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Abstract

We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean
space is unknotted (that is, whether it is capable of being continuously deformed without self-
intersection so that it lies in a plane). We show that this problem, UNKNOTTING PROBLEM,
is in NP. We also consider the problem, SPLITTING PROBLEM, of determining whether two
or more such polygons can be split (that is, whether they are capable of being continuously de-
formed without self-intersection so that they occupy both sides of a plane without intersecting
it), and show that it also is in NP. Finally, we show that the problem of determining the genus
of a polygonal knot (a generalization of the problem of determining whether it is unknotted)
is in PSPACE.

1. Introduction

The problems dealt with in this paper might reasonably be called “computational topology”;
that is, we study classical problems of topology (specifically, the topology of 1-dimensional
curves in 3-dimensional space) with the objective of determining their computational complex-
ity. One of the oldest and most fundamental of such problems is that of determining whether
a closed curve embedded in space is unknotted (that is, whether it is capable of being con-
tinuously deformed without self-intersection so that it lies in a plane). Topologists study this
problem at several levels, with varying meanings given to the terms “embedding” and “de-
formed”. The level that seems most appropriate for studying computational questions is that
which topologists call “piecewise-linear”. At this level, a closed curve is embedded in space as
a simple (non-self-intersecting) polygon with finitely many edges. Such an embedding is called
a “knot”. (Operating at the piecewise-linear level excludes “wild” knots such as those given by
polygons with infinitely many edges, but finite total length.) More generally, one may study



“links.” A link is a finite collection of simple polygons disjointly embedded in 3-dimensional
space. The individual polygons are called components of the link and a knot is a link with one
component.

A continuous deformation is required to be piecewise-linear; that is, it consists of a finite
number of stages, during each of which every vertex of the polygon moves linearly with time.
From stage to stage the number of edges in the polygon may increase (by subdivision of edges
at the beginning of a stage) or decrease (when cyclically consecutive edges become collinear at
the end of a stage). If the polygon remains simple throughout this process, the deformation
is called an “isotopy” between the initial and final knots. Knot isotopy defines an equivalence
relation, called “equivalence” of knots. It is easy to see that all knots that lie in a single plane
are equivalent; knots in this equivalence class are said to be “unknotted” or “trivial” knots.

While it is “intuitively obvious” that there are non-trivial knots, it is not at all obvious
how to prove this. Stillwell [31] traces the mathematical notion of knot back to a paper of
A.T. Vandermonde in 1771; the first convincing proof of the non-triviality of a knot seems to
be due to Max Dehn [5] in 1910.

There are a great many alternative formulations of the notion of knot equivalence. Here
are some.

1. One can consider sequences of “elementary moves”, which are very simple isotopies that
move a single edge across a triangle to the opposite two sides, or vice versa.

2. One can consider “ambient isotopies” that move not only the knot, but also the space in
which it is embedded, in a piecewise-linear way.

3. One can consider “homeomorphisms” (continuous bijections that have continuous in-
verses) that map the space to itself in a piecewise-linear way, are orientation preserving,
and send one knot to the other.

One can also study knots or links by looking at their “projections” onto a generic plane. In
this way, a knot or link may be represented by a planar graph, called a “knot diagram” or
“link diagram”, in which all vertices (representing the “crossings” of edges of the polygon) have
degree four, and for which an indication is given at each crossing of which edge goes “over”
and which edge goes “under”. This gives an additional formulation of equivalence:

4. One may consider sequences of “Reidemeister moves”, which are simple transformations
on the diagram of a knot that leave the equivalence class of the knot unchanged.

For more details on piecewise-linear topology, the various formulations of knot and link equiv-
alence, and many other aspects of knot theory, we recommend the books of Adams [1] and
Burde and Zieschang [4].

In order to study the computational complexity of knot and link problems, we must agree on
a finite computational representation of a knot or link. There are two natural representations: a
polygonal representation in 3-dimensional space, or a link diagram representing a 2-dimensional
projection.

A polygonal representation of a link L consists of a set of simple polygons in 3-dimensional
space described by listing the vertices of each polygon in order; we assume that these vertices
have rational coordinates. We can reduce to the case of integer lattice point vertices by
replacing L by a scaled multiple m/L for a suitable integer m. This does not change the
equivalence class of L. A particularly simple kind of polygonal representation uses only integer



lattice points as vertices and edges of unit length, so that the polygon is a closed self-avoiding
walk on the integer lattice; a sequence of moves (up, down, north, south, east, west) that
traverse the polygon, returning to the starting point without visiting any other point twice.
(This formulation was used by Pippenger [22] and Sumners and Whittington [32] to show that
“almost all” long self-avoiding polygons are non-trivially knotted.) The size of a polygonal
representation L is the number of edges in L; its input length is the number of bits needed to
describe its vertices, in binary.

A link diagram D is a planar graph with some extra labeling for crossings that specifies a
(general position) two-dimensional projection of a link. A precise definition is given in section
3. The size of a link diagram is the number of vertices in D plus the number of isolated loops.

These two representations are polynomial-time equivalent in the following sense. Given
a polygonal representation L one can find in polynomial time in its input length a planar
projection yielding a link diagram D; if L has n edges then the graph D has at most O(n?)
vertices. Conversely given a link diagram D with n vertices and / components, one can compute
in time polynomial in n + [ a polygonal link L with O(n + [) edges that has integer vertices
and input length O(n + [) and which projects in the z-direction onto the link diagram D; see
Section 7.

In this paper we consider knots and links as represented by link diagrams and take the
crossing number as the measure of input size. We can now formulate the computational
problem of recognizing unknotted polygons as follows:

Problem: UNKNOTTING PROBLEM

Instance: A link diagram D.

Question: Is D a knot diagram that represents
the trivial knot?

See Welsh [34]—[36] for more information on this problem. The main result of this paper
is the following.

Theorem 1.1. The UNKNOTTING PROBLEM is in NP.

The UNKNOTTING PROBLEM was shown to be decidable by Haken [7]; the result was
announced in 1954, and the proof published in 1961. From then until now, we know of no
strengthening of Haken’s decision procedure to give an explicit complexity bound.

We also study the splittability of links. A link is said to be “splittable” if it can be can be
continuously deformed (by a piecewise-linear isotopy) so that one or more curves of the link
can be separated from one or more other curves by a plane that does not itself intersect any
of the curves. We note that this notion remains unchanged if we replace “plane” by “sphere”
in the definition. We formulate the computational problem of recognizing splittable links as
follows.

Problem: SPLITTING PROBLEM
Instance: A link diagram D.
Question: 1Is the link represented by D splittable?

The SPLITTING PROBLEM was shown to be decidable by Schubert [27] in 1961. We
establish the following result.

Theorem 1.2. The SPLITTING PROBLEM is in NP.



Another generalization of the unknotting problem concerns an isotopy invariant of a knot
K called the “genus” g(K') of K. This was defined by Seifert [29] in 1935; an informal account
of the definition follows. Given a knot K, consider the class S(K) of all orientable spanning
surfaces for K; that is, embedded orientable surfaces that have K as their boundary. Seifert
showed that this class is non-empty for any knot K. (We shall assume in this discussion that
all surfaces are triangulated and embedded in a piecewise-linear way.) Up to piecewise-linear
homeomorphism, an orientable surface is characterized by the number of boundary curves and
the number of “handles”, which is called the “genus” of the surface. The genus g(K') of the
knot K is defined to be the minimum genus of any surface in S(/K). Seifert showed that a
trivial knot K is characterized by the condition g(K) = 0. This means that a knot is trivial if
and only if it has a spanning disk.

The notion of genus gives us a natural generalization of the problem of recognizing un-
knotted polygons; we formulate the problem of computing the genus as a language-recognition
problem in the usual way.

Problem: GENUS PROBLEM
Instance: A link diagram D and a natural number k.

Question: Does the link diagram D represent a knot
K with g(K) < k7

Haken [7] observed that his methods also suffice to show the decidability of the GENUS
PROBLEM. We establish the following result.

Theorem 1.3. The GENUS PROBLEM is in PSPACE.

2. Historical background

The problem of recognizing whether two knots are equivalent has been one of the motivating
problems of knot theory. A great deal of effort has been devoted to a quest for algorithms for
recognizing the unknot, beginning with the work of Dehn [5] in 1910. Dehn’s idea was to look
at the fundamental group of the complement of the knot, for which a finite presentation in
terms of generators and relations can easily be obtained from a standard presentation of the
knot. Dehn claimed that a knot is trivial if and only if the corresponding group is infinite cyclic.
The proof of what is still known as “Dehn’s Lemma” had a gap, which remained until filled by
Papakyriakopoulos [21] in 1957. A consequence is the criterion that a curve is knotted if and
only if the fundamental group of its complement is nonabelian. Dehn also posed the question
of deciding whether a finitely presented group is isomorphic to the infinite cyclic group. During
the 1950s it was shown that many such decision problems for finitely presented groups (not
necessarily arising from knots) are undecidable (see Rabin [23], for example), thus blocking this
avenue of progress. (The avenue has been traversed in the reverse direction, however: there are
decision procedures for restricted classes of finitely presented groups arising from topology. In
particular, computational results for properties of knots that are characterized by properties
of the corresponding groups can be interpreted as computational results for knot groups.)
Abstracting somewhat from Dehn’s program, we might try to recognize knot triviality
by finding an invariant of the knot that (1) can be computed easily and (2) assumes some
particular value only for the trivial knot. (Here “invariant” means invariant under isotopy.)
Thus Alexander [2] defined in 1928 an invariant Ax(z) (a polynomial in the indeterminate
z) of the knot K that can be computed in polynomial time. Unfortunately, it turns out that



many non-trivial knots have Alexander polynomial Ag(z) = 1, the same as the Alexander
polynomial of a trivial knot.

Another invariant that has been investigated with the same hope is the Jones polynomial
Ji (z) of a knot K, discovered by Jones [18] in 1985. In this case the complexity bound is less
attractive: the Jones polynomial for links (a generalization of the Jones polynomial for knots)
is #P-hard and in FP#F (see Jaeger, Vertigan and Welsh [17]). Tt is an open question whether
trivial knots are characterized by their Jones polynomial. Even this prospect, however, has
led Welsh [34] to observe that an affirmative answer to the last open question would yield an
algorithm in P#F for recognizing trivial knots, and to add: “By the standards of the existing
algorithms, this would be a major advance.”

The revolution started by the Jones polynomial has led to the discovery of a great number
of new knot and link invariants, including Vassiliev invariants and invariants associated to
topological quantum field theories, see Birman [3] and Sawin [25]. The exact ability of these
invariants to distinguish knot types has not been determined.

A different approach to the problems of recognizing unknottedness and deciding knot equiv-
alence eventually culminated in decision procedures. This is based on the study of normal
surfaces in 3-manifolds (defined in section 3), which was initiated by Kneser [19] in 1929. In
the 1950°s Haken elaborated the theory of normal surfaces, and in 1961 published his decision
procedure for unknottedness. Schubert [27] extended Haken’s procedure to decide the link
splitting problem and related problems. Haken also outlined an approach via normal surfaces
to decide the knot equivalence problem [33]. The final step in this program was completed by
Hemion [10] in 1979. This approach actually solves a more general decision problem, concern-
ing a large class of 3-manifolds, now called Haken manifolds, which can be cut into “simpler”
pieces along certain surfaces (incompressible surfaces), eventually resulting in a collection of
3-balls. Knot complements are Haken manifolds. It gave a procedure to decide if two Haken
manifolds are homeomorphic [14]. Recently Jaco and Tollefson [15] further simplified some of
these algorithms.

Apart from these decidability results, there appear to be no explicit complexity bounds,
either upper or lower, for any of the three problems that we study. The work of Haken [7]
and Schubert [27] predates the currently used framework of complexity classes and hierarchies.
Their algorithms were originally presented in a framework (handlebody decompositions) that
makes complexity analysis appear difficult, but it was recognized at the time that implementa-
tion of their algorithms would require at least exponential time in the best case. More recently
Jaco and others reformulated normal surface theory using piecewise linear topology, but did
not determine complexity bounds. Other approaches to 3-manifold algorithms include meth-
ods related to Thurston’s geometrization program for 3-manifolds [8]; these currently have
unknown complexity bounds.

Our results are obtained using normal surface theory. Among other things we show that
Haken’s original approach yields an algorithm which determines if a knot diagram with n
crossings is unknotted in time 0(20”2), and that the improved algorithm of Jaco and Tollefson
runs in time O(2°"), see Theorem 8.1. The complexity class inclusions that we prove require
some additional observations.

3. Knots and links

A knotis an embedding f : S — R3, although it is usually identified with its image K = f(S!).
(Thus we are considering unoriented knots.) A link with £ components is a collection of k knots



with disjoint images. An equivalent formulation regards a knot as an embedding in the one-
point compactification 8% of R?, and we will sometimes use this setting.

Two knots K and K' are ambient isotopic if there exists a homotopy h; : R® — R? for
0 <t < 1 such that hg is the identity, each h; is a homeomorphism, and hy(K) = K'. We shall
also say in this case that K and K’ are equivalent knots. A knot or link is tame if it is ambient
isotopic to a piecewise-linear knot or link, also called a polygonal knot or link. We restrict
our attention to tame knots and links. Given this restriction, we can without further loss of
generality restrict our attention to piecewise-linear manifolds and maps (see Moise [20]).

A regular projection of a knot or link is an orthogonal projection into a plane (say z = 0)
that contains only finitely many multiple points, each of which is a double point with transverse
crossing. Any regular projection of a link gives a link diagram, which is an undirected labeled
planar graph such that:

1. Connected components with no vertices are loops.

2. Each non-loop edge meets a vertex at each of its two ends, and has a label at each end
indicating an overcrossing or undercrossing at that end.

3. Each vertex has exactly four incident edges, two labeled as overcrossings and two la-
beled as undercrossings, and has a cyclic ordering of the incident edges that alternates
overcrossings and undercrossings.

Conversely, every labeled planar graph satisfying these conditions is a link diagram for some
link.

Given a link diagram, if we connect the edges across vertices according to the labeling, then
the diagram separates into k£ edge-connected components, where k is the number of components
in the link. A knot diagram is a link diagram having one component. A trivial knot diagram
is a single loop with no vertices.

We define the crossing measure to be the number of vertices in the diagram, plus the number
of connected components in the diagram, minus one. For knot diagrams, the crossing measure
is equal to the crossing number, which is the number of vertices in the diagram. A trivial
knot diagram is the only link diagram with crossing measure zero. All other link diagrams
have strictly positive crossing measure. A knot diagram is the unknot (or is unknotted) if there
is a knot K having this diagram that is ambient isotopic to a knot K’ having a trivial knot
diagram.

4. An unknottedness criterion

Our algorithm to solve the UNKNOTTING PROBLEM, like that of Haken, relies on the
following criterion for unknottedness. A knot K is unknotted if and only if there exists a
piecewise-linear disk D embedded in R® whose boundary dD is the knot K. We call such a
disk a spanning disk. We shall actually use a slightly weaker unknottedness criterion, given in
Lemma 4.1 below. It does not deal with with a spanning disk of K, but rather with a spanning
disk of another knot K’ that is ambient isotopic to K.

Given a knot K, let T be a finite triangulation of S containing K in its 1-skeleton, where
the 3-sphere S® is the one-point compactification of R3, and the “point at infinity” is a vertex
of the triangulation. Barycentrically subdivide 7 twice to obtain a triangulation 7", and
let Mg = S® — R denote the compact triangulated 3-manifold with boundary obtained by
deleting the open regular neighborhood Ry of K. Here Ry consists of all 0-simplices and open



1-, 2- and 3-simplices whose closure intersects K. The closure Rk is a tubular neighborhood of
K, that is, a solid torus containing K as its core, and its boundary 0 Rg = 0 M is topologically
a 2-torus. Each of Ri, Mi and 0Rx = 0Mp are triangulated by simplices in 7”. We call
such a manifold Mg a “knot complement manifold”.

We call a triangulation of My = S® — Rk as above a good triangulation of My . Similarly
we define a good triangulation of a link complement manifold. For any good triangulation of
M, the homology group H1(0Mk,Z) = Z & Z, since Mk is a 2-torus. We take as generator
(1,0) the homology class of a fixed closed oriented boundary @B of an essential disk B in Ry
(a “meridian”), and as generator (0, 1) the homology class of a fixed closed oriented circle in
OMjc that has algebraic intersection 1 with the meridian and algebraic linking number 0 with
K (a “longitude”). (A simple closed curve in Rk whose homology class is the identity in the
3-manifold Rx but not in the surface dRx is a meridian. A simple closed curve in R whose
homology class is the identity in the 3-manifold Mg but not in the surface @Rk is a longitude.
The homology classes of a meridian and longitude are well-defined up to orientation.)

A surface S with boundary 05 contained in a 3-manifold M with boundary 0M is said to
be properly embedded if it does not intersect itself and if SNOM = 0S. A surface S is essential
for M if it is properly embedded in M, cannot be homotoped into @M while holding 0.5 fixed,
and has fundamental group which injects into the fundamental group of M (what topologists
call an “incompressible” surface, see Hempel [11]). In particular, a surface of smallest genus
with boundary a longitude of a knot is an example of an essential surface.

Lemma 4.1. Let K be a polygonal knot, and take any good triangulation of My .
1. If K is knotted, then there exists no essential disk in Mg .

2. If K is unknotted, then there exists an essential disk in My, and any such essential disk
S has (oriented) boundary 0S in a homology class [0S] = (0,%1) in Hi(0Mk,Z).

Roughly speaking, Lemma 4.1 replaces the problem of finding a spanning disk for K with
that of finding a spanning disk for a longitude. The condition on [0S] has the convenient
property that it can be detected by homology with coefficients in Z/2Z. This will play a
crucial role in reducing the complexity of our algorithm from PSPACE to NP.

Lemma 4.2. If S is a connected triangulated surface embedded in R® with Euler characteristic
x(S) =1, then S is a topological disk.

Indeed, the only compact connected surfaces with Euler characteristic 1 are the disk and
the projective plane, and the latter cannot be embedded in R3. This lemma will also play a
crucial role in reducing the complexity of our algorithm.

5. Normal surfaces

Let M be a triangulated compact 3-manifold with boundary dM. Let ¢ denote the number of
tetrahedra (that is, 3-simplices) in the triangulation of M.

A normal surface of M (with respect to the given triangulation) is a surface S C M such
that:

1. S is properly embedded in M.



2. The intersection of S with any tetrahedron in the triangulation is a finite disjoint union
of triangles and quadrilaterals whose vertices are contained on different edges of the
tetrahedron.

(There are some differences in the literature in the definitions concerning normal surfaces. Our
usage follows Kneser [19], Jaco and Rubinstein [16], Hemion [10] and Jaco and Tollefson [15].
The definitions used by Haken [7] and Schubert [27] are based on a handlebody decomposition
of a 3-manifold, rather than a triangulation. We allow a normal surface to have more than one
component, and the individual connected components may be orientable or non-orientable.
Some authors require a normal surface to be connected, and refer to what we have defined as
a system of normal surfaces.)

A normal surface has associated to it combinatorial data that specify the number and
type of regions (triangles and quadrilaterals) that appear in the intersection of S with each
tetrahedron in the triangulation of M. For a given tetrahedron, each of these triangles or
quadrilaterals separates the four vertices into two non-empty sets; there are thus seven possi-
bilities: four types of triangles, which separate one vertex from the other three, and three types
of quadrilaterals, which separate two vertices from the other two. If there are ¢ tetrahedra in
the triangulation of M, then there are 7t pieces of combinatorial data (each a non-negative
integer), which specify the number of regions of each of the seven types in each of the ¢ tetra-
hedra. We represent this combinatorial data as a vector v = v(S) € Z” by choosing a fixed
ordering of the region types and tetrahedra. We call v(S) the normal coordinates of S.

When is a vector v € Z7* the normal coordinates for some normal surface? We shall call
such a vector an admissible vector. Admissible vectors satisfy the following conditions:

1. Non-negativity conditions: Each component v; of v (for 1 < ¢ < 7t) satisfies v; > 0.

2. Matching conditions: Suppose two tetrahedra 7" and 7”7 in the triangulation have a
common face F'. Each region type in 7" and T’ produces either zero or one edge in F,
which intersects a given two of the three sides of F. For each pair of sides of F, the
number of edges coming from regions in 7' must equal that coming from regions in 7”.
These conditions each have the form v, + vp = v, + v4.

3. Quadrilateral conditions: In each tetrahedron of the triangulation at most one of the
three types of quadrilaterals can occur. (If two quadrilaterals of different types occurred
in some tetrahedron, they would intersect, contradicting the condition that a normal
surface must be properly embedded.)

Haken [7] (Hauptsatz 2) proved that these necessary conditions for a vector to be admissible
are also sufficient:

Theorem 5.1. Let M be a triangulated compact 3-manifold with boundary, comprisingt tetra-
hedra. Any integer vector v € Z'' that satisfies the non-negativity conditions, matching con-
ditions and quadrilateral conditions gives the normal coordinates v(S) of some normal surface
S in M, which is unique up to ambient isotopy.

This result characterizes the set Wy of all admissible vectors of normal surfaces as a certain
set of integer points in a rational polyhedral cone in R7". We define the Haken normal cone
Cur to be the polyhedral cone in R” defined by the non-negativity conditions and matching
conditions. The points in Wy are then just the points in the Haken normal cone Cjs that
satisfy the quadrilateral conditions.



The usefulness of normal surfaces is that any surface on a 3-manifold M can be simplified
by ambient isotopies and “compressions” (removing a handle - a kind of surgery on the the
surface) to an incompressible normal surface. In particular this applies to essential surfaces.

The “simplest” normal surfaces are surfaces S such that v(S) cannot be written as v(S’) +
v(S") for any non-empty normal surfaces S’ and S”. Haken calls these surfaces fundamental
surfaces, and the corresponding vectors v(S) fundamental solutions. Fundamental surfaces
are always connected, since otherwise their vectors would be a sum of the vectors of their
corresponding components. Such vectors are in the minimal Hilbert basis of the cone Cyy,
which is a finite set (see Schrijver [26] or Seb6 [28]). Haken [7] (Chapter 5) proved the following
result.

Theorem 5.2. Let M be a triangulated compact 3-manifold M with non-empty boundary OM .
(1) If M is irreducible, then any essential surface S in M is ambient isotopic in (M, M)
to an essential normal surface.
(2) If M contains an essential normal surface S then it contains an essential normal surface
S’ that is a fundamental surface, such that the entries of v(S’) are componentwise less than or
equal to those of v(S).

Any knot complement manifold M is irreducible (see [13]), and a surface of smallest genus
in the class of surfaces whose boundary is a longitude of @My is an essential surface in M.
Theorem 5.2 implies that there is a fundamental surface that is such a surface of minimal genus
for the knot K; if K is unknotted this surface is an essential disk.

A normal surface S in M is a vertex surface, and the corresponding vector v(S) is a vertex
solution, if v(S) lies on an extremal ray of the Haken normal cone Cps. The notion of a
vertex surface was introduced by Jaco and Oertel [14]. A vertex surface is minimal if it is a
fundamental surface. Jaco and Tollefson [15] (Corollary 6.4) recently obtained the following
strengthening of Theorem 5.2 in the case that there is an essential disk.

Theorem 5.3. If a triangulated compact 3-manifold M with non-empty boundary OM con-
tains an essential disk, then it contains such a disk that is a minimal vertex surface.

The key advantage of this theorem over Theorem 5.2 is that it is possible to test in poly-
nomial time whether a solution to the non-negativity conditions and matching conditions is
a vertex solution, just by verifying that non-negativity conditions that are “tight” determine
the solution.

6. Bounds for fundamental solutions and Hilbert bases

We bound the number and size of fundamental solutions in the Haken normal cone Cps of an
arbitrary triangulated compact 3-manifold M with boundary O0M that contains ¢ tetrahedra.
The system of linear inequalities and equations defining the Haken normal cone Cps has the
form:

v; > 0,

where ¢ runs from 1 to 7¢, and
Uq, + Ub; = Uy + Ud;

where j runs from 1 to some limit that is at most 6t.



Lemma 6.1. Let M be a triangulated compact 3-manifold, possibly with boundary, that con-
tains t tetrahedra in the triangulation.
(1) Any minimal vertex solution v € Z™ of the Haken normal cone Cas has

max v; < 271,
1<i<Tt

(2) Any minimal Hilbert basis element v € Z™ of the Haken normal cone Car has

max v; < 2712 _ 1.

1<i<Tt
Proof sketch: Assertion (1) uses Hadamard’s inequality to bound the determinants in an appli-
cation of Cramer’s rule to the equations that determine an extreme ray. Assertion (2) follows
easily from assertion (1),using a standard bound, see Seb& [28], (Theorem 1.1).

This lemma give a bound on the “complexity” of a spanning disk when one exists. Specif-
ically, it shows that for a diagram of the unknot with n crossings, there exists a triangulated
spanning disk with at most 2°" triangles, for some constant ¢. Hass and Lagarias [9] have
used this bound to show that such an unknot diagram can be transformed to the trivial knot
diagram with at most 2¢'" Reidemeister moves, for some explicitly given constant ¢/. Snoeyink
[30] has announced that there exist polygons with n sides for which any triangulated spanning
disk must have at least 2¢" triangles, for some constant ¢’; as of this writing, however, a gap
remains in the proof of this claim.

Lemma 6.2. (1) The Haken normal cone Cpr has at most 27 vertex fundamental solutions.
(2) The Haken normal cone Car has at most t712499° 14 clements in its minimal Hilbert
basis.

Proof sketch: This is an easy counting argument using LLemma 6.1 for (2).

7. Triangulations

Given a link diagram D, we show how to construct a triangulated 3-manifold My =~ S® — Ry,
where Ry, is a regular neighborhood of a link L which has a regular projection that is the link
diagram D. The construction takes time that is polynomial in the crossing measure of D, and
the triangulations of My, and Ry, each contain O(n) tetrahedra.

Lemma 7.1. Given a link diagram D of crossing measure n, one can construct in time
O(nlogn) a link L in R having regular projection D in the z-direction and a triangulated
3-manifold My, = S — Ry, which has a good triangulation containing at most O(n) tetrahedra.
Furthermore the triangulation of 0 M7, is supplied with marked sets of edges for a meridian on
each 2-torus component of OMp, and a marked set of edges for an arc joining each pair of
2-torus components of OMf,.

Proof sketch: We first construct a link L in R® which is embedded in the 1-skeleton of a
triangulated convex polyhedron having O(n) tetrahedra, with all vertices being integer lattice
points using integers bounded by O(n), and which projects in the z-direction to the link diagram
D. To do this we extend D to a maximal planar graph and then use de Frajsseix et al. [6] to
construct a planar embedding of this graph with small integer lattice point vertices. We take
two copies of the graph in the plane z = —1 and z = 1 and use them for overcrossings and
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undercrossing planes, respectively. We can embed this in a triangulated convex polyhedron
with the lifted link L in its interior using 840n tetrahedra. We barycentrically subdivide twice
to obtain a regular neighborhood of L, remove its interior, and construct the marked edges.
Finally we extend to a triangulation of S by coning the triangular faces on the surface of the
polyhedron to a point “at infinity”.

8. Certifying unknottedness

To show that the UNKNOTTING PROBLEM is in NP, we must construct for any unknotted
knot diagram D a polynomial length certificate, that can be verified in polynomial time, for
the unknottedness of D. The construction of the certificate, and its verification, take place in
the following steps.

1. Given a link diagram D, verify that it is a knot diagram. (This can be done in determin-
istic polynomial time.)

2. Construct a piecewise-linear knot K in R® that has regular projection D, together with
a good triangulation. From it construct a good triangulation of My = S® — R which
contains ¢ tetrahedra, with ¢ = O(n), and with a meridian marked in dMg. (Use
Lemma 7.1.)

3. Guess a suitable fundamental vertex solution v € Z" to the Haken normal equations
for Mg . (This solution can be written in polynomial length by Lemma 6.1.) Verify
the quadrilateral disjointness conditions. Let S denote the associated normal surface, so

v=uv(9).
4. Verify that S is an essential disk for 0 M.

(a) Verify that S is connected by verifying that v is a minimal vertex solution.

(b) Verify that S is a disk by verifying that x(S) = 1. The Euler characteristic can
be calculated as an appropriate linear combination of components of v. Since the
connected surface S is embedded in R?  x(S) = 1 implies that S is orientable and
that 0.5 is homeomorphic to a circle.

(c) Verify that S is essential by verifying that the homology class [0S] = (0,£1) in
H,(0Mk,Z). The only possibilities for [0S] in H;(0Mk,Z) are (0,0) or (0,+£1),
so this can be done by verifying that the number of intersections of 05 with the
marked meridian of dMg is odd.

This certificate specifies a normal surface which may contain exponentially many pieces,
but labels it using the vector v which is of polynomial size, and is able to verify its properties
using polynomial time computations on v, using Lemma 4.1 and Lemma 4.2.

The correctness of this certificate relies on the result of Jaco and Tollefson [15] given
as Theorem 5.3. Without using this result we could still obtain the weaker result that the
UNKNOTTING PROBLEM is in ¥5P. In step 3 we guess a suitable fundamental solution,
not known to be a vertex solution. The only step that must be changed is Step 4a, which
we change to verify that v is a fundamental solution.. This can be done by verifying that all
decompositions of the form v = v/ + v”, with v' and v” being solutions of the Haken normal
equations for Mg, have either v/ = 0 or v" = 0.
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This approach also yields an algorithm to decide unknottedness of a link diagram, which
proceeds by systematically searching for a certificate of the kind above. The algorithm gen-
erates all vertex solutions sequentially, and deterministically tests the steps of the certificate
above on each one. This yields the following result.

Theorem 8.1. There is a constant ¢ and a Turing machine that can decide for any n-crossing
knot diagram whether it represents the trivial knot in time O(2°") and space O(n*logn).

For Haken’s original approach we obtain the running time bound O(2C”2) by finding and
testing all fundamental solutions sequentially, using the bound of Lemma 6.2.

9. Certifying splittability

We treat the SPLITTING PROBLEM with a modification of the method described above. We
use the splittability criterion of Schubert [27] (Satz 4.1), according to which a link is splittable
if and only if there is a normal sphere separating two components of the boundary of the link
complement. We also use a result of Jaco and Tollefson [15] (Theorem 5.2), according to which,
if there is such a normal sphere, then there is one associated to a vertex solution of the Haken
normal equations. The construction of the certificate, and its verification, take place in the
following steps.

1. Given a link diagram D, construct a piecewise-linear link I in R?® that has regular
projection D. From it construct a good triangulation of My, = S3 — Ry, which contains
t tetrahedra, with ¢ = O(n), and with a meridian marked in each component of d M.
(Use Lemma 7.1.)

2. Guess a suitable vertex solution v € Z™ to the Haken normal equations for My,. (This
solution can be written in polynomial length by Lemma 6.1.) Verify the quadrilateral
disjointness conditions. Let S denote the associated normal surface, so v = v(S).

3. Verify that S is a sphere that splits two components of dMf..

(a) Verify that S is connected by verifying that v is a minimal vertex solution.

(b) Verify that S is a sphere by verifying that x(S) = 2.

(c) Verify that S separates two components 7" and 7" of OMj, by verifying that the
number of intersections of S with the marked arc joining T and 7" is odd.

10. Determining the genus

Finally, the algorithm of section 8 can easily be generalized to solve the GENUS PROBLEM
in polynomial space.

1. Given a link diagram D and a genus k, verify as before that D is a knot diagram.

2. Construct a piecewise-linear knot K in R® that has regular projection D, together with
a good triangulation. From it construct My = S3 — Ry, which contains ¢ tetrahedra,
with t = O(n), with a meridian marked in M.

3. Guess a suitable fundamental solution v € Z" to the Haken normal equations for Mg.
(Here we use Theorem 5.2.) Verify the quadrilateral disjointness conditions. Let S denote
the associated normal surface, so v = v(S).
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4. Verify that S is a connected orientable surface 95 a circle, with genus ¢(S) < k and with
0S5 a longitude in 0Mf .

(a) Verify that S is connected by verifying the connectedness of an undirected graph
with nodes corresponding to triangles in the triangulation of S and edges joining
matching triangles.

(b) Verify that S is orientable by verifying the non-connectedness of an undirected
graph with nodes representing each of the two sides of triangles in the triangulation
and edges joining matching sides of matching triangles. (Since the surface S is
embedded and connected in an orientable manifold, S is orientable if and only if it
is two-sided.)

(c) Verify that 05 is a single circle by verifying that it is non-empty and connected (as
an undirected graph).

(d) Verify that S has genus at most k£ by verifying that x(5) > 1 — 2g.
(e) Verify that S is a longitude in My by verifying that the homology class [0S] =

(0,1) in H1(0Mg,Z/2Z). This can be done by verifying that the number of inter-
sections of 0S5 with the marked meridian of M is odd.

In Steps 4a, 4b and 4c, we use the fact that in an undirected graph in which nodes can be
written down in polynomial length and in which adjacency of nodes can be tested in polynomial
space, the connectedness of the graph can be determined in polynomial space (see Savitch [24]).
Since all other steps can clearly be implemented in at most polynomial space, this yields an
algorithm for the GENUS PROBLEM in polynomial space.

11. Conclusion

We know of no non-trivial lower bounds or hardness results for any of the problems we have
discussed; in particular, we cannot even refute the implausible hypothesis that they can all be
solved in logarithmic space. There are also a great many other knot properties and invariants
apart from those considered here, and for many of them it is a challenging open problem to
find complexity bounds.

One interesting question is whether the UNKNOTTING PROBLEM is in co-NP. Thurston’s
geometrization theorem for Haken manifolds implies that knot groups are residually finite [12].
It follows that a non-trivial knot has a non-cyclic representation into a finite permutation
group. Unfortunately no way is yet known to bound the size of this group; if the number of
symbols in the smallest such permutation group were bounded by a polynomial in the number
of crossings, then the UNKNOTTING PROBLEM would be in co-NP. In practice the order
of such a group seems to be quite small.

Perhaps the most ambitious of the open problems is to determine the complexity of the

KNOT EQUIVALENCE PROBLEM (see Waldhausen [33] and Hemion [10]).
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