Counting Dyadic Equipartitions of the Unit
Square !

Jeffrey C. Lagarias

ATET Labs — Research, Florham Park, New Jersey 07932-0971, USA

Joel H. Spencer

Dept. of Computer Science, New York University, New York, New York
10012-1110, USA

Jade P. Vinson

Dept. of Mathematics, Princeton University, Princeton, New Jersey 08544, USA

Abstract
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a dyadic rectangle is a rectangle with sides parallel to the axes whose projections
on the axes are dyadic intervals. Let u, count the number of ways of partitioning
the unit square into 2" dyadic rectangles, each of area 27". One has uy = 1, u; = 2
and u,, = 2u%71 —
to this nonlinear recurrence for generic real initial conditions. For almost all real
initial conditions there are real constants w and 3 (depending on g, u1) with w > 0

such that for all sufficiently large n one has the exact formula
un, = w?" g(BA"),

where A\ = 2v/5—4 ~ 0.472, and g(z) = Z;’io ¢jz’, in which ¢g = _1%‘/5, c1 = #,
all coefficients c; lie in the field Q(v/5), and the power series converges for |z| < 0.16.
These results apply to the initial conditions ug = 1, u; = 2 with w ~ 1.845 and
B = 0.480. The exact formula for u, then holds for all n > 2. The proofs are

based on an analysis of the holomorphic dynamics of iterating the rational function
R(z)=2—%.

A dyadic interval is an interval of the form [ ] , where j and k are integers, and

uid. This paper determines an asymptotic formula for a solution
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1 Introduction

We call an interval dyadic if it is of the form [Zj—k, 72%1], where j and k are

integers. A dyadic rectangle is a rectangle whose sides are parallel to the axes
and whose projections to the axes are dyadic intervals. A dyadic equipartition
of order n is a dissection of the unit square of it into 2" dyadic rectangles, each
of area 27". Let u,, denote the number of dyadic equipartitions of order n. In
§2 we show that u; = 1, u, = 2 and that u,, satisfies the nonlinear recurrence

Uy = 2ui_1 - ui_z. (1)

The first few values of u,, are
1,2,7,82,11047,198860242, 64197955389505447, . . .
In this paper we determine the asymptotic behavior of u,,, as follows.

Theorem 1 There are constants w and 3 such that number of dyadic equipar-
titions u, of the unit square satisfies for all n > 2,

un = w* g(BA") (2)

where A = —4 + 24/5 ~ 0.472136, and

o
9(z) =co+ Y oz’ (3)
k=1
where g(z) is analytic in a neighborhood of z = 0, with ¢y = _1;"/5, c1 = 2_2\/5,

and the coefficients c;, all lie in the field Q(v/5).

The coefficients c¢; remain the same in describing the asymptotics of most
solutions to the nonlinear recurrence (1) with real initial conditions, while the
values of w and (8 are specific to the initial conditions, see Theorem 8. We
show that

w € [1.8445475709350505, 1.8445475709350507].

and
B € [0.479835559, 0.479835561].

In §5 we show that the radius of convergence of the power series (3) is at least
0.16, see Theorem 12.

Theorem 1 is obtained by an analysis of the solutions to the nonlinear recur-
rence (1) with arbitrary real initial conditions. These solutions are closely tied



to iteration of the rational function R(z) = 2— Z%, on the Riemann sphere, par-
ticularly on the real axis, which we study in §3 - §5. For this rational function
nearly all forward orbits approach an attracting fixed point z = ¢ := %,
and this includes the orbit containing the initial conditions (ug,u;) = (1,2).
An interesting feature is that the main result provides not only an asymptotic
expansion for the u, but gives an exact formula for all values of u, whenever

z = 3 is sufficiently close to the attracting fixed point.

n—1

Theorem 1 relates to results obtained by Boros and Furedi [4], who studied the
number 7, of distinct dissections of a square into rectangles each of area %
(They actually treated a more general dissection problem, where the rectangles
need not all have the same area.) We clearly have u,, < ron. Boros and Furedi
show that

2m_1Mm S Tm S Mma (4)

where
2 o (m+1\(m+1\/m+1
M, = — .
s ) () ()
They showed that M, satisfies

32 8™

My, = (1+ 0(1))7r—\/§ﬁ’

and these asymptotics give
(4—0(1))*" < ron < 8.

We define the configurational entropy of a set of cardinality v, to be

1
H =i —1
1:Ln_>5£p on 108 Vn;

with the scaling factor 2% chosen because there are 2" pieces in the partition.

The results above show that the set of rectangular equipartitions of the square
of area 27" has positive configurational entropy, no larger than log8. On the
other hand Theorem 1 shows that the subset of dyadic equipartitions of area
27™ has positive configurational entropy, at least log 1.844.

Our motivation for studying dyadic equipartitions of the square arose as fol-
lows. Coffman et al. [6] studied packings of random axis-parallel rectangles
inside the unit square. Here one draws n rectangles, each of which is a prod-
uct of independent random subintervals of the unit interval, and studies the
expected size EC,, of the maximum cardinality C,, of disjoint rectangles in the
set. An answer EC,, = @(n%) was obtained, with the upper bound based on a



reduction to the study of packings using random dyadic rectangles 2. In doing
this it proved worthwhile to study packings obtained using dyadic rectangles
of a particular fixed area. This motivated the question of studying tilings of
the square using rectangles all having the same area.

Let R, , denote a random subfamily of the family of all dyadic rectangles
of area 27", in which each such rectangle is placed in the subfamily with
independent probability p. Let f(n,p) denote the probability that a dyadic
equipartition may be created from the rectangles in R, ,. We have the:

Open Question: Does there exist a probability p < 1 such that lim,, o, f(n,p) =
17

While we have not resolved this question we note that the expected number
of such equipartitions is equal to

unp” = (pw)*" g(BA™) ~ co(pw)®".

When p < w™! &~ 0.54213836 - - - the expected number of equipartitions goes to
zero and hence f(n,p) — 0. When p > w™! the expected number of equipar-
titions goes to infinity but, a priori, this fact does not imply the almost sure
existence of at least one equipartition.

The proof techniques of this paper apply in principle to other nonlinear recur-
rences which reduce to the iteration of a rational map, although the precise
details will depend on the map. For example, they apply to the recurrence

Up = 31},21_1 - 21);‘;_2, (5)

with initial conditions vy = 1, v; = 2 which occurs ? in Irving and Leather [7,
p. 657]. The sequence v, gives a lower bound for the maximal possible number
of stable marriage arrangements in some set of 2" men and 2" women having
suitable preference orderings. For the recurrence (5) the corresponding func-
tion g(z) (analogous to (3)) describing the asymptotics of its solutions has
coefficients ¢ that lie in the field Q(v/3).

2 Dyadic Equipartition Recurrence

Let u,, be the number of ways of dividing the unit square into dyadic rectangles
of size 27". Then uy = 1, u; = 2, and uy = 7, as shown in Figure 1.

2 Dyadic rectangles are called canonical rectangles in [6].
3 The recurrence in Irving and Leather’s paper is g(m) = 3g(%)? — 2g(2)*, where
m = 2", with initial conditions g(1) = 1 and ¢(2) = 2. We set v, = g(2").



wO=1 | | u1=2
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Fig. 1. Dyadic equipartitions of the unit square for n = 0,1, 2.

Lemma 2 The number u, of dyadic equipartitions of the unit square satisfies
uy =1, u; =2 and

Uy = 2ui_1 - ui_Z. (6)

Proof. Suppose that some dyadic rectangle R, straddles the vertical line
T = %, i.e. contains part of the vertical line z = % in its interior. Then its
projection to the z-axis must be [0, 1]. If a dyadic rectangle R, straddles the
line y = %, then its projection to the y-axis is [0,1]. The two rectangles R,
and R, intersect. Since we have a partition, R, = R, = [0, 1] x [0, 1]. This is
only possible for n = 0.

For n > 1, either no rectangle straddles z = 1/2, or no rectangle straddles
y = 1/2, or both. In the first case, x = 1/2 divides the unit square into left
and right halves. There are u,_; ways to partition the left half, and u,,_; ways
to partition the right half, for a total of u2_,. Similarly, when y = % divides
the square there are u2_, possibilities. Since we double counted the case when
both z = L and y = % divide the unit square, we must subtract u,_,. Thus

2
— 9,2 4
Up = 2u; | — U, 5. O

Remark 3 This proof works only in two dimensions. One can define dyadic
equipartitions of the unit n-cube for all n > 3 in a similar way, but one no
longer has the property that such a partition always splits the n-cube in half
along some line 2, = 3.



3 Iterating a Rational Function

Set v, = =
n—1

. Then v,, satisfies the first-order nonlinear recurrence

Vp =2— —5—, (7)

Un-1

as is seen by dividing (1) by u2_,. We have
Uy = U2 _ 0y,

which when iterated yields

n—1
wn = 2" ] 02 (8)
k=0

The recurrence (7) for v, iterates the rational function

R(z)=2-— 9)

so that we can apply the well-developed theory of iteration of rational maps
on the Riemann sphere C = CU{oo}, see Beardon[1], Blanchard [2] or Carlson
and Gamelin [5]. Recall that given a rational map R(z) the Riemann sphere
partitions as C = F(R) U J(R), in which the Fatou set F(R) is an open set
on which the forward dynamics of iterating R(z) are simple, and the Julia set
J(R) is a closed set on which the corresponding dynamics are chaotic. The
Fatou set F(R) and Julia set J(R) are both forward invariant and backward
invariant under the map R(z).

For the rational function (9) the real axis is a forward-invariant set, and we
will mainly be concerned with the behavior iterates of R(z) on the real axis
R:= RU{oo}, and in particular the open interval (1, c0), which is also forward-
invariant under iteration by R(z). However we state results for the complex
case whenever this is convenient.

is an attracting fized point of R(z) =2 — %

Z27

Lemma 4 The point ¢ = %

with

A= R(¢) = % = —4+2V/5 ~ 0.472136. (10)

On the real azis the segment (1,00) is invariant under R, and all points on it



monotonically approach ¢ under iteration. The Fatou set F(R) contains the
open interval (1,00), the point oo and the entire imaginary aris.

Proof. Certainly R(¢) = ¢ and R'(z) = % has |R'(¢)| < 1, so ¢ is an
attracting fixed point. The point z; = 1 is a repelling fixed point of R(z). One
checks for real x > 1 that

r<Rx)<o¢ if I1<z<¢,

and

d<R(z)<z if ¢p<z<o00.
It is easy to show that R(™(z) — ¢ for all z € (1, 00). This implies that (1, co)
lies in the Fatou set F'(R). Since R(co) = 2, it is in the Fatou set. Finally the
imaginary axis is mapped to the real interval (2, 00] by R(-), so it is also in
the Fatou set. O

Theorem 5 Let R(z) = 2 — 5. The Julia set J(R) lies on the real line,
satisfies J(R) = —J(R), and is contained in the region [—1, —\/ig] U [%, 1]. It
is a topological Cantor set which has zero Lebesgue measure in R.

Proof. The two critical points of R(z) are {0,000}, and Lemma 4 shows they
are both in the Fatou set, and in the immediate attracting basin of the at-
tracting fixed point z = ¢, which is the connected component of the Fatou set
containing ¢. (All points in the immediate attracting basin of an attractive
fixed point approach that point under forward iteration, cf. Beardon [1, p.
104].) Theorem 9.8.1 of Beardon [1] states that any rational map R’ of degree
d > 2 which has an attracting fixed point whose immediate attracting basin
contains all the critical points of R’ has a Julia set J(R') that is a topological
Cantor set (perfect disconnected set). Theorem 9.8.2 of Beardon [1] states that
under the same hypotheses the Julia set J(R') contains points whose forward
orbit is dense in J(R'). Both these theorems apply to R. Thus J(R) is a topo-
logical Cantor set. It follows that F'(R) is connected, so that the immediate
attracting basin of ¢ is F(R), and all points in F(R) approach ¢ under for-
ward iteration. The second result above shows that J(R) contains a point zg
whose forward orbit is dense in J(R).

We now show that the Julia set is contained in the closed annulus

A:={z: %SMSL}.

The region Sy := {2z : |z| > 1}U{occ} is closed under forward iteration. It lies
entirely in F'(R), for if it contained z; € J then the forward orbit of z, would
get arbitrarily close to z;, hence would contain some point in Sy, whence all



subsequent iterates lie in §y and cannot have the repelling fixed point 1_2\/5 eJ

as a limit point, a contradiction. The region §; = {z : |z| < %} C F(R)
since R(S1) C€ Sy C F(R) and F(R) is bi-invariant under iteration of R(.).
Thus J C A. We have J(R) = —J(R) because the Julia set is closed under
backwards iteration. Given z € J(R), so is R™'(R(z)) = {2, —z}.

To show that the Julia set J is real, we argue by contradiction. If J were not
real, then any point z5 having a dense forward orbit in J is not real, for the
forward iterates of a real point remain on the real axis. We claim that any
point in J with 0 < |¥(2)| < g has the property that both its preimages
z" under R have 0 < [J(2')| < [|S(2)]. To see this, write z = a + bi, with
s<a®+bv?<land0< b < Y2 Then

1 2—a+b

(ZI)2 — —

2—2 (2—a)?2+b*

Set re? = 2—a+bi and note that 72 = (2—a)?+b?> > 1,s0r > 1 and b = rsin §
with —% < 6 < 7, using the bound on b and the fact that 2 —a > 0. Now

¢i0/2

ri/2’

2=+

which gives

. |sin@/2| |sin@| _ |b]
0 <3| = 172 < r1/2 < r3/2

<18,

which proves the claim. The claim implies that any z” whose forward orbit
contains a given point z € J with |J(z)| < g must have |J(2")| < [¥(2)]. Tt
follows that the the forward orbit of z, contains no point z; that has [J(2;)] <
min(?, |¥(20)]), hence the forward orbit of zy has no limit points on the real
axis, and this contradicts the fact that the forward orbit of 2z, is dense in J.
Thus J is real.

Now we know that J C [—1, —%] U [%, 1], since it lies in the annulus A. The
four endpoints {1, —1, %, —%} lie in J, because z = 1 is a repelling fixed
point and each of the other three points has z = 1 in its forward orbit.

To conclude, Theorem 10.2 of Brolin [3] states that if a rational function
R'(z) of degree d > 2 has an attractive fixed point that contains all of the
critical points of R'(z) in its immediate attracting basin, then the Julia set
is totally disconnected and has zero two-dimensional Lebesgue measure, and
if in addition the Julia set J(R') lies on the real axis then it has zero one-
dimensional Lebesgue measure on R.. This applies to R, hence the Julia set
J(R) has zero one-dimensional Lebesgue measure on R. O



We study the growth rate of iterates u, of the nonlinear recurrence (6). For a
positive real number z, let z'/?" denote the positive real 2"-th root of z. We
treat /2" as undefined if z < 0.

Lemma 6 For real initial conditions (ug,u1) € R? of the recurrence u, =

2ul_| — up_y, such that vy = % € F(R), the following limit exists and is
0
nonzero:
w(ug, uy) == nh_)rglou}/” : (11)

Proof. Suppose first that 1 < v; < 0o. Then 1 < v, < 2 for k > 2, and

_ on 2n—1 2n—2 2
Up = Uy V] Vs Usy_qUn - (12)

Thus u, > 0 for n > 1, so u}/?" is defined, and

/" = fuoloy vyt - w}/*', for n>1. (13)

The condition 1 < vy < 2 yields
v,i/Qk =1+0027% as k—oo.

Thus the infinite product |ug| I1524 i converges to a positive quantity, namely

n . o0 .
w(ug,u) = lim [uo| TT v/ = luo| [T v, (14)
j=1

i=1

which is (11).

For the remaining cases, note that the real axis is invariant under R(:). Since
v, € Fr, the iterates R*)(v;) approach ¢, and since they lie in R they eventu-
ally enter the region (1, 00). Suppose v, € (1, ¢). The argument above applies
to show that w(um, Umy1) exists. now

1/m _ 1. 1/2n 1/27"’ B 1. 1/2m+n
w(uma um—i—l) - nl—)Igo Um4n - nl_)Iglo Uin+n (15)

which gives w(ug, v1) = W(tUpm, Ups1) />, O

For general complex initial conditions of the recurrence (6) we have the fol-
lowing weaker result.



Lemma 7 For each complex initial condition (ug,u;) € C* other than (0,0),
the following limit exists and is nonzero:

w](uo, u1) := nh_)nolo |12 (16)

Proof. The proof of (13) yields more generally that
[un|[ %" = Juo| T o,
j=1

provided that no value v; = 0 or co. The case where some v; = 0 or co puts
vj42 € (1,00) and Lemma 6 applies in this case. We claim that

j 1
\vj|1/2]=1+0<§> as j— oo. (17)

If vo € F(R) then v; — ¢ hence 1 < |v;| < 2 for all large 7, so (16) holds. If
vo € J(R) then all v; € J(R), and there are constants ¢; > ¢y > 0 with

co < v <e if veJ(R),

because 0, 0o lie in the open set F'(R). Thus (16) holds in this case. Now one
has

n i oo .
lim ug| [T [0V = [uol I v;/"/*",
provided no v; =0 or co. O

4 Dynamics near the Attracting Fixed Point

We now restrict attention to real initial conditions (ug,u;) € R? such that
v; = 2 lies in the Fatou set F'(R). The detailed asymptotics of such u, are
0

determined by the approach of v, = R~V (v;) to the attracting fixed point
0.
For n > 1 we have

on on-—1 2

2n
Up = Uy V]t Un_qUp =W Y, (18)

where w = w(ug, u1) is given by (14), and
a 1

Tn = H(Un-l-j)_g : (19)

i=1

10



Our object in this section is to show that there is a closed form expression for
v» which is a (convergent) asymptotic expansion.

Theorem 8 There is a power series

9(z) = i 2" (20)

g = 2_‘/5, and each ¢, € Q(/5), which converges for

with ¢y = %‘/5, .
|z| < B with positive B, such that the following holds. For each (ug,u;) € R
with vy = 32 € F(R), there ezists 3 = B(v1) € R and w = w(uo, u1) > 0 such

that

u, = w* g(BA™),  for all n with |BA\"|< B, (21)
where
w = w(ug,u1) = lim ull? (22)

and A = —4 + 2v/5 ~ 0.472136.

In §5 we show that one can take B = 0.16. We also note that the theorem
is valid more generally for complex initial conditions (ug,u;) € C? such that
v1 € F(R), provided that w is properly defined; see Theorem 12.

The proof uses the analytic linearization of R(z) in a neighborhood of its
attracting fixed point z = ¢, and the quantity § = ((v;) is expressible in
terms of the linearizing map, cf. (29). Basic properties of the linearizing map
are summarized in the following lemma.

Lemma 9 Let F(z) = Y52, \u2® be a formal power series with Ay # 0 or a
root of unity. There is a unique formal power series

o(z) :=z+ i a2 (23)
such that
oo F(z) = \o(z) . (24)

Furthermore, for k > 2,

ag € Q(/\l, )\2, ceey )\k—l) . (25)

11



If 0 < || < 1 and the power series for F(z) has a positive radius of conver-
gence, then the power series for o(z) also has a positive radius of convergence.

Proof. The recursion (24) is

o0 o0 k o0
Z ay (Z )\nz”> =)\ Z apz® .
k=1 n=1 k=1

Since the power 27 appears only on the left side in terms 1 < k < j, equating
terms for 2/ gives a relation

. i-1
(/\Jl - )\1)0,]' = Z CLkij ()\1, /\2, cey /\j—k) (26)
k=1

where each Pj; is a (multivariate) polynomial with integer coefficients. By
hypothesis A] — A; # 0 for all j > 1, so taking a; = 1 the coefficients a; are
uniquely determined recursively by (26). By induction on k& > 1 they satisfy

ay € Q()\la )\25 SRR /\kfl)-

The assertion on positive radius of convergence of the power series when 0 <
|A| < 1 is a theorem of Koenigs [8], proofs of which appear in [1, Theorem
6.3.2] and [5, Theorem 2.1]. O

When F(z) is analytic and has an attracting fixed point at z = 0, with F’(0) #
0, the power series (23) converges in a small disk around z = 0 and has a well-
defined inverse

o Mz) =2+ apt.
k=2

The power series for o~ !(z) has a positive radius of convergence and its co-
efficients also satisfy ax € Q(A, Ag, ..., Ag_1) for & > 2. In this case we can
rewrite (24) as a conjugacy

coFoo'(2) =Mz, (27)

and this is valid in some disk |z| < B, with B positive.

Proof of Theorem 8. We apply Lemma 9 to R(z) by first making a linear
conjugacy that moves the fixed point z = ¢ to the origin. Let T'(2) = z + ¢
and set

R(z):=T 'oRoT(z). (28)

12



Here R(z) has the fixed point z = 0 with

A:R'(O)ZR'(@:%:—HNS.

Since 0 < |A] < 1, Lemma 9 shows that there exists a conjugacy map o(2)
with o(R(z)) = Ao(z). Equivalently, 0~ (\z) = R(c7"(z)). Since the power
series coefficients of R(z) are in Q(v/5), so are the power series coefficients of
o(z) and o7 1(2).

Now let f(z) = 07!(z) + ¢, so that

f(Az) = R(f(2)) - (29)

The power series coefficients of f(z) are all in Q(v/5):

1+/5 15+9v5 , 359+ 155v/5
+f++ +\f2+ £ 195V5

fla)=—; ? 20 220
718370 + 3224975 ,
939800 *

Since f'(0) # 0, f is invertible in a neighborhood of f(0) = ¢. The coefficients
of f~1 are also in Q(v/5). The first few terms are:

i ~15—-9V/5 167 + 71v/5
[TR)=E-9)+ —F5— 20 ——— (2= 9)* + LT —

—132636 — 293785v/5
119900

(2 = ¢)°

(z—o)' +...

The relation f(Az) = R(f(z)) may be replaced by a conjugacy relation:

R(z)=f(\f7}(2))
R (z2)=f(\"f7(2)) -

The conjugacy relation is valid whenever z is sufficiently close to ¢. Recalling
the definition of 7, from equation 19, we can use the conjugacy relation to
express vUn4; in terms of f, 1, and vy:

1
log(’yn) = Z 5 log(vn—f—j)

j 1

= Z — log (R (vy,))

13



=3 7 BV )

This expression for log(y,) is valid when v, is sufficiently close to ¢. Since
v; € F(R) by assumption, this is true when n is sufficiently large. Continuing,
let 3 =X"f1'(v,). Then

o0

log(n) =3 5 log(f(\" 7))

where U is a convergent power series in a neighborhood of zero. Recall that
log(1+2) = z — 522 + 32°* — 12* + - -+ in a neighborhood of z = 0. Since the
power series for (ﬂ%ﬁﬁ) - 1) has coefficients in Q(v/5) and the constant term

is zero, the coefficients of ¥ are also in Q(v/5). Let by, be the k-th coefficient
for ¥ and define ¥(z) = %2, 2 ¥(Mz2). Then:

j=1 9J

e
n
Mg

-1&
o — 3 hp NS

k=1

<.
Il
—

00
sz

‘7:

=Lbh (2 —ik) k

k=1

I
8WM8

The interchange of order of summation is justified by the absolute convergence
near z = 0. Note that the coefficients of W(z) are in Q(v/5) because those
of U(z) are and because A\ € Q(v/5). Thus, log(7,) = —log(¢) + T(A"3).
Exponentiating gives

Yo = éexp(\l’(A”ﬂ))

g(A\"B), (30)

where g is analytic in a neighborhood of the origin and has coefficients in
Q(v/5). Choose B so that the disk of radius B is contained in this neighbor-
hood. Finally, pick n sufficiently large that |A"3| < B and v, = g(A"f3). We

14



can use equation 18 to express w > 0 in terms of u,, and ~,:

The proof of Theorem 8 gives a method for computing the coefficients of g(z).
The first few terms are:

_-1++5 L2- V5 55— 89\/522 —16921 — 7031\/5z3

9(2) 2 5 T 2480 927520
— 6778805950 — 3031957499v/5 .
564136214400

To conclude this section, we observe that the nonlinear recurrence u, =

2u2_,—up_, can be reformulated as a discrete dynamical system which iterates

the map

F(z,y) = (y, 29" — 2*) (31)
because
F(un—laun) = (unaun—H) . (32)

We take the domain of F' to be R?, although one could more generally consider
C?. The results above can be interpreted as giving an analytic conjugacy of
the map F' to a simple form on part of its phase space.

Theorem 10 For all ¢y with 0 < cy < 1 the map F' keeps the domain

Qey :{(x,y) eER?:2>0,y>0,

| < o} (33)

inwvariant. For small enough cy there is an invertible real-analytic conjugacy
map ®(z,y) = (w, B) whose range has the form

I={(w,B)eR:w>0andB_<B<P:}, (34)

where B_ < 0 < (B, depend on cy, and

PoFod 7 (w,fB)= (v’ A8), (35)

15



where A = —4 + 24/5.

Proof. The invariance of €2, follows from the proof of Lemma 4. We take

_ z “1p-1( Y
@(x,w—(g oy (xQ)), (36)

where 0 < z < 00, the function ¢(y) is that given in Theorem 8 and

fy) =Too 0T y)=¢ oy (%—1)+q§. (37)

The inverse map is

O~ (w, B) = (wg(B), w?g(AB)) (38)

provided that ¢g is small enough. The form of (36) shows that all z > 0 are
permitted, and the form of the range (34) is easily checked. 0O

Remark 11 Theorem 10 shows that on part of its domain the dynamics of
the two-dimensional map F' is conjugate to a product of two one-dimensional
mappings. For small enough ¢y the proof above produced a convergent power
series expansion for the real-analytic conjugacy map ®. One can extend this
map by backwards iteration to a larger domain on which it still has a real-
analytic inverse, but it does not then have a globally convergent power series
on the whole domain.

5 Numerical Bounds

To complete the results, it remains to obtain rigorous numerical bounds for
the values, derivatives, and radii of convergence of the power series defined in
the previous section. We let B(zg;7) := {2 : |z — 29| < r}.

2

Theorem 12 Associated to the nonlinear recurrence u,, = 2u2 | —u;._, there

are power series f, 1, and g of the form:

f(z) = ¢+z+%z2+---
e = e m )+ g
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2

where ¢ = , which have the following properties.

(i). The coefficients of these power series are all in Q[v/5], and the power series
for f, f~Y and g converge in B(0;0.08), B(¢#;0.03), and B(0;0.16) respectively.

(i). For (ug,u1) € C* with vy = % € F(R) let ng > 1 be minimal such
0

that v, = 5™~ € B(¢;0.03). Set B = A7 f~!(v,,,), where A = 25 — 4 ~
0.472136, ancg define w by

ong—1 — U’no—l
g(ﬂ)\no—l)
Then
U, = w? g(BA") for n>mny—1,
and

v, = f(BAT) for n > ng.

Remark 13 The quantity w is only defined up to a choice of 2"0~!-th root of
unity. When (ug, u1) are positive reals we can choose the root of unity so that
w is a positive real, and it will then agree with the definition in Lemma 6.

We proceed in a series of lemmas, beginning with a numerical version of
lemma 9.

Lemma 14 There is an analyic function f, defined in the ball B(0;0.08), so
that f(0) = ¢, f'(0) =1, and

f(Az) = R(f(2))
holds for all z € B(0;0.08).

Proof. For |z| < 2 we choose the single-valued branch S(z) := R7!(2) =
,/ﬁ, by the requirement that S(¢) = ¢. Define f,(z) := S™(¢ + A\"z) for
n > 0 and z € B(0;0.08). We claim that in evaluating f,(2), S is evaluated
only inside B(0;0.08). That is,

S7(¢+ A\"2) € B(¢;0.1)
whenever z € B(¢;0.08) and 0 < j < n.

We will prove uniform convergence for z € B(0;0.08) of f,(z) to an analytic
function f(z). Since f,,(Az) = R(fn+1(2)), the limiting function f will satisfy

f(Az) = R(f(2)).
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We use the following facts about S:

(1) S(#) = ¢ and S'(¢) = A~
(2) |S'(2)| < 4 for z € B(¢;0.08).
(3) [S"(2)| < 24 for z € B(¢;0.08).
Now fn11(2) = fn(Z), where
N2 = S(¢p+ \"2) — ¢
Properties 1 and 3 imply that
A2 — Az| < 12020 |52,
Finally,
[far1(2) = fa(2)] = [fa(2) — fu(2)] = [S"(A"Z) — S™(A"2)].
Using property 2, \%S”(ZH < 4" for z € B(¢, \"0.08). Thus,
| for1(2) = fa(2)] < A7|A"Z — AP2| < 4712 A20FD) |52,

Since 4)\? < 1, the sum of such errors over all n is finite, establishing the
uniform convergence of f, to an analytic function f on B(0;0.04).

We now verify the claim that S is only evaluated inside B(¢;0.08). Since all
evaluation points are of the form f,(Az) for some z € B(0;0.08) and A < g,
it suffices to show that |f,(2) — (¢ + 2)| < |z| for n > 0, z € B(¢;0.04). This
is the case, because

Fal2) = (64 2| <3 fari(2) = Ful2)] < 3 4% - 12 X2 P

< (0.04)12)? 2| < (0.04) - 24.7|2] < |2|, (39)

1
1—4)\2

as required. O

We can use Lemma 9 to numerically solve for the first several coefficients in
the power series for f at z = 0:

f(2) = 1.618 4 z + 1.7562% + 3.2072% + 6.0032* + 11.4312° + 22.0452°
+42.93627 + 84.2692% + 166.4252° + 330.35220 + - - -

The radius of convergence of f appears to be about 0.48.
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By conjugating with the function f, we linearize the function R near its at-
tractive fixed point ¢, i.e. R(z) = f(Af7'(z)). This makes iterating easy:
R"(z) = f(A\"f~!(2)). It is therefore crucial to know an explicit neighborhood
on which f is invertible.

Lemma 15 Suppose that h is analytic in B(0;7) and that Re(h'(z)) > a > 0
in this neighborhood. Then h™t is well defined in B(h(0); ar) and takes values
in B(0;7).

Proof. To see that h is 1-1 in B(0;7) is easy. To see that the range of h
contains B(f(0); ar), consider the curve v,(8) = pe®. For all 0, |h(y(0)) —
h(0)| > ap and the image of this curve wraps around the ball B(h(0); ap).
Letting p vary between 0 and r, we sweep out the entire ball B(0;ar). O

Applying Lemma 15 to the function f defined in Lemma 14, we obtain the
following result:

Lemma 16 The function f~'(z) is well defined, analytic and single-valued
in B(¢;0.03), and takes values in B(0;0.06).

Proof. We seek a neighborhood of the origin in which Re(f') > 0.5. Recall
that f'(z) = lim,_, f;(2), where f,(2) = S™(¢ + A"z). Thus

S(S™ Y+ A"2)) S'(S™ 2(p + A2))  S'(6 + A"z)

fo(2) =

S'(9) S'(9) 59
= exp (72 log(S'(S7(¢ + \"z)) — log(S'(aﬁ))) :

From equation 39, [S7(¢ 4+ A\"2) — (¢ + \"772)| < [fj(A"Pz) — (¢ + A"7Y)| <
A"=I|z| for z € B(0;0.08) and n > j. We control the summands by ob-
serving that ‘(%log(S’(z))‘ = ‘Z,((j)) = ‘2(2__{1)
z € B(¢;0.08). Thus,

, which is less than 6 when

n—1

[log(f5,(2))] < 3 624"

J=0

<762 Nz| =
k=1

12X
1—A

|z| < 11|z|.

When |z| < 0.06, this sum is less than log(2). Thus, Re(f}(z)) > 0.5 in this
neighborhood. Since f, — f uniformly in this neighborhood, the same bounds
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are true for f’, concluding the proof. O

The first several terms in the power series for f~!(z) for z near ¢ are:

f )~ (2 — @) — 1.756(2 — ¢)? +2.961(2 — ¢)® — 4.924(2 — ¢)*
+8.131(2 — ¢)° — 13.375(2 — ¢)° + 21.940(2 — ¢)” — 35.919(2 — ¢)®
+58.720(2 — ¢)° — 95.885(2 — ¢)'0 4 - --

The radius of convergence of f~! appears numerically to be exactly ¢ — 1. It
cannot be any larger because the point z = 1 is in the Julia set, and is at
distance ¢ — 1 from ¢.

Proof of Theorem 12. We have constructed f and f~! in the lemmas above.
For a general initial condition v; € F(R) we will have v, € B(¢;0.03) for
all sufficiently large n. Let ny be the first such n. In this case we set § =

AT f =1 (vpy) € A" B(0;0.06). Then for j > ng, v; = f(N}).

We now shift attention to the ~,. Recall that -, = H?’;l(vnﬂ);_il. This is equal
to g(BA\"), where

o

—1 _
9(2) = exp (2 = log(f(/\’Z))> .
j=1

Since log(f(z)) is analytic in B(0; 0.08), g(2) is analytic in B(0;0.16) € A~*B(0; 0.08).
The first several terms are:

g(z) ~0.618 — 0.1182 — 0.05812% — 0.03522° — 0.0240z* — 0.01772°
—0.01372% — 0.011127 — 0.009162% — 0.007742° — 0.006652'°

For n > ng — 1, v, is well defined. Thus w27 is well defined, and
Un=w"v  for n>mnyg—1,

which verifies (ii). O

We now derive rigorous bounds for the values of # and w, in the case of our

given initial conditions uy = 1 and u; = 2.

Recall that f~! is defined in B(¢;0.03) and takes values in B(0;0.06). Inside

the smaller domain B(¢;0.005) we control the derivatives of f~! using the
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Cauchy integral formula:

1 0" 2-0.03

-7 -1
a7 )< o3 —o00)

= (0.06) - 40™.

Recall also that for n large enough that v, € B(¢;0.03), we have § =
A7 f~(v,). We calculate vy using exact arithmetic and observe that vy =
¢ + 7, where

7 € [0.000264219375415529, 0.000264219375415530].
Using the sixth derivative estimate,
A B — Py(f ' (v10))| < (0.06) - 40° - 7% < 8.4 - 107",

where P5 denotes the truncation of the power series after 5 terms. Thus we
obtain an estimate for (3:

B € [0.479835559, 0.479835561].

In order to obtain bounds for w we use bounds for the derivatives of g. Inside
B(0;0.16), g is bounded by 1.0. Using the Cauchy integral formula inside
B(0,0.06),
10"
— < 10™.
L)
Thus, bounds on A°3 imply bounds on 7,9 = g(A!°3). Explicitly,

10 € [0.61800281229753,0.61800281229756.
The use of the equation uqy = w210710 gives the desired bounds for w:
w € [1.8445475709350505, 1.8445475709350507].

One can obtain more accurate estimates for # and w by using more than five
terms for f~! and g, or by using u,_; and u, for n > 10.

To conclude, we can choose ng = 3 in Theorem 12 because |[3\?| < 0.08.
Theorem 1 is valid for n > nyg — 1 = 2.
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