2971 by directly locating the 29~! paths in the graph of (P, w1, ws).

For dimensions d > 4 the d-critical Dantzig figures that we found exhibited a large variety of
combinatorial types. This is most easily illustrated by considering the number of vertices of such
polyhedra. In dimension 4 we found d-critical Dantzig figures having vertex numbers v(P) in the
full range 14 < »(P) < 20, except v(P) = 19. Figures 8.1 and 8.2 give the graphs of two such

4-polytopes with v = 14 and v = 20, respectively.
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Figure 7.1: Graph of unique 3-polytope with #(P, wy, ws) = 4.

None of our computations produced exceptions to #(M) > 241,
These computations suggest the possible truth of the d-step conjecture, in the strong form:

Strong d-Step Conjecture. For all general position simplicial basis pairs (B, B') in R?,
#(B,B") > 2471,
Fquivalently, all d-dimensional Dantzig figures (P, w1, w3) in R? have
#(P,wy,wy) > 2471,

The strong d-step conjecture is true when d = 3. For d = 3 there is a unique combinatorial
type of Dantzig figure (P, wq, wy) with #(P, w1, wz) = 4. It consists of a tetrahedron with two
corners sliced off, and its graph is pictured in Figure 7.1. We omit details of the proof, which can
be carried out by enumeration, since the f-vector of any simple (3,6)-polyhedron is (8, 12, 6), and
since the graphs of 3-polytopes are characterized as 3-connected planar graphs, cf. Ziegler [14].

The strong d-step conjecture is open for d > 4.
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The last observation came as a surprise! We went on to check that the bound #(M) > 29~ held
on a wide variety of other distributions. In particular, we fortuitously discovered (by a programming
mistake) a modified form of the “twisted” distribution which produced a high proportion of matrices
M attaining #(M) = 2%=1. An initial matrix M was first computed using the “twisted” distribution
for parameter . This was inserted as the first d — 1 rows and d — 1 columns of a d X d matrix
V whose last row and column were set to zero. The new matrix V = AV A was computed, and
its upper left corner M = V1% is the matrix produced by the modified “twisted” distribution.
Experimental data for this distribution for 7 < d < 10 appears in Table 7.2, for parameter values

a = 5,10 and 20.

Table 7.2. Modified “twisted” distribution, dimensions 6 to 10 (50 trials each distribution)

Dimension | Distribution | Min  1-Quartile Median 3-Quartile Max | Count #(M) = 291
a=>5 32 32 32 40 64 29
d=26 a=10 32 32 32 32 48 37
a =20 32 32 32 32 36 48
a=5 64 64 76 88 148 19
d=17 a=10 64 64 64 64 96 40
a =20 64 64 64 64 116 42
a=>5 128 128 152 176 258 13
d=28 a=10 128 128 128 144 192 33
a =20 128 128 128 128 192 42
a=5 256 268 334 392 590 11
d=9 a=10 256 256 256 296 488 25
a=20 256 256 256 256 384 42
d=10 a =20 512 512 512 512 700 39

We also computed a smaller number of examples in dimensions 11 < d < 15, using the modified
“twisted” distribution with parameter a = 20. These appear in Table 7.3 below. (The branch-
and-bound algorithm was quite efficient; approximate running times were roughly proportional to

(1.5)%#(M). Running times for the d = 15 examples were about 1 hour each on a Cray YMP.)

Table 7.3. Modified “twisted” distribution, dimensions 11 to 15 (10 trials each distribution)

Dimension | Distribution | Min  Median  Max | Count #(M) = 271
d=11 a=20 1024 1024 1216 8
d=12 a=20 2048 2048 2560 7
d=13 a=20 4096 4096 5184 7
d=14 a=20 8192 8280 10240 5
d=15 a=20 16384 16976 19872 4
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Table 7.1. FEzperimental data, dimensions 4 to 9 (50 trials each distribution)

Dimension | Distribution | Min  1-Quartile Median 3-Quartile  Max | Count #(M) = 2¢-1
Gaussian 8 12 14 18 24 1
d=14 iid. [—1,1] 8 10 12 14 24 10
permuted 8 8 12 12 18 16
a=5 8 8 8 8 16 39
d!'=24 a =10 8 8 8 8 12 47
a =20 8 8 8 8 16 49
Gaussian 28 40 48 60 120 0
d=15 iid. [-1,1] | 16 28 33 42 104 2
permuted 16 24 28 34 50 1
a=5 16 16 20 22 30 18
d!'=120 a=10 16 16 16 16 26 37
a =20 16 16 16 16 22 44
Gaussian 72 152 183 220 454 0
d=16 iid. [-1,1] | 54 83 101 143 207 0
permuted 41 81 96 112 152 0
a=5 32 34 39 46 70 9
d! =720 a=10 32 32 32 36 44 32
a =20 32 32 32 32 48 44
Gaussian 352 572 818 1091 2242 0
d=1 iid [—1,1] | 185 287 346 445 740 0
permuted 140 198 231 293 558 0
a=5 68 78 88 96 127 0
d! = 5040 a =10 64 64 68 76 128 18
a =20 64 64 64 64 86 38
Gaussian 1748 2890 3482 4489 8858 0
d=28 iid. [-1,1] | 521 932 1167 1589 2875 0
permuted 355 689 854 988 1637 0
a=5 129 173 202 233 566 0
d! = 40320 a =10 128 138 148 172 230 5
a =20 128 128 132 138 188 21
Gaussian 8129 12286 15269 19444 38783 0
d=9 iid. [—1,1] | 1367 4044 4972 5786 7596 0
permutation | 1298 2389 3084 3772 7040 0
a=5 286 365 391 441 531 0
d! = 362880 a=10 256 286 323 353 447 2
a =20 256 256 266 278 394 14
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To obtain a large “twist,” we chose a fixed a > 0 and considered matrices I generated by

ai_j’l‘i]‘ if >7
Lij=41 if = (7.1)
0 i i<y,

where 7;; are random variables drawn i.i.d. uniform in [0,1]. The matrix U was generated in a

similar fashion. To step outside the region (e, €), we then set
Li13=-1. (7.2)

We report on experiments using the values a = 5,10 and 20. We discovered empirically that stepping
outside (e, e) by setting the value L;_; 1 = —1 made no apparent difference in the distribution of
the values of #(M ), compared to remaining inside (e, e) by generating L;_; 1 using (7.1). The
data in Table 7.1 was actually produced using (6.1) without the substitution (7.2).

The data on #(M ) for fifty trials each on each of these distributions, for the range 4 < d < 9,

using 250 digits precision, are given in Table 7.1. The major observations from Table 7.1 are:
(1). The values of # (M) are very large for the invariant Gaussian distribution.

(2). The i.i.d. uniform [—1, 1] distribution results for L and U show that the sign pattern heuristic

fails in a fairly decisive way for (L, U) taken together, for d < 9.

(3). All examples tested satisfied the bound
#(M) > 2471,

Equality held in many examples, for 3 < d < 9, for the “twisted” distribution, with the

frequency of such examples increasing as the parameter a is increased.
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In our original numerical experiments this did occur, and we found many putative counterexamples
to the d-step conjecture; none of them survived sufficient increase in precision of the computation.
(If we had found a candidate counterexample to the d-step conjecture that survived floating-point
tests to an extremely high level of precision, our intention was to re-do the computations using
multiprecision fixed point rational arithmetic to get a rigorous proof.)

This computational approach via L='U decomposition is on the face of it an inefficient way to
test the d-step conjecture. A priori it has O(d!) running time and is extremely ill-conditioned; by
contrast there are other algorithms to generate “random” d-polyhedra with 2d facets that run in
time O(4d). The appeal of the L=1U approach is that it suggests interesting probability distributions
to try to find counterexamples, which are not apparent by other approaches. These are products
of distributions assigned to the L and U factor separately. The computational data describes
experiments using several probability distributions. We report on four different sorts of distribution;
we tried many more in less systematic fashion. Note that the dimension of the parameter space My
is so large that we cannot reasonably search even an infinitesimal piece of it.

The first distribution we studied was the (essentially unique) Gaussian distribution v on
(d — 1) x (d — 1) matrices invariant under the action of S; x Sy. It is described in Appendix A.

The remaining distributions are all based on picking matrices M based on some assignment of
probabilities to its I and U factors. To test the sign pattern heuristic the second distribution chose
entries in I and U picked i.i.d. uniformly from [—1,1].

The third distribution was based on permuting the entries of I, and /. We picked a fixed set of
(d — 1)% elements, which were chosen to be a small perturbation of an arithmetic progression, then
assigned them to the elements of L and U in a randomly permuted order.

The fourth distribution, which we call the “twisted” distribution, depends on a positive real
parameter «. lts construction was motivated by the observation that if counterexamples exist, there
must be a region of M, not covered by any region (o, 7). Then at least one (o, 7) would
touch on this region, and using the symmetry under Sym(d) x Sym(d) the set (e, e) also has
this property. Thus to find such a region, it suffices to take a small step outside Q(e,e) in the

appropriate direction. Now (e, €) has a nonlinear “twisted” shape created by L=! in Lemma 5.1.
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Lemma 6.2. Let f: Sym(d) — Sym(d) be a random mapping drawn uniformly from the set

of all such functions, and let g : Sym(d) — P(Sym(d)) an independent multivalued random

mapping drawn uniformly from the set of all 1 to 277!

multivalued maps. Then the expected
number of “fized points” (a,7) of the pair (f,g) is 2971,
Proof. The expected value F is

E = Z Z Prob[f(1) = o] Prob[r € g(0o)]

c€Sym(d) T€ESym(d)

- =5 d,(QZT):?d-%

c€Sym(d) TE€Sym(d

as required. O
7. Numerical Experiments: Number of Paths

We performed extensive computational experiments to study the Gaussian elimination sign con-
Jecture for dimensions 4 < d < 9, and more limited experiments for dimensions 10 < d < 15. The
algorithms were designed to count the number # (M) of legal exchange sequences associated to a
given M. These computations were done in floating point, with the consequence that none of the
computations we report is rigorously guaranteed to be correct. Indeed, Gaussian elimination with
no pivoting is completely ill-conditioned, so round-off error is an (infinitely) serious problem. We
used the multi-precision package of Bailey [1], which permits as much precision as desired (up to
50000 digits.) In our original tests we followed an ad hoc procedure of running examples over and
over at higher levels of precision until the (I, U') factorizations, counts of legal exchange sequences,
and entries of matrices stabilized. Based on this experience, we concluded that 250 digits of pre-
cision would be reliable on (nearly) all examples computed and we used this precision level for the
computations. With these caveats we believe the computational data to be trustworthy.

The basic algorithm used a branch-and-bound tree search using the recursive presentation of the
matrix @, given by (6.2), where E(*) is the first level of the tree, P,, the second level etc. At level
k of the tree, the appropriate permutation ¢ was found to make the first k rows of U positive (using
Theorem 6.1(i)). If the first £ rows of the corresponding L contained a negative element, the tree
was pruned. In this fashion all Q.M Q, with positive L~'U decomposition were located. Note that

roundoff error could result in accidentally pruning parts of the tree that contained legal sequences.
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(iii). We prove the analogous result for U:

Claim: Given 1 € Sym(d) there are exactly 2 choices of ¢ € Sym(d) such that Q. MQ, has a
complete triangular factorization with U positive.

Proof of Claim. This follows the proof of (i) above. The matrix U = DU is now allowed to have
rows each of which is either all positive or all negative. To make the first row all negative there is
a unique choice of E(*) i.e. E(*) is the identity if M has an all negative first row and otherwise k
is chosen to be that column containing the (unique) positive element 3 ; that maximizes {117[17]4 :
1 < j <d-—1}. Similarly, to obtain the (i 4 1)-st row of U all negative we reverse the inequality
(5.2) and choose row k; to be the largest of the ratios (6.5). Thus at each step of constructing U
we have two choices. We obtain 2¢ choices in all, and the associated matrices D in the complete
triangular factorizations take all 2¢ possible sign patterns. O

Now part (iii) for L follows from the claim by the same method that (ii) was derived from (i).

The triangular factors L and U play a non-symmetrical role in Theorem 6.1, because L has
ones on the diagonal while U has no restrictions on its diagonal elements. We associate to M a
function ®p7 : Sym(d) — Sym(d) for which ®(7) = o for the o given by Theorem 6.1 (i). We
also associate to M a 1 to 2% multivalued map W, for which Wy/(o) is the set of 2¢ permutations
T given by Theorem 6.1 (iii). Positive factorizations (7, ¢ ) correspond to “fixed points” (7,0) for
which @5/(7) = 0 and 7 € Wps(0). In looking for such “fixed points” there is one extra constraint
to take into account. For any possible Q, M@, = L='U in which 7! and U are both positive, it
is necessary that

det(L7'U) = det(Q,)det(Q, )det(M) > 0, (6.10)

so that we may exclude exactly half of the permutations 7 above in ®3/(0). We therefore define a
1 to 29~ multivalued map U7, that associates to each o € Sym(d) the 291 permutations T given
in Theorem 6.1 (iii) whose determinant has the correct sign to make (5.8) hold. A “fixed point”
(1,0) is one with ®/(7) = 0 and 0 € U3,(7).

Theorem 6.1 shows that the sign pattern heuristic fails for the action of Sym(d) x Sym(d) on
(d —1) x (d — 1) matrices. The mappings ®,s and U}, lead to an alternate heuristic to consider:
How would “fixed points” be distributed if ®5s : Sym(d) — Sym(d) were a random function and

W%, : Sym(d) — P(Sym(d)) were a random 1 to 2?~! multivalued mapping?
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To get uniqueness of k; 1 we add the “generic” condition that all the ratios (5.3) be unequal. With
this choice of P,,, every element of the (i 4+ 1)-st row becomes positive, and otherwise not. This
completes the induction step.

The induction proves the existence and uniqueness of (). All the “generic” conditions imposed
in the course of the induction exclude (a finite number of) closed sets of codimension at least one,
hence the remaining “generic” M form a dense open set in the space of all (d —1) x (d—1) matrices.

(i1). Since U = DU is positive if and only if D and U are separately positive, part (i) showed
for “generic” M that for each 7 there is a unique ¢ such that Q. MQ, = L= DU with D and U
positive. We will obtain (ii) from (i) by taking inverses.

By (i) applied with 7 = ¢, for a “generic” M there is a unique Q, € 54 such that
MQ,=L"'DU (6.6)
has D and U strictly positive. Taking inverses gives
Q,'M'=v"'D'L,

which exchanges the roles of . and U but reverses the triangular structure. To fix this, we use the
permutation matrix P, € S;_1 which reverses the ordering, i.e. w(i)=d—ifor1 <i<d-1, and

which satisfies P, = P;1. The last equation yields
P (Q'MY)P; = L7'DU (6.7)
in which
L=P,UP;'.D=P,D7'P; U =P, LP;, (6.8)

have the correct forms to give a complete triangular factorization. Observe next that (6.8) shows
that L and D are positive matrices if and only if U/ and D are positive matrices, because the effect
of P, is to permute matrix entries and D~ is positive only if D is. Now set Q. := Ppr_l and
M = M~'P;', and (6.7) becomes

Q.M =1L7"DU . (6.9)

The uniqueness of (), making U and D positive in (6.6) translates to the uniqueness of (), € Sq

making I and U positive in (6.9), completing (ii).
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reverses the signs in the k-th column of M, and subtracts column & from all other columns. For this
step the “generic” restriction on M is that all elements of its first row are distinct and nonzero. There
is then a unique choice of k£ such that ME®) has a positive first row, namely choose E(?) = I if the
first row of M is positive, and otherwise choose k to be that column which contains the (unique)
negative element that minimizes {M; ;: 1 < j <d —1}.

We next prove, by induction on 7, for 1 < 7 < d — 1, that for a dense open set of M there
is a unique choice of E*) P, ... P, such that for each Q, in (6.2) taking these values, the
matrix M@, = L7'U has the first i rows of U (strictly) positive, and conversely, if the first ¢
rows of U are strictly positive then the unique decomposition of (), in (6.2) assigns these values to
E(k),Pgl, ...y Py, _,. The base case 1 = 1 was completed above. For the induction step, suppose it
is true for i and set N) = ME® P, ... P, = L='U and take its partial Gaussian elimination

decomposition for the first 7 columns,

LONG = g

in which L() is an upper triangular unipotent matrix with nonzero off-diagonal elements only in
the first ¢+ rows, which upper-triangularizes the first 7 rows of U The first 7 rows of U() must
agree with the first ¢ rows of U, up to permutation of columns, hence these are strictly positive
by the induction hypothesis. We must choose the pivot column k;yq in the (¢ + 1) — st row with
i < kjy1 < d— 1 so that the (i + 1)-st row of U is positive. We claim that for “generic” M this
choice k;41 is unique, and it uniquely determines o; = (i k;41). If column & of N is chosen as

the pivot column, then the elements of the (i + 1)-st row of the matrix U/() would be transformed

to »
. . g .
AE+1) . () +1,k 7,(7) . .
Uipr; = Ui = 17(2 U;j, 1+41<j<d-1. (6.3)

In order for all these elements to be strictly positive, we must have

) (0

L TR G4y <icdo1, Ak, (64)
7@ )
] i,k

(Here we used the fact that UZ»(;) > 0fori+4+ 1< j<d-1 by the induction hypothesis.) We now

choose that £ = k;11 which minimizes the ratios

7()
{—%§h¢+1gk§d—1}. (6.5)



(iii). For each o € Sym(d) there exist exactly 2% choices of 7 € Sym(d) such that Q,MQ, has

a triangular factorization L='U in which L is positive.

Remark. Theorem 6.1 (i) and (ii) strengthen Lemma 4.2 (iii). Indeed Lemma 4.2 (iii) asserts that
for each o € Sym(d) there is at most one 7 € Sym(d) such that Q. M@, has a positive triangular
factorization, and similarly that for each 7 € Sym(d) there is at most one o € Sym(d) with a
positive triangular factorization.
Proof. Throughout the proof we consider only matrices M such that all (d!)? matrices Q. MQ,
have an L='DU decomposition. Thus M is invertible. This restriction excludes a closed set of
measure zero in the space of (d — 1) X (d — 1) real matrices.

(i). By replacing M with @), M, we may without loss of generality suppose that 7 is the identity.

The group Sy has a left-coset decomposition

[N

d
i= U EWS, 1,
k=1

in which the coset representatives £(¥) are given by

-1 if i =k,

(k) e

E; =40 ife#£j, 14k, (6.1)
1 fi=j#k.

for 1 <k < d—1, and E(? is the identity matrix. Elements of the group S;_1 of (d — 1) x (d— 1)

permutation matrices themselves have a unique decomposition

P, P, ...P

. Od—2

in which each o; := (j k;41) is a transposition of j with kj41, and j < kj4; < d—1. Thus a

general element (), € 54 has a unique decomposition
Q,=EWP, P, ...P,,_, (6.2)

in which there are d choices for E(*) and d — 7 choices for Py, for1<j<d-2.
We first show that for “generic” M there is a unique choice of £*) in (6.2) such that MQ, =
L~'U, has a positive first row in U. Indeed, the first row of U is the first row of MQ,, which

coincides with the first row of M E(F) up to the order of its elements. For 1 < k£ < d -1 M E®)
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have a first row (M1, ..., My 4_1) consisting of positive elements. Since permutations of rows and
columns of M preserve the property of having a positive row, any matrix M such that the set (5.12)
contains some matrix with a positive triangular factorization must have a positive row. A matrix M
chosen with random signs will typically not have this property.

The sign pattern heuristic is nevertheless completely inaccurate in describing sign patterns of
triangular factorizations of matrices in the sets ¥ generated by the action of Sym(d) x Sym(d).
This is shown theoretically by Theorem 6.1 of the next section, and experimentally for d < 9 by the
data in §7.

6. Sign Patterns in Gaussian Elimination

In this section we make use of the complete triangular factorization
M=1I1L7"'DU,

in which D is a diagonal matrix, L is lower triangular with diagonal elements Z;; = 1 and U is upper
triangular with diagonal elements U;; = 1. i.e. L and U are both unipotent. This decomposition
exists and is unique for any nonsingular matrix M that has an L='U decomposition, with [, = L
and U = DU.

We show that for “generic” M the group Sym(d) acting on the right on (d — 1) X (d — 1)
matrices produces a matrix having an L =1 U factorization with U positive, and that Sym(d) acting
on the left on (d — 1) x (d — 1) matrices produce a matrix having an L='U decomposition with
L positive. Thus the sign pattern heuristic fails for 54 when applied to either L or U separately.
We actually prove a stronger result involving the L=' DU decomposition, for which the permutation
produced in Sym(d) is unique.

Theorem 6.1. There is an open dense set of (d — 1) x (d — 1) real matrices M having the

following properties.

(i). For each 7 € Sym(d) there exists a unique o € Sym(d) such that Q. MQ, has a triangular

factorization L=1U in which U is positive.

(i1). For each o € Sym(d) there exists a unique 7 € Sym(d) such that Q;MQ, has a complete

triangular factorization L= DU in which L and D are positive.
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These considerations lead to the following reformulation of the Simplex Exchange Conjecture.
Gaussian Elimination Sign Conjecture (GEg). For each (d — 1) x (d — 1) matriz M
in completely general position there exists some pair (1,0) € Sym(d) x Sym(d) such that the
matriz Q.MQ, has a positive triangular factorization L~'U.

It is now easy to verify that this conjecture is equivalent to the d-step conjecture.

Theorem 5.2. For each d > 2, the d-step conjecture A(d,2d) = d is equivalent to the Gaussian
elimination sign conjecture G Fy.

Proof. By Theorem 3.1 it suffices to prove equivalence of GFE; to the simplex basis exchange
conjecture S Fy. The discussion above combined with Lemma 5.1 implies that S F,; implies G F;.
Here we use the fact that every completely general position M arises from a pair (A4, Z) in general
position.

The converse direction holds similarly, except that some general position (A4, 7) give rise to a
matrix M = M, . in (5.2) that is not in completely general position. To handle this, we use the fact
that general position Z fall into open cells in My in which the combinatorial type of the associated
Dantzig figure (P, w1, w3) is constant. Consequently we can deform Z slightly without changing
#(P,w1,w3) in such a way that the new M is in completely general position. O

The Gaussian elimination sign conjecture is concerned with the sign patterns in the matrices in

triangular factorizations of the (d!)? matrices
Yu={Q:MQ, :0,7 € Sym(d)} , (5.11)

namely whether there always exists a factorization L='U/ with L and U both positive. The number
of possible sign patterns of entries in L and U together is 2(4=1)* " This number grows much more
rapidly than (d!)? as d — oc. A simple heuristic to consider is that the Gaussian elimination sign
conjecture is false for large d purely from the proliferation of possible sign patterns of 1. and U. Call
this the sign pattern heuristic.

The proliferation of sign patterns can easily be used to prove that the smaller set contained in

Y, consisting of the (d — 1)!? matrices
{P,MP; :0,7 € Sym(d—-1)}, (5.12)

under the action of Sym(d—1)x Sym(d—1) need not contain any matrix having a positive triangular

factorization. To see this, note that any M having a positive triangular factorization (4.5) must
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Multiplying (5.2) by @, and then substituting in the last two equations yields (5.8). O

1

As o runs over Sym(d), non~"' runs over Sym(d), hence

{LMTJ 17,0 € Sym(d)} = {Q, MQ, : 7,0 € Sym(d)} .

Recall that a (d — 1) X (d — 1) matrix M is said to be in completely general position if for every
pair (7,0) € Sym(d) X Sym(d) the matrix @M@, has a nondegenerate triangular factorization,
i.e. no zero elements in L and U except in the triangular parts. The set of completely general
position M is an open dense subset of the space of real (d — 1) X (d — 1) matrices.

To each matrix M in completely general position there is associated a Dantzig figure (P, wy, w3),
as follows. First find the unique pair (A4, Z) associated to M by (5.2), which is then in general

position. Set
d d n
P:P(Adyz):{(/\la---y/\%l):Z/\isi+2/\i+dzi:07 Z/\izl, /\220} . (5.9)
=1 =1 =1

This polytope is d-dimensional, and lies in the d-dimensional® flat

d d d
F:={(p1,...,p2): Z,Misi + Z,uH_dZZ’ =0, Z“’i =1}. (5.10)
=1 =1 =1
It has 2d facets corresponding to each A\; = 0, and its antipodal vertices are w; = (0,0,...,0, %, ces %)
and wy = (%, %, .. .,%, 0,...,0) having last d coordinates and first d coordinate equal to %, respec-

tively.

Lemma 5.1 and 5.2 combine to yield:
Theorem 5.1. For a (d — 1) x (d — 1) matriz M in completely general position the number
of ordered pairs (1,0) € Sym(d) x Sym(d) for which Q;MQ, has a positive triangular factor-
ization is equal to the number of d-step paths between antipodal matrices in the Dantzig figure
(P, w1, w3) associated to M.

lo=1lw)

Proof. Lemma5.2 shows that each (7, o) corresponds to a particular simplex exchange (7,w™
for the pair (Ay, 7) associated to M. Lemma 5.1 says that such a simplex exchange is legal if and
only if the triangular factorization derived from (5.1) is positive. Lemma 3.1 gives a one-to-one

correspondence between legal simplex exchanges and d-step paths in (P,wy,wz). O

d

1 . . . d o
One constraint is redundant since Ei:l 8; = Zz‘:l

constraints defining F'.

z; = 0, so that there are exactly d linearly independent
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The (d — 1) X (d — 1) matrix M becomes M. . in this notation. The matrices M, , are related
under the action of a finite group of S of (d — 1) x (d — 1) matrices isomorphic to Sym(d), which
we denote

§4 = Q0 € Sym(d)) |

The matrix (), is defined by:

1 if j = o(i),
(Qo)ij=1 0 if j #0(i) and 1<o(i)<d-1, (5.7)
1 ifo(i)=d.

Thus if 6(d) = d, the matrix @, is a (d — 1) x (d — 1) permutation matrix, otherwise it is such a
matrix with one row replaced by —1's. The group S;_; of permutation matrices is a subgroup of
index d in S;. The group law @).Q), = @, is easily checked.

This (d—1)-dimensional representation S, is inherited from the (d—1)-dimensional representation
of Sym(d) acting on M, taking as the choice of a basis of the first d — 1 rows and d — 1 columns

of Z. In particular, for any Z € My, it can be checked that
(P, 2)lM = , 714 .

To compute the action of S'd on M, ,, we introduce the permutation 7 for which

51 S9
S9 S3

Qn . = . )
Sd-1 5S4

which is the cyclic permutation (i) =i+ 1 (mod d).
Lemma 5.2. Let n € Sym(d) denote the permutation n(i) = i + 1 (mod d). For each pair
(7,0) € Sym(d) X Sym(d),

M., =Q; M. Q" _, . (5.8)

non~
Proof. A computation based on z1 + z5 + ...+ z4 = 0 yields

Z Z:r(1)

Z4-1 Zr(d-1)

The relation sy + s9 + ...+ sy = 0 used with the permutation 7 yields

S2 S5(2)
Qnan—l =

Sd 8o(d)
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then M has the triangular factorization
M=1L"U, (5.3)

in which both L and U are positive triangular matrices, by which we mean that all entries of L
and U are strictly positive except for those entries that must be zero by the triangularity condition,
cf. (2.3).

This construction is reversible, hence we obtain the following characterization of (e, ¢).
Lemma 5.1. There is an invertible linear map ¢(Z) = M from d x d real matrices Z having

all row and column sums zero onto the set of (d — 1) x (d — 1) real matrices M, such that
Qe,e) ={7Z € My : ¢(Z) has a positive triangular factorization} . (5.4)

Proof. To describe the map ¢, given any d x d matrix 7, let ZI] denote the (d — 1) x (d — 1)
matrix obtained by deleting row ¢ and column j from Z. The map ¢ is derived from (5.2). If we

drop the last column of both sides, it becomes
zld — _praltd

hence

(7)) = =z Al -1 (5.5)

Here we use the fact that A4 is invertible, as is Al for any pair (7,7). To see that ¢ is invertible,
note that M determines Zl%4 = — M A4 whence Z is recovered using the fact that all its row
and column sums are zero.

The argument just before the lemma showed that each element of (e, €) leads to a positive
triangular factorization (5.3) of M. Conversely, a positive factorization of M leads to a positive set
of equations (5.1), which certifies that (e,e) € Sym(d) x Sym(d) is a legal exchange sequence for
Z. O

Now we can reformulate the d-step conjecture completely in terms of positive triangular fac-
torizations. To do this, we observe first that the criterion for membership in A(7, o) analogous to

(5.2) is

Z:(1) So(2)

SG'
Z7(2) =-M,, ) , 7,0 € Sym(d) (5.6)
Zr(d-1) So(d)



5.

Gaussian Elimination and the d-Step Conjecture

The connection of triangular factorizations of a (d — 1) x (d — 1) matrix M with the d-step

conjecture arises from study of the set (e, €) in the parameter space M of the simplex exchange

conjecture. A set of simplicial bases {A4, Z} is in the set (e, ) if the sequence of simplex exchanges

from By = A4 to By = Z given by:

Bl = {Z17527S37"'7Sd}
B2 = {Z17Z27537"'7Sd}
By = {z1,22,...,%4-1,84}

is legal. A necessary and sufficient condition for this is that there exist strictly positive relations

A121 + Aigsa+ ...+ Aigsq=0
A21Z1 + ApzZo+ ...+ Aygsg =0
(5.1)
Ad—1,1:21 + Ag—1pZa+ ...+ Ag_1484=0.
We may write this as

All 0 0 Z1 A12 AIS )‘ld 52

A2z A2z 0 42 10 Ags A2d 83

Ad-1,1 Ad—1,d-1 Zg_1 0 0 ... Ad-1gd sq

Since each nonnegative linear relation (5.1) is determined up to multiplication by a positive scalar,

we may (uniquely) rescale these relations to require that

Aii=1, 1<i<d-1.

Thus, if we define the (d — 1) x (d — 1) matrix M by

Z S2

Z9 S3

_ = —1 _ ; (5.2)
Z4_1 Sq
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Equivalently, for all Dantzig figures (P, w1, wy) in R?, the number of d-step paths from w to
wo satisfies

Proof. The bound (4.11) follows from Lemma 4.2 (iii). For each 7 € Sym(d), at most one
o € Sym(d) gives a legal exchange sequence. Now (4.12) follows from Lemma 3.1. O

The bound (4.12) is sharp for all d > 1, for it is attained for the Dantzig figure consisting of the
unit d-cube, with the antipodal vertices (0,0,...,0) and (1,1,...,1).

The simplex exchange conjecture asserts that the (d!)? regions Q(7,0) must cover all of My,
aside from an “exceptional set” of codimension 1. This raises two questions: what is the structure
of Q(7,0), and how do the sets (7, 0) overlap?

For the first question, Lemma 4.2(ii) shows that all Q(7,0) are isometric, so it suffices to
characterize (e, e). This we will do in Lemma 5.1.

For the second question, Lemma 4.3 shows that at any point of M, at most d! of the (7, 0)
overlap. The example of the unit d-cube has exactly d! d-step paths between antipodal vertices.
Any small deformation of the 2d facet hyperplanes yields a polytope with the combinatorial type of
the d-cube. This corresponds to an open region in the parameter space M.

One natural approach to disproving the d-step conjecture for large d would be to show by a
“volume argument” that most points of M, are covered by no (7, ). Such an argument consists
of finding a probability measure v on M that is invariant under the action of Sym(d) x Sym(d),
which assigns measure 0 to the “exceptional set,” and for which the total measures covered by
all Q(7,0) separately is less than 1. Under this hypothesis, all (o, 7) have equal measure by

Lemma 4.2 (ii), so it would suffice to show that

A natural candidate measure is provided by the (essentially unique) Gaussian measure v on My
that is invariant under Sym(d) x Sym(d). Appendix A gives a description of vg.

In section 4 we obtain a description of (e, €). It is a formidable task to evaluate vg(£2(e,€)),
and we do not attempt it. Numerical experiments for d < 9 described in §7 suggest that this

measure is in fact concentrated in the “bad” region of M, where many Q(7, o) overlap.
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Remarks. (1). Property (ii) implies that all (7, o) are isometric sets with respect to the Euclidean
metric on M, because permutation of coordinates is a Euclidean motion.

(2). A stronger version of property (iii) appears as Theorem 6.1.
Proof. (i). (r,0)is an open set, because the conditions that (A, 7) be a Haar set, and that 0 lie
in the interior of the simplices B; for 1 < i < d, are preserved under sufficiently small perturbations.

(i1). We have

P =|: , forre S,

hence

Qr,0)= P;Qe,0).

The effect of o permuting the s; is equivalent to permuting the coordinates of R¢ by P,, because
the s; are the orthogonal projections of the unit coordinate vectors e; onto (e)L, see (4.9). Thus
the exchange of z,(; and s,(;) becomes after permutation of coordinates the exchange of z_(;) P,

with s;, so that

Qe,0) = Qe e) Py

and (4.10) follows. It is easily verified that if Ay U Z is a Haar set then so is Ay U P,ZP, for
T,p € Sym(d).

(iii). We prove, by induction on ¢, that {r(j) : j < i} determines {o(7): 7 < i}. The base case
By is vacuous. In going from B;_; to B;, let the vector Z,(;) enter B;. The simplex determined by
B; is the convex hull of a facet of the simplex determined by B;_1, together with z_;). It includes
0, in its interior, hence the ray from 0 in the direction —z,(;) must hit this facet, while staying
inside the simplex determined by B; 1. This determines the facet uniquely, so the leaving vertex
So(;) must be the unique vertex of B;_1 not in this facet. This completes the induction step.

A similar proof shows that {o(j):j > i} determines {7(j) : j > i}: simply exchange Z and
Ay O

The following lemma gives an upper bound for #(B, B’), and an equivalent upper bound for
the number of d-step paths for Dantzig figures.

Lemma 4.3. For all simplicial basis pairs (B, B') in R~ that are in general position,
#(B,B") < d!. (4.11)
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The identity element of Sym(d) is denoted e, so that P. = I. The set of permutation matrices Sy
has a one-dimensional invariant subspace (e) generated by e = (1,1,...,1), and a complementary
(d — 1)-dimensional invariant subspace (e}t = {z : (e,z) = 0}. The representation S, splits into
a (trivial) one-dimensional representation on (e) and a (d — 1)-dimensional representation on (e)*.
Since for every Z € My, the rows of Z are in (e)L, as are its columns, the parameter space M,
is invariant under both the left and right action of 5y, i.e. then P.Z € M, and ZP, € M, for
any 7,0 € Sym(d). The action of Sy on the columns of matrices in M is the (d — 1)-dimensional
representation above, and it is explicitly realized as a set Sy of (d — 1) x (d — 1) matrices in §5.
The parameter space M contains the standard simplex matriz
51

52

A= ; (4.8)

Sq
which plays a special role, because it is the orthogonal projection matrix onto the (d —1)-dimensional

subspace (e)! of R? In particular A? = A, and
Mqg={Z=ANA: N adxd matrix} .

In addition, A commutes with all permutation matrices, i.e.
P,A = AP, =, , o €Sym(d) . (4.9)

Inside the parameter space M, there are regions Q(7,0) defined by the property that the

permutation (7,0) € Sym(d) X Sym(d) gives a legal exchange sequence from the simplicial basis
Ay = {s1,...,84} to the simplicial basis 7 = {zy,...,2z4} and Ay U Z is a Haar set. Basic
properties of (7, 0) are as follows.

Lemma 4.2 (i). Fach Q(o,7) is an open set of M.
(i1). For each 7,0 € Sym(d),

Q(r,0) = P.Qe,e)P;' . with P, P, € 5, . (4.10)

(iii). For fized 7, all Q(1,0) are pairwise disjoint as o varies. Similarly, for fized o, all Q(T,0)

are pairwise disjoint as T varies.
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in which
e=e t+ey+---+e=(1,1,...,1),
and e; denotes the i-th unit coordinate vector. Then the vertex s; is the orthogonal projection on

(e)L of e;, i.e. in which

1
si:ei—ge, 1<1<d.
Certainly
si+ses+...+s;,=0. (4.4)

We regard B as sitting in R? in the hyperplane (e)X. We choose a rescaling of B’ taking it to
7z = {Z17Z27 . '7Zd} = lu/B/ = {lull /17H2b/27 e 7:udb2l} :

in such a way that

Z1+2z2+...+24=0. (4.5)

This rescaling is unique up to multiplication of B’ by a scalar. Lemma 4.1 implies that if (B, B’) is
a counterexample to the d-step conjecture, then (A4, Z) is also a counterexample.
The parameter space M, enumerates all pairs (Ag, 7) such that 7 = {zq,...2z4} satisfies
(4.5). We represent elements of M as d X d matrices:
Z
Zy
Zg

which are subject to the linear constraints:

(e,z;) =0 1<i<d.
These constraints say that all row and column sums of Z are zero. Thus M, is a linear space of
dimension (d — 1)2. Note that M, contains some extra “ideal elements” not corresponding to any
simplicial basis B’, i.e. matrices Z of rank less than d — 1.
We next describe the effect of permutations on M,. The symmetric group Sym(d) has a d-
dimensional representation as the set S; = {P, : 0 € Sym(d)} of permutation matrices P,, where

P, is defined by
1 ifj=o0(i)
(P5)ij = (4.7)

0 otherwise .
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linear space of dimension (d — 1), and we call it a parameter space for the simplex basis exchange
conjecture S'Fj;.

We may reduce the set of simplicial basis pairs to consider using the following two operations
that preserve #(B, B’).
Lemma 4.1. Let (B, B') be a pair of simplicial bases of R~

(). If L : R — R is an invertible linear transformation, then
#(L(B), L(B')) = #(B, B') . (4.1)

(i). Given a strictly positive vector p = (pa,...,1d) € R% and an ordered set of vectors
B = {by,by,...,bg} set po B := {u1by, psbo, ..., ugby}. For any two such vectors p
and p',

#(po B, w'oB)=#(B.B) . (4.2)

Remark. Both of these operations preserve the combinatorial type of the associated Dantzig
figure; we omit the straightforward proof.
Proof. (i). Clearly L(B;) contains 0 in its interior if and only if B; does.

(i1). If a set of vectors {b;} satisfies a normalized positive linear relation

then {y;b;} satisfies the normalized positive linear relation
S Xi(pib)=0, Y N=1,

- , N1
with ;= 2 (T, %) o

We now construct the parameter space M. Given an arbitrary simplicial basis pair (B, B’), we
first take an invertible affine transformation L : R%~! — R~ that sends B to the standard simplezx

Ay = {s1,...,84}, which is a regular simplex with centroid 0. To get a canonical representation

we regard R%~! as imbedded in R? as the hyperplane

(e)t = {x:($1,...,md):<e,x>:Zaci:0}, (4.3)
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with 3% X; = S22, M = 1, hence there is a strictly positive relation

1 1
-y \b;+=) Mbl=0,
3 2 A+ 3 2 X
which shows that P(B, B’) is full-dimensional in the flat H;. The polytope P(B, B’) has 2d facets
F,={(M,...,224) € P(B,B"): \; =0}, for 1 <i<2d,

and P(B, B') is a simple polytope because ( B, B’) are in general position. The distinguished vertices
wy and wy of P are the points of intersection of F1 N FyN...N Fyand Fypq N Fapo N ... N Fog,
respectively. We check that these intersection points actually lie in P. For wy this follows from B

being a simplicial basis: there is a unique positive relation

d d
DAbi=0,Y Ai=1,2allA>0.
1=1

=1
Similarly wy € P follows from B’ being a simplicial basis. Thus (P, wq,wz) is a Dantzig figure.
Lemma 3.1. Let (B, B) be a pair of simplicial bases of R~ in general position, with associated
Dantzig figure (P,wy,ws). Then the number of legal exchange sequences for (B, B') is equal to

the number of d-step paths between wy and wy in the graph G(P), i.e.

#(B,B') = #(P.wi,wy) . (3.1)

Conversely, for every Dantzig figure (P, w1, w3) there is a pair of simplicial bases (B, B') giving
rise to (P, w1, w3).

Proof. Each simplicial basis B” C B U B’ defines a vertex of P, and vice versa. If B; and B, are
two such simplicial bases that have |B; N By| = d — 1, then correspond to two vertices in P that
have d — 1 facets in common, hence they determine an edge of P, in the intersection of the d — 1
common facets. Thus legal exchange sequences correspond to moving along edge paths in P from
w1 to wy, and conversely. Then only possible way to get from B to B’ in d exchange steps involves
entering an element of B’ and removing an element of B at each step. Thus (3.1) follows.

The converse assertion is proved in Klee and Kleinschmidt [7], pp. 725-726. O
4. Parameter Space for the Simplex Exchange Conjecture

In this section we construct a reduced set M, of simplicial basis pairs that necessarily includes

a counterexample to the simplex exchange conjecture S F; if one exists. The set My is a real



it, a simplicial basis B of R~ is an ordered set of d vectors B = {by,..., by} that form the
vertices of a (d — 1)-simplex containing O in its interior.

We need also a notion of general position. A finite set of vectors A in R™ is said to be a Haar

set if every subset of size m in A is linearly independent. We say that two simplicial bases B and
B’ are in general position if BU B’ is a Haar set.
Simplex Exchange Conjecture (SEy) For any two simplicial bases B and B' of R~ that
are in general position, there is a sequence By, By, By, ..., By of simplicial bases of R, with
By = B and By = B’, such that each B;yy is obtained from B; by adding a vertex in B’ and
removing a verter in B.

The name “simplex exchange” refers to the exchange step from B; to B;1; which adds some
vector b’ of B’ and removes some vector b of B. Associated to each pair (B, B') of simplicial
bases are (d!)? exchange sequences By = B', By, By, ..., By = B’, which are labelled by pairs of
permutations (7,0) € Sym(d) x Sym(d) as follows: B;; is obtained from B; by adding the vector
b’T(i) € B’ and removing the vector b, ;) of B. We call an exchange sequence (7, 0) legal if all the
resulting bases B; are simplicial bases. Let #(B, B’) count the number of legal exchange sequences
for the pair (B, B’) of simplicial bases.

Theorem 3.1. For each d > 2, the d-step conjecture is equivalent to the simplex exchange
conjecture S Fy.

This is proved in Klee and Kleinschmidt ([7], 2.6) via an equivalence between simplicial pairs
(B, B") and Dantzig triples (P, w1, w3) which we now describe.

To each general position pair (B, B') of simplicial bases of R~ there corresponds a Dantzig

triple (P, w,w5) in R%. Here P := P(B, B') is defined by

d d 2d
P(B,BI) = {(/\1, .. .,/\Qd) : Z/\zbz + Z/\H—db;'I 0, Z/\Z =1,A> 0} ,
i=1 i=1 i=1

where P is viewed as lying in a particular d-dimensional flat Hy in R?¢, namely
d d 2d
H,; := {(/\17---7/\2d):Z/\ibi+z/\i+db;':07 Zx\izl} .
=1 =1 =1

Since B and B’ are simplicial bases there are positive relations 2?21 A:b; = 0 and Zle Albl =0,



A face of a polytope is its intersection with a supporting hyperplane, and an i-face is a face of
dimension 7. A d-polytope is a polytope of dimension d, and a facet of a d-polytope is a (d — 1)-
face. A (d,n)-polytopeis a d-polytope having exactly n facets. A d-polytope is simple if each vertex
(0-face) of P is contained in exactly d facets, or, equivalently, if there are exactly d edges (1-faces)
incident on each of its vertices.

The graph G(P) of a polytope P is the abstract undirected graph representing the incidence
structure of the 0-faces (vertices) and 1-faces (edges) of P. G(P) contains no loops or multiple
edges. It is well-known that the graph G(P) of a d-polytope is d-connected. A polytope P is simple
if and only if the graph G(P) is d-regular, i.e. it has exactly d edges incident on each vertex. If u
and v are vertices of G(P) the distance 6p(u,v) between u and v is the minimal number of edges
that must be traversed in G/(P) to travel from u to v. The diameter 6(P) is the diameter of the
graph G(P), i.e. §(P) = max,, ép(u,v).

Let A(d,n) denote the maximal diameter §(P) where P runs over all d-polytopes having n

facets. the Hirsch conjecture asserts that
A(d,n) <n—d whenever n>d+ 1.

Klee and Walkup ([8], Theorem 2.8) show that the value A(d,n) is always attained by some simple
d-polytope.

The d-step conjecture asserts that A(d,2d) = d. By the remark above the value of A(d,2d)
is attained by 6( ) for some simple (d, 2d)-polytope. There is a further simplification due to Klee
and Walkup [8]. Given a simple (d,2d)-polytope P we say that two of its vertices w; and wy
are antipodal, or make up an antipodal pair, if they lie in the intersection of disjoint sets of d
facets, respectively. Such a triple (P, w1, w3) is called a Dantzig figure. Klee and Walkup show
that the value A(d,2d) is attained by ép(wy, w;y) for some Dantzig figure (P, wy,ws); see their
Theorem 2.8. Let #( P, wq,wz) count the number of d-step paths between wy and wy in G(P).

The d-step conjecture A(d,2d) = d may be restated as
#(P7W17W2) Z 1

for all Dantzig figures (P, wq, wy) in R%.
The simplex exchange variant of the d-step conjecture is a re-encoding of the condition for the

existence of a d-step path connecting two antipodal vertices of a simple (d,2d)-polytope. To state



We say that a triangular factorization (2.1) is positive if all non-triangular entries of L and U
are positive, i.e. if

Li; >0 for 1>35; Uyj; >0 for <. (2.3)

The Gaussian elimination sign conjecture involves a group S of (d—1) X (d — 1) matrices which
is isomorphic to the symmetric group Sym(d) on d letters. To o € Sym(d), there corresponds

Q. € 54 given by

1 if j=o(i)<d-1,
(Qo)ij = 0 if j#0(i) and 1<o(i)<d-1,
-1 if oi)=4d,
and Q,;Q, = Q,, forall o, € Sym(d). Thus Sy is the set of (d—1) x (d—1) matrices consisting of

all permutation matrices, together with all matrices obtained from a permutation matrix by replacing

one row with a row of —1’s. ForexampIeS'gz{l1 0],[0 1],[_1 _1],[_1 _1],

0 1 10 0 1 1 0
1 0 0 1
-1 -1 -1 -1 '
We say that a (d — 1) x (d — 1) real matrix M is in completely general position if all (d!)?

matrices

Q:MQ, for o,7€ Sym(d)

are nondegenerate, i.e. have a triangular factorization satisfying (2.2). The set of completely general
position matrices is an open dense subset of (d — 1) X (d — 1) real matrices.
Gaussian Elimination Sign Conjecture (GEy) For each (d — 1) x (d — 1) real matriz M
in completely general position there exists some pair (1,0) € Sym(d) x Sym(d) such that the
matriz Q.M Q, has a positive triangular factorization L=1U.

In Section 5 we prove that for each fixed d the Gaussian Elimination Sign Conjecture GF, is
equivalent to the d-step Conjecture A(d,2d) = d. (Theorem 5.2). Furthermore the number of pairs
(o, 7) for which @M@, has a positive triangular factorization counts the number of d-step paths

between antipodal vertices of a particular Dantzig figure associated to M (Theorem 5.1).
3. Simplex Exchange Variant of the d-Step Conjecture

We set basic terminology. A polyhedron is the intersection of a finite number of closed half-

spaces in R, and a polytope is a bounded polyhedron. This paper deals exclusively with polytopes.



sign conjecture. This conjecture was derived from a study of the simplex exchange version of
the d-step conjecture, a version formulated by Klee [6]. Section 3 recalls known results on the
simplex basis exchange version of the d-step conjecture. Section 4 describes a parameter space
M, for the simplex basis exchange conjecture. Section 5 derives the Gaussian elimination sign
conjecture and proves its equivalence to the d-step conjecture. Section 6 proves a result about sign
patterns in Gaussian elimination factorizations for the families of matrices M (), and @), M, where
(- runs over matrices in a (d — 1) X (d — 1) representation of the symmetric group Sym(d) on
d letters. Section 7 describes computational experiments concerning the Gaussian elimination sign
conjecture, which computed values #( M ) for various distributions of M. The final section 8 reports
on computations concerning the combinatorial type of Dantzig figures (P, w1, wz) associated to M
having #(M) = 2771, Appendix A describes the unique Gaussian distribution invariant under

Sym(d) x Sym(d) acting on the parameter space M.
2. Gaussian Elimination Sign Conjecture

A triangular factorization of a (d — 1) X (d — 1) real matrix M is a factorization
M=1L""U, (2.1)

in which L is lower triangular with all diagonal elements L;; = 1, and U is upper triangular. Such
factorizations are directly related to the Gaussian elimination algorithm. For invertible matrices
M, a triangular factorization (7.1) is unique if it exists, and it is constructed using the Gaussian
elimination algorithm without pivoting, cf. Strang [11], §1.4. There is however an exceptional set
of invertible matrices having no triangular factorization, consisting of those matrices on which the
Gaussian elimination algorithm encounters a zero pivot.

We say that a triangular factorization (7.1) is nondegenerate if all non-triangular entries of

and U are non-zero, i.e. if

L = [Lij] with Lij 7& 0 for i>7.

The set of matrices M that possess a nondegenerate triangular factorization is an open dense subset

of all (d — 1) x (d — 1) real matrices.



L~'U factorization with U positive, and there exist 2% elements (), such that Q.M has an L~'U
factorization with L positive (Theorem 6.1). This result leads to consideration of an alternative
“random permutation mapping” heuristic, for which the expected number # (M) of positive L™1U
factorizations is 2971

The Gaussian elimination sign conjecture is amenable to numerical experimentation. Part of its
appeal is that it suggests unusual probability distributions to use in searching for counterexamples to
the d-step conjecture. We report on extensive numerical experiments for 3 < d < 15 in Sections 7
and 8. We made the empirical discovery that the number # (M) of positive L=1U factorizations of
M appears to always satisfy

#(M) > 2471

and we found examples attaining equality for 3 < d < 15. The examples attaining #(M ) = 27~ for
d > 6 were discovered using distributions based on the L~!U/ factorization. In contrast “uniform”
Gaussian distribution on M gave a very different distribution of values of #(M ), having large values
comparable in size to the general upper bound #(M) < d!.

We went on to study the Dantzig figures (P, wy, W) associated to examples with #(M ) = 2771,
and discovered that these exhibit a wide variety of combinatorial types. For example, in dimension 4
we found examples spanning the full range of allowed vertex numbers, from 14 to 20. The bound
#(M) > 297" held under small perturbations of M that changed the combinatorial type of the
associated Dantzig figure.

This empirical evidence suggests that the d-step conjecture may well be true in the strong form
#(M) > 2971, We call this the strong d-step conjecture. The discussion following Theorem 6.1
shows that the inequality #(M) > 29=1 " if true, would have a theoretical interpretation as a
“positive correlation” among the permutations ® s and ¥}, constructed in Theorem 6.1.

We remark that the best theoretical bounds currently known for A(n,d) are A(n,d) < 29=3n,
due to Larman [9], and A(n,d) < 2n'°82¢, due to Kalai and Kleitman [5], see also [4] and [14],
Theorem 3.10. The latter bound gives A(d,2d) < 2d?*1°&24. Kalai [4] remarks that the bound
A(d,2d) < d**1°824 can be derived by a more detailed analysis of his argument. General references
on polytopes include [3], [13], [14]. For some information on Gaussian elimination and its stability
properties, see [2] and [12].

The contents of the paper are as follows. In Section 2 we precisely state the Gaussian elimination



Several natural generalizations of the d-step conjecture are known to be false. For example
the d-step conjecture fails for unbounded polyhedra in dimension 4 (Klee and Walkup [8]), and
extended versions of the dual version of the d-step conjecture fail to hold for triangulated spheres
in high dimensions (Mani and Walkup [10]). Based on such counterexamples, the consensus view
is that the d-step conjecture will also be false for large d. Klee and Kleinschmidt [7] write: “We
strongly suspect that the d-step conjecture fails when the dimension is as large as 12.”

This paper relates the d-step conjecture to Gaussian elimination factorizations of real matrices,
and presents experimental data suggesting that it may be true in all dimensions, in a strong form.
We reformulate the d-step conjecture in terms of the sign patterns of the matrices L and U in
Gaussian elimination factorizations L™'U of a set of (d!)* matrices {Q,MQ, : 0,7 € Sym(d)}
constructed from an arbitrary (d — 1) x (d — 1) matrix M. Here S = {Q, : 0 € Sym(d)} is
a certain group of (d — 1) X (d — 1) matrices isomorphic to Sym(d). Recall that a triangular
factorization M = L~'U is one where L is lower triangular with ones on the diagonal and U is
upper triangular with arbitrary diagonal elements. A triangular factorization exists and is unique
for “general position” M. We call an L, =1U factorization positive if all nontriangular elements in
L and U are positive. The reformulation of the d-step conjecture, which we call the Gaussian
elimination sign conjecture, asserts that for each “general position” M, the set of (d!)? matrices
{Q:MQ, : 0,7 € Sym(d)}, where Sym(d) is the symmetric group on d letters, contains at least
one Q. M@, having a positive L1 U factorization. (Theorem 5.2).

We show that the positive . 7'U factorizations among the (d!)? possibilities are in one-to-one
correspondence with the d-step paths between distinguished vertices wy and wy of a certain Dantzig
figure (P, w1y, wz) associated to M. A Dantzig figure (P, w1, wsz) is a simple d-polytope having
exactly 2d facets, given with vertices wy and wy which are antipodal in the sense that w; and wy
are the intersection of disjoint sets of d facets. Each combinatorial type of Dantzig figure arises
from some M.

The Gaussian elimination sign conjecture raises questions concerning the sign patterns of trian-
gular factorizations of random matrices. A natural heuristic to consider is that such sign patterns
should be random, when averaged over the action of Sym(d) x Sym(d). This must be very far
from the truth if the Gaussian elimination sign conjecture is to be true. We show that this heuristic

is indeed far from the truth, in the sense that there exists a matrix (), such that M (), has an
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1. Introduction

The d-step conjecture is one of the fundamental open problems in the structure of convex
polytopes. Let A(d,n) denote the maximum diameter of the graph (of the 1-skeleton) of a simple

d-polytope having exactly n facets. The Hirsch conjecture asserts that
A(d,n)<n—d.
The d-step conjecture is the special case n = 2d, and asserts that
A(d,2d)=d .

(The d-cube shows that necessarily A(d,2d) > d.) Klee and Walkup [8] showed that the truth of
the d-step conjecture for all d implies the truth of the (apparently more general) Hirsch conjecture
for all n and d. The d-step conjecture has been proved for d < 5. The Hirsch conjecture has been
proved for d < 3 and all n, and also for all pairs (d,n) having n — d < 5. These results and others

are described in the comprehensive review of Klee and Kleinschmidt [7].
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Abstract

The d-step conjecture asserts that the diameter of the graph of any convex d-polytope with 2d
facets is at most d. This paper relates the d-step conjecture to Gaussian elimination factorizations
of real matrices, and proves it is equivalent to the following statement: For each “general position”
(d —1) x (d — 1) real matrix M there exist two matrices Q,,Q, drawn from a finite group S, of
(d—1) x (d—1) matrices isomorphic to the symmetric group Sym(d) on d letters, such that Q.M Q,
has the Gaussian elimination factorization L='U in which L and U are lower triangular and upper
triangular matrices, respectively, that have positive non-triangular elements. It also shows that if
#(M) is the number of pairs (o, 7) € Sym(d) x Sym(d) giving a positive L~ U factorization, then
#(M) equals the number of d-step paths between two vertices of an associated Dantzig figure.
One consequence is that #(M) < d!. Numerical experiments all satisfied #(M) > 29!, including
examples attaining equality for 3 < d < 15. The inequality #(M) > 29=! is proved for d = 3.
For d > 4, examples with #(M) = 29=1 exhibit a large variety of combinatorial types of associated
Dantzig figures. These experiments and other evidence suggest that the d-step conjecture may be
true in all dimensions, in the strong form #(M) > 291
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