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ABSTRACT

This paper studies three classes of discrete sets X in R™ which have a weak translational
order imposed by increasingly strong restrictions on their sets of interpoint vectors X — X. A
finitely generated Delone set is one such that the abelian group [X — X] generated by X — X
is finitely generated, so that [X — X] is a lattice or a quasilattice. For such sets the abelian
group [X] is finitely generated, and by choosing a basis of [X] one obtains a homomorphism
¢ : [X]=Z°%. A Delone set of finite type is a Delone set X such that X — X is a discrete closed
set. A Meyer set is a Delone set X such that X — X is a Delone set.

Delone sets of finite type form a natural class for modelling quasicrystalline structures,
because the property of being a Delone set of finite type is determined by “local rules.” That
is, a Delone set X is of finite type if and only if it has a 20 finite number of neighborhoods
of radius 2R, up to translation, where R is the relative denseness constant of X. Delone sets
of finite type are also characterized as those finitely generated Delone sets such that the map
¢ satisfies the Lipschitz-type condition ||¢(x) — ¢(x)|| < C||x — x'|| for x,x" € X, where the
norms || - || are Euclidean norms on R® and R", respectively. Meyer sets are characterized as
the subclass of Delone sets of finite type for which there is a linear map L : R"—R*® and a
constant C' such that ||¢(x) — L(x)|| < C for all x € X.

Suppose that X is a Delone set with an inflation symmetry, which is a real number n > 1
such that nX C X. If X is a finitely generated Delone set, then 7 must be an algebraic integer;
if X is a Delone set of finite type then in addition all algebraic conjugates |n’| < n; and if X
is a Meyer set then all algebraic conjugates |n’| < 1.

Keywords: quasicrystal, Delone set, Meyer set, lattice, quasilattice



Geometric Models for Quasicrystals
I. Delone Sets of Finite Type

Jeffrey C. Lagarias

AT&T Labs — Research
Florham Park, NJ 07932
jcl@research.att.com

1. Introduction

The discovery of quasicrystalline materials in 1984 has generated much theoretical and
experimental work.([10], [30],[31], [57], [78]). These are materials which have X-ray diffrac-
tion spectra that have sharp spots (“Bragg peaks”) indicating long-range order of their atomic
structure under translations, but which exhibit forbidden symmetries indicating that they can-
not have crystallographic atomic structure. The list of quasicrystalline materials now inclues
a few types of thermodynamically stable “perfect quasicrystals” which have structure as uni-
form as crystals, as well as a much larger variety of quasicrystalline structures with less perfect
order ([21]). There are a number of different structural models proposed for quasicrystalline
materials, ranging from random tiling models ([23], [24]) to models based on cut-and-project
sets ([38],[44], [45]). Indeed such structures can exhibit diffraction patterns of approximately
the right kind ([12], [25], [30], [54]). This series of papers is motivated by the problem of
finding atomic models for such materials, that can describe both thermodynamically stable
quasicrystals and more disordered quasicrystalline structures. In particular, we consider sets
with weaker kinds of long-range order under translation that would not necessarily be mani-
fested by ‘Bragg peaks’ in their diffraction spectrum.

The concept of a Delone set is a mathematical abstraction for the positions of atoms in a

solid state material.

Definition 1.1 A discrete set X is a Delone set (or Delaunay set or (r, R)-set) if it satisfies

the two conditions:

(i) Uniform Discreteness. There is a value r such that each open ball of radius r contains

at most one point of X.



(i) Relative Denseness. There is a value R such that each closed ball of radius R contains

at least one point of X.

The maximal value of r is the packing radius for X using equal spheres centered at its
points, and the minimal value of R is the covering radius of X using equal spheres centered at
its points to cover R”.

The notion of Delone sets as the fundamental object of study in crystallography was pro-
posed by the Russian school in the 1930’s, see Delone et al. [8], [9], Galiulin [20] and Senechal
[72, p. 25]. Delone set models for quasicrystals have been studied by a number of authors, e.g.
Danzer [5, p. 571], Klitzing and Baake [36].

In this paper we consider three classes of discrete geometric structures in R™, which consist
of Delone sets X with some translational order imposed by restrictions on their set of interpoint
vectors X — X. It is natural to consider restrictions on the set of interpoint vectors X — X,
first because the diffraction pattern is determined by the set X — X, and second because
restrictions on local arrangements of atoms appear to be imposed in some materials by local
energy minimization?!.

The three classes of Delone sets that we study are specified by increasingly strong restric-

tions on their sets of interpoint vectors X — X, as follows.
Definition 1.2 Let X be a Delone set.

(i) X is a finitely generated Delone set if the abelian group
(X — X]=7Z[x—-x": all x,x € X] (1.1)
is finitely generated.

(i) X is a Delone set of finite type if X — X is a discrete closed subset of R” i. e. the

intersection of X — X with any closed ball is a finite set.
(ili) X is a Meyer setif X — X is a Delone subset of R".

We show that class (i) includes class (ii), and class (ii) obviously includes class (iii). The

terminology “Delone set of finite type” is motivated by the fact that Delone sets of finite type

'The resultant of the forces acting on each atom must be zero (local stability). The electromagnetic force is
long-range, but the dominant effects on one atom come from nearby atoms due to approximate cancellation of
forces from atoms further away.



have only finitely many types of local neighborhoods of radius 2R under translations, see §2.
More precisely (ii) defines Delone sets of finite type under translations, to distinguish them
from the larger class of Delone sets of finite type under isometries considered in [11] and [40].
The class of Meyer sets was introduced by Meyer [54] under the name “quasicrystal”; they are
now generally called Meyer sets, see [39], [55], [56]. The definition (iii) of a Meyer set is not the
usual one, but in [39] it is shown equivalent to Meyer’s original definition that X — X C X+ F,
for some finite set F. Meyer [54] observes that all cut-and-project sets are Meyer sets, and
presents evidence that they form a suitable class to be termed quasicrystals. We argue here
that the more inclusive class of Delone sets of finite type is the natural general class of sets
to consider in making models for the atomic structure of quasicrystalline materials. However
both of these classes include sets that are not quasicrystalline in the sense of possessing a well
defined diffraction spectrum.Various examples that illustrate these points appear in §5.

A Delone set X is finitely generated if and only if the abelian group
[X]:=Z[x:x € X] (1.2)

is finitely generated. We view this property as a weak form of long-range order under trans-
lations? of the elements of X. A finitely generated abelian group [X] that spans R™ is called
a quasilattice; it is called a lattice if it is discretely embedded in R™. Quasilattices have been
introduced as a unifying concept in studying the symmetries of quasicrystals, see Le et al. [43],
Mermin [51] and Piunikhin [61]. The rank of X is the number of generators of [X] as a free

abelian group. (All finitely generated subgroups of R™ are free.)

Definition 1.3 Let X be a finitely generated Delone set with rank(X) = s, and choose a
basis of [X], say
[X]=Z[vi, V2, ..., Vs . (1.3)

The address map ¢ : [ X]—7° associated to this basis is
¢(ZTL2V2) = (nhn?a"'ans) . (14)
=1

The address map is specified by the choice of basis of [X], so it is determined up to left-
multiplication by an element of GL(s,Z). The structure of a finitely generated Delone set is to

some extent analyzable by studying its image in R® under the address map. Using the address

2See the note on terminology at the end of the introduction.



map the points of X can be coordinatized as a subset Y of the integer lattice Z® regarded as
embedded in R?, with s = rank(X), and there is a linear projection ¢ : R*—R" with (Y) = X.
The address map describes X using s “internal dimensions.” In this coordinatization all s
dimensions are on an equal footing; there seems no natural way to select n of these dimensions
as “physical dimensions.”

The class of finitely generated Delone sets is the largest class of sets on which an address
map is well-defined. It seems to be too large a class to be interesting, but membership in it
does put algebraic restrictions on inflation symmetries, as described in §4. Various interesting
subclasses of such sets are obtained by putting restrictions on the address map which require
that points that are close in X have addresses which are not too far apart in the address space
R*. The most important subclass of such sets seems to be Delone sets of finite type,which we
show are characterized by a Lipschitz-type condition on the address map.

The class of Delone sets of finite type appears to be a natural unifying concept in classifying
quasicrystalline structures. In §2 show that Delone sets of finite type form the largest class of
Delone sets that can be described by “local rules under translations”. That is, we show that
a Delone set X is of finite type if and only if X has only a finite number of different local
neighborhoods of radius 2R around its points x € X, up to translation (Theorem 2.1). This
result shows that the property of being a Delone set of finite type is enforceable by local rules
under translations, in the sense of part II, see also Le et al. [43] and Levitov [46]. It also
follows that a Delone set X of finite type in R™ is always finitely generated, and rank(X) is
bounded by the number of points in X — X of length at most 2R.

One way to model the atomic structure of quasicrystalline materials which have X-ray
diffraction patterns which exhibit crystallographically forbidden symmetries is through the
use of sets described using a finite number of extra “internal dimensions,” c¢f. Mermin [51].
Certain cut-and-project sets provide examples; they are obtained as a projections of part of a
higher-dimensional lattice, see section 3. To get a Delone set in R having a diffraction pattern
having “Bragg peaks” located at points with icosahedral symmetry, one can project from a
suitable six dimensional lattice. The “local rules under translations” result above for Delone
sets of finite type shows that finiteness of the number of “internal dimensions” describing a
set follows as a consequence of finiteness of the number of allowable local configurations under
translations. In part I we strengthen this result by showing that finiteness of the number of

“internal dimensions” can also be forced by local rules under isometries, for a large class of



structures.

Tiling models of quasicrystals naturally produce Delone sets of finite type. Consider a
tiling of R™ which consists of translates of finitely many types of prototiles. We associate a
Delone set X to the tiling by marking a finite set of points in each prototile (“decorations”),
see for example Klitzing and Baake [36]. If there are only a finite number of different ways two
prototiles may be adjacent in this tiling, then X is necessarily a Delone set of finite type, and
conversely (Corollary 2.1). In particular, random tiling models of quasicrystals in the sense of
Henley [24, Section 2.3] yield Delone sets of finite type.

In §2 we give several characterizations of Delone sets of finite type. We show that they are

characterized by either of the following conditions:

(1) The address map ¢ satisfies the Lipschitz-type condition
lé(x) — ¢(x)[| < Cllx —x'|| for x,x"€ X,
where the norms are Euclidean norms on R® and R", respectively.

(2) The tiling of R” by the Voronoi domains induced by X (with the points of X marked)

contains finitely many translation-equivalence classes of marked Voronoi domains.

(3) The Delaunay tiling of R”™ induced by X contains finitely many translation-equivalence

classes of Delaunay domains.

In §2 we also show that Delone sets of finite type in R™ have bounds on their number
of distinct local configurations under translations. Let N%(7') be the atlas counting function
which counts the number of translation-inequivalent patches (X — x) N B(0;7) of radius T’
over all x € X. The configurational entropy H.(X) of a set X in R™ is defined by

log N3 (T
H.(X) :=limsup log Nx (1)

m sup =B (1.5)

in analogy with definitions in [42]. We show that any Delone set of finite type X has finite

configurational entropy, i.e. there exists a constant C' depending on X such that
Nx(T) < exp(CT™) , (1.6)

This is best possible; in §3 we give an example of a Meyer set X in R™ with positive configu-
rational entropy

Nx(T) > exp(C'T™) as T—oo



where C’ is a positive constant.

In §3 we study Meyer sets viewed as a subclass of Delone sets of finite type. These sets
have been extensively studied and characterized by Meyer [54] and Moody [55], [56]. We show
that they are exactly those Delone sets X of finite type whose address map is an approximate
linear mapping on X. That is, they are those sets X such that there exists a one-to-one linear

map L : R"—R? such that
llop(x) - L(x)|[|<C, allxeX. (1.7)

Meyer previously showed that a set X is a Meyer set if and only if every homomorphism

¥ 1 [X]—=R?% for 1 < d < oo is an approximate linear mapping on X, see Moody [29, Theo-
rem 9.1]. Our small addition here is to observe that it suffices to check this property for the
single map ¢. The criterion (1.7) is useful in determining whether a set X is a Meyer set, and
we apply it in §5. We also show that every Meyer set X is contained in some cut-and-project
set Y of dimension at most rank(X).

We introduce a relation of local derivability between Delone sets which parallels a notion for
tilings introduced by Baake, Schlottman and Jarvis [3]. Let Y be a Delone set which is locally
derivable from X. We show that if X is a Delone set of finite type then so is Y (Corollary
2.1c), and if X is a Meyer set then so is Y (Corollary 3.1b).

In §4 we study Delone sets X that have an inflation symmetry n, which is a real number
n > 1 such that nX C X. This is not a true symmetry, since X\nX contains infinitely many
points. Delone sets having an inflation symmetry can be obtained from self-similar tiling

models of quasicrystals as sets of “control points,” see [19] [33], [54], [75]. We show that:
(1) If X is a finitely-generated Delone set, then 7 is an algebraic integer.

(2) If X is a Delone set of finite type, then 7 is an algebraic integer all of whose algebraic

conjugates 7' satisfy |n’| <.

(3) If X is a Meyer set, then 75 is an algebraic integer all of whose algebraic conjugates 7’

satisfy |n'| < 1.

The result (3) was originally proved by Meyer [13, Theorem 6]. These results are apparently
best possible in the sense that if 1 has the stated property then there exists an appropriate
Delone set X having the symmetry X C X. This has been demonstrated for cases (1) and

(3), and has been checked for some extremal examples in case (2).



In §5 we study one-dimensional Delone sets of finite type. Such sets correspond exactly
to tilings of the line R using a finite set of prototiles which are intervals of different lengths.
We study special examples that are constructed using one-dimensional symbolic dynamical
systems. These examples include some Meyer sets which might not be considered “quasicrys-
tals.” We also indicate the possible existence of non-Meyer sets which might be considered
“quasicrystalline” in the sense of having some discrete component in their diffraction spectrum.

The deepest problem about quasicrystalline materials concerns finding physical mechanisms
that lead to noncrystallographic ordered structures®. This paper does not address this question.
However, we note that many recent studies of quasicrystalline structure propose “clusters” or
“local rules” as representing locally energy-minimizing finite arrangements of atoms at low
temperature, and then propose decorations or “matching rules” for how clusters may overlap
or abut each other as producing quasicrystalline structures, see Gihler et al. [18], Henley [24,
Section 2.2], Ingersent [29, Section 6] and Levitov [46]. The resulting structures are Delone
sets of finite type.

The viewpoint of this paper is that Delone sets of finite type form a suitable class of sets
that encompass all structures which might reasonably be called quasicrystalline. The narrower
class of Meyer sets has previously been proposed as such a class (Meyer [29], Moody [30]-[32]).
However self-affine tilings of R™ which have an inflation matrix whose largest eigenvalue is not
a Pisot or Salem number correspond (by picking “control points” in tiles) to Delone sets of
finite type which are not Meyer sets. There exist such sets that have long-range order under
translations in the sense of having a well-defined diffraction measure. That is, they have a
unique autocorrelation measure in the sense of Hof [25], [27]; the diffraction measure is the
Fourier transform of the autocorrelation measure. These diffraction measures are not known
to contain any discrete component except at 0. It may be that there exist Delone sets of finite
type which are not Meyer sets which have the quasicrystalline property of having some ‘Bragg
peaks’ in their diffraction patterns; this is currently an open question, cf. §5.

Various special cases of the mathematical framework developed here are implicit in previous
work. The notion of finite type for tilings appears under the name “finite number of local
patterns” in Solomyak [75, p. 699] who cites earlier references. E. A. Robinson [68] defines

a notion of “tiling of finite type” which corresponds to a tiling which satisfies some finite

®Even the problem of giving a physical explanation for crystallographic order is not resolved, see Radin [64],
[66].



set of “local rules” under translations. Analogues of the address map have been previously
introduced in special cases for tiling models for quasicrystals, in studying local rules for such
tilings. For example, it appears as the “lifting function” in Levitov [46], see also [32] and [43].
For cut-and-project sets it appears as “perp-space coordinates” in Henley [24, Section 3.1.1].
L. Danzer [5] has long advocated the study of sets describable by local conditions. Danzer
and Dolbilin [7] recently introduced a notion of Delone graph which is analogous to “local
rules under isometries.” They prove an analogue of Lemma 2.2, which is further sharpened in

Danzer [6].

Note on Terminology. The concept of “quasicrystal” does not have a generally agreed
on definition in the literature. In the physics literature([78]) it typically refers to materials
whose X-ray diffraction patterns exhibit some “Bragg peaks” with non-crystallographic sym-
metries; thus crystals are not considered quasicrystals. In this paper we do not define the term
“quasicrystal” but the various classes of sets we define are inclusive: we view ideal crystals
as a special kind of “quasicrystal”. In the physics literature “long-range order” refers to the
presence of Bragg peaks in a diffraction spectrum. Analogously to this we consider a Delone
set X to have strong long-range order under translations if [X] is a quasilattice and X has
a well-defined diffraction measure in the sense of Hof [25], [27] which contains some discrete
spectrum whose points span R”. We consider a Delone set X to have long-range order under
translations if [X] is a quasilattice and X has a well-defined diffraction measure, i.e. X has a
unique autocorrelation measure. Finally, we consider a Delone set X to have weak long-range
order under translations if [ X] is a quasilattice, i.e. if X is a finitely generated Delone set; this

is a mathematical notion of long-range order that may not be easily detectable physically.

Notation. |[|-|| denotes the Euclidean norm on R™.
B(x;T) is the closed ball of radius 7" around x € R", i.e. B(x;T) :={y:|ly —x|| < T}. The

symbol C' designates a positive constant, which may be different at different occurrences.

2. Delone Sets of Finite Type

A Delone set X is of finite type if X — X is a discrete closed set, i.e. each ball B(0;7)
contains only finitely many points of X — X. In this section we characterize Delone sets of

finite type in several ways and establish some of their properties.



Lemma 2.1 If X is a Delone set of finite type then any Delone set Y with' Y C X is a Delone

set of finite type.

Proof. Theset Y —Y C X — X | hence each ball B(0;T") contains finitely many points of
Y-Y. O

It is useful to have a quantitative measure of the discreteness of the closed set X — X.
Definition 2.1 For a Delone set X, its distance counting function Dx(T) is
Dx(T)=#{ye X - X :|ly|l|<T}. (2.1)
A Delone set X is of finite type if and only if Dx(T) is finite for all 7" > 0.

We now prove a “local rules” criterion for a Delone set to be of finite type, which also

establishes that such sets are finitely generated.

Theorem 2.1 If X is a Delone set with relative denseness constant R. Then X is a Delone

set of finite type if and only if
Dx(2R) = #{(X — X)N B(0;2R)} is finite . (2.2)
Any Delone set X of finite type is finitely generated, with
rank (X) < Dx(2R) . (2.3)
To prove Theorem 2.1 we use the following “stepping-stone” property of Delone sets.

Lemma 2.2 Let X be a Delone set in R™ with parameters (r,R). Given any two points x,x’ €

X there exists a chain of points
X = X0, X1, X2, .+, X = X (2.4)
in X such that
(i) ||xi — xi—1]| < 2R, for 1 <i < m.

(ii) m < E{|x - x||.



Proof. We construct the sequence recursively as follows. Given x;, if ||x; — x'|| < 2R set

m =1+ 1 and stop. Otherwise consider the closed ball

/_
B; ::B(Xi—I-R X

[ = x|

X

; R)

of radius R which has the property that x; is on its boundary, and x; is the furthest point
in this ball from x’. This ball B; necessarily contains another point of X. To show this we
consider for € > 0 the translated ball

x' — x;

Bi(¢) =B(x;+(R+¢)—; R).

% = x|
It contains some point of X by the Delone property, call it x(¢), and x(€) # x since x; € B;(e)
for € > 0. Since X is discrete, some point occurs infinitely often among the points {x(%) n=
1,2,...}, call it x;41, and it is in B; because its distance from B; is less than % for infinitely

many n. Thus (i) holds. Next, the Delone property says that
lIxipr = xil[ > 7.

But x; is the furthest point in the ball B; from x’, so this condition slices off a spherical cap

off B;, and there is a constant C' such that
|xip1 = x| < [Pxi = x|| = C.

One can take C' = %, so (ii) follows. O

Proof of Theorem 2.1. If X is a Delone set of finite type then (2.2) certainly holds.

To show the converse, suppose that (2.2) holds. Given x,x" € X, by Lemma 2.2 there
exists a chain of points (2.4) in X connecting x to x’ that satisfies conditions (i) and (ii).
These conditions together imply that (X — X) N B(0;7T) is finite for any fixed 7. To see this,
note that the chain (2.4) connecting two points x,x’ € X with ||x — x'|| < T has at most CT
steps by (ii), and there are at most Dx(2R) choices for each step x;4+1 — x; in the chain, by
(i). Thus Dx(T) = #{(X — X)n B(0,T)} is finite for all 7', hence X is of finite type.

Finally, the existence for all x' € X of the chain (2.4) satisfying (i), (ii) shows that

(X7 := Z[X] € Zlxo U [((X - X)\{0}) " B(0;2R)] .

Thus (2.3) follows. O
The finiteness criterion of Theorem 2.1 carries over to finiteness of local neighborhoods of

the set X under translations.

10



Definition 2.2 (i) The T-neighborhood of a point x € X is the set
Px(x,T)=XNB(x;T)={x'e X :|x'—-x||<T}. (2.5)

A T-patch of X is a T-neighborhood of X regarded as movable under translations.
(i) A centered T-patch P is a T-neighborhood translated to the origin, i.e.

P=Px(x;T)—x. (2.6)

Definition 2.3 (i) The T-atlas Ax (T) of a Delone set X is the set of all centered T-patches
of X, i.e.
Ax(T) ={XnNB0;T) —x:x€ X} . (2.7)

(ii) The atlas counting function N% (1) counts the number of different centered T-patches, i.e.
Nx(T) = |Ax(D)|, for T >0. (2.8)

Corollary 2.1a Let X be a Delone set with relative denseness constant R. Then X is a
Delone set of finite type if and only if it has finitely many different centered 2R-patches, i.e.
N%(2R) < oo.

Proof. This follows from Theorem 2.1, since if X has finitely many different 2R-patches
then Dx(2R) is finite, while if Dx (2R) is finite, then there are finitely many choices for points
within distance 2R of a fixed point x. O

Delone sets of finite type arise from tilings of R™ by translates of a finite set of prototiles.
We suppose that each prototile is simply connected, is the closure of its interior and has a
boundary of measure zero. To any such tiling 7 we can associate a Delone set (in many
different ways) by marking a finite set of points in each prototile, and taking X to be the
set of marked points in the tiling. We say that such a tiling 7 has a finite number of local
patches if it contains only finitely many translation-inequivalent arrangements of neighbors of

each prototile. We have:

Corollary 2.1b Let T be a tiling of R™ by translations of a finite set of prototiles. Suppose
that each prototile is decorated by a finite set of points, and let X = X (T) be the point set
associated to T by these decorations. If T has a finite number of local patches then X (T) is a

Delone set of finite type, and conversely.

11



Proof. This follows from Theorem 2.1 because there are only finitely many translation-
inequivalent ways to tile neighborhoods of diameter 2R. O
Baake, Schlottman and Jarvis [3], (see also [1], [2]) introduced a notion of “local derivabil-

ity” between tilings , which has the following analogue for Delone sets.

Definition 2.4 (i)Let X and Y both be Delone sets which are relatively dense with constant
R. We say that Y is locally derivable from X if there is a constant R’ such that for each
x € X the set of points of Y N B(x;2R) is completely determined by the centered R’-patch of
X around x. That is, the point set Px(Y;2R) = (Y N B(x; R)) —x is a function of the centered
patch Px(X, R') = (X N B(x; R')) — x.

(ii) We say that X and Y are mutually locally derivable if each is locally derivable from the

other.

Corollary 2.1¢c If X is a Delone set of finite type and Y is a Delone set locally derivable
from X, then'Y is a Delone set of finite type.

Proof. By hypothesis Dx(R’) is finite. Since the translation classes of R'-patches of X de-
termine the 2R-patches of Y, we have Dy (2R) is finite, and Theorem 2.1 applies. O

Our next object is to derive several equivalent criteria for a set X to be a Delone set of

finite type. To formulate these, we make some definitions.

Definition 2.5 A Delone set X has the locally finite atlas property under translationsif N (T)
is finite for all T > 0.

Definition 2.6 (i) Given a discrete set X in R™ and a point x € X the Voronoi domain Vx (x)

at x is the set of all points in R”™ as close to x as to any other point of X, namely
Vx(x)={y:lly —x[]| <|ly -x|, all x'€X}.

A marked Voronoi domain is a Voronoi domain together with a specific point in it viewed as
a marked point.

(ii) The set of Voronoi domains of a discrete set X form a tiling of R” called the Voronoi
tesselation of R™ induced by X. A marked Voronoi tesselation consists of the Voronoi tesselation

induced by a discrete set X with the points of X marked.

12



If X is a Delone set then each Voronoi domain Vx(x) is a convex polytope contained
in B(x;2R). (For a general discrete set X the set Vx(x) is a convex polytope, possibly
unbounded.) The set X cannot always be uniquely reconstructed from its Voronoi tesselation.
It is uniquely determined by the induced Voronoi tesselation plus a single Voronoi domain
marked with a point of X; this determines the marking in all other Voronoi domains by the

points of X.

Definition 2.7 (i) Given a Delone set X in R™ a finite subset Y of X determines an empty
sphere if all points of YV lie on a sphere in R", there are no points of X in the interior of this
sphere, and the convex hull of Y has nonempty interior. We call the convex hull of all points of
X lying on this sphere the Delaunay domain determined by Y in X. It is a convex polytope.

(ii) The set of Delaunay domains of a Delone set X give a tiling of R” called the Delaunay

tesselation of R™ induced by X.

The Delaunay tesselation was introduced by Delone [9] in 1934. He showed that for a
Delone set X in “general position” all Delaunay domains are simplices; thus the Delaunay
tesselation is often called the Delaunay triangulation in the computational geometry literature?,
cf. Mulmuley [59, p. 49]. A proof that Delaunay domains give a facet-to-facet tiling of R™ can
be found in FortuneFor95, and in the”generic case” in Rogers [69, Chapter 8]. The set X is
uniquely reconstructible from its associated Delaunay tesselation, because X is the set of all
vertices of all Delaunay domains. For general references on Voronoi and Delaunay tesselations,

see Fortune [14], [15].

Theorem 2.2 For a Delone set X in R", the following properties are equivalent.
(i) X is a Delone set of finite type.
(i) X has the locally finite atlas property under translations.

(iii) The marked Voronoi tesselation of R™ induced by X has finitely many translation-

inequivalent marked Voronoi domains.

(iv) The Delaunay tesselation of R™ induced by X has finitely many translation-inequivalent

Delaunay domains.

*The spelling Delaunay triangulation is standard in the computational geometry literature. Here “general
position” means that there do not exist n+2 points of X on any sphere of diameter at most 2R. Rogers [69,
Chapter 8] requires instead that the set X have no n + 2 equidistant points; in this case a Delaunay domain as
we have defined it can be triangulated in a canonical way to obtain his “Delaunay triangulation.”
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(v) X is finitely generated and any address map ¢ : [X]—7Z° has
1660 — 66NN < Collx x|, all x,x' € X | (29)

for some constant Cy depending on ¢.

Proof. (i) = (ii). Since (X — X)N B(0;7) is finite, and for x € X all points in
Px;T):= (X -x)NB((0;T) (2.10)
lie in this set, there are only finitely many choices for P(x; 7). In fact
N3 (T) < 2Px(T) (2.11)
(i) = (iii). A marked Voronoi domain Vyx (x) is completely determined by the patch
P(x;2R) := (X —x)N B(0;2R) .

For any point y with ||x — y|| > 2R is within distance 2R of some point x’ € X hence cannot
be in Vx(x). The locally finite atlas property says that there are only N%(2R) < oo such
patches, hence there are at most Ny (2R) possible translation-inequivalent Voronoi domains.

(ili) = (i). The Delone property of X guarantees that the ball B(x;3r) is contained in
the Voronoi domain Vx(x). The facets of each marked Voronoi domain determine the marking
in each neighboring Voronoi domain, namely drop a perpendicular from x to the hyperplane
determined by the facet and extend it an equal distance to the other side. By hypothesis there
are only a finite number of choices for each neighboring domain, up to translation. Continue
adding marked Voronoi domains in this way to fill up the entire ball of radius 2R around x.
One has to add at most % concentric layers of Voronoi domains around x to do this. There
are only finitely many possible extensions, and this locates all possible locations for elements
of X within distance 2R of X. Since this construction is translation-invariant, we conclude
that (X — X )N B(0;2R) is finite. Now (i) follows by Theorem 2.1.

(i) = (iv). A Delaunay domain including a given point x € X is completely determined by
all points within distance 2R of X, since the largest empty sphere touching X has diameter at
most 2. By hypothesis (i) there are only finitely many translation-inequivalent arrangements
of such points.

(iv) = (i). The Delaunay tesselation of X uniquely determines X. Given any two elements
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of X within a distance 2R, there is a path of edges in the Delaunay tesselation connecting them
which remains in a ball of radius 4R about one of the points. Since a Delaunay tesselation
meets vertex-to-vertex, hypothesis (iv) implies that there are only finitely many ways to tile a
ball of radius 4R. Thus Dx(2R) is finite, and Theorem 2.1 implies that X is a Delone set of
finite type.

(i) = (v). A Delone set X of finite type is finitely generated by Theorem 2.1. To show the

other part, suppose that ¢ : [X] — Z* is an address map and set
Cy :=max{||o(y)]| : y € (X = X) N B(0;2R)} .

Given x,x’ € X by Lemma 2.2 there exists a chain (2.4) at points of X connecting x to x’
that satisfies ||x;+1 —x;|| < 2R and the number of points fit at most %HXHI —x;||. Using the

linearity of ¢ on [X], we have

1660 = 66| < 3 106iar) — o)

= 3 g — %)l
=1
4CHR
7‘2

IN

Cam < [Ix =[],

4C2R

r2

which proves (iv) with Cy =
(v) = (i). If x,x" € X satisfy ||x’ — x|| < 2R, then by hypothesis

[o(x —x)|| = [|o(x) — #(x)]| < 2CR .

Addresses all lie in Z*, hence there are only finitely many choices for ¢(x —x’), hence for x —x/,
since ¢ : X—7° is one-to-one. Thus (X — X) N B(0;2R) is finite, so X is of finite type by
Theorem 2.1. O

Theorem 2.2 yields an upper bound on the growth of the distance counting function Dy (X).

Corollary 2.2 Let X be a Delone set of finite type, of rank s. There exists a positive constant
C4 depending on X such that

Dx(T)<CiT?, all T>1. (2.12)
Proof. Suppose that x,x’ € X with ||[x — x/|| < T. The point x — x’ is determined by its
address ¢(x — x’), and by (iv) of Theorem 2.2, there is a constant Cy such that

llé(x = x)|| < Col[x = x'[| = CoT .
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The set of elements in Z® in a ball of radius 7" is at most CT* for all T > 1, and (2.12)
follows. O
We next obtain an upper bound on the atlas counting function N%(7) of a Delone set of

finite type.
Definition 2.8 The configurational entropy H.(X) of a Delone set X in R™ is given by
log N3 (T
H.(X) :=limsup log N (1) .
T—o0 "

We prove:

Theorem 2.3 If X is a Delone set of finite type in R™, there is a constant Cy depending on
X such that
N(T) <exp(CoT™), all T>1. (2.13)

That is, X has finite configurational entropy.

Remark. The factor 7" in the bound (2.13) cannot be improved, see Example 3.1 in §3.

Proof. We may build up all possible patches of radius T out of cubical patches of the
form X N C(x;8R) for x € X, where C'(x;p) denotes a cube of side 2p centered at x. Since
X NC(x;8R) C X N B(x;8/nR), the number C” of translation-inequivalent cubical patches
X NC(x;4R) is at most Dx (8y/nR).

We bound the number of different cubical patches of side 27T centered at 0, all of those
subpatches of side 2R match those in the list £. To begin, there are C’ choices for the patch
centered at 0. Now we proceed to add cubical patches in concentric layers. The centers of the
new patches are chosen at already constructed points, within distance R of the boundary, so
the new cubical patch extends at least 3R outside. At the k-th stage we have covered a cube
of side 8 + 6k K. We can arrange that all cube centers chosen are separated by at least 2R,
hence there are at most O((%)") cubical patches to choose in the process. Thus there are at
most (C")¢"T" possible choices of cubical patches of side 27", which proves (2.13). O

We conclude this section with an example showing that the requirement that X — X be

closed is necessary in the definition of a Delone set of finite type. The Delone set

X={n+

1 .
3n2+3.n€Z}

in R has the property that X — X is discrete. However X — X has 1 as a finite limit point, so

X is not a Delone set of finite type; it is not even finitely generated.
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3. Meyer Sets

Meyer [54] recently defined a mathematical notion which he called a ¢

‘ quasicrystal”, which
is based on concepts in harmonic analysis that he introduced around 1970, see Meyer [52, 53].
These sets are termed Meyer sets by Moody [55, 56], who unifies and extends the known
characterizations of Meyer sets. Moody [56] takes a harmonic analysis criterion as the basic
definition of Meyer set (relatively dense harmonious set), while Meyer [54] defines them to be
those Delone sets X such that X — X C X + F for some finite set F'. These properties are
equivalent to X — X being a Delone set, see [39].

It is known that Meyer sets can also be characterized in terms of cut-and-project sets.

Definition 3.1 Let A be a full rank lattice in B¢ = R"*"™ = R” x R™, and let #ll and 7+ be
orthogonal projections onto the factors R™ and R™, respectively. A window € is a bounded

open subset of R™, and the strip S(£2) in R associated to the window € is
S(Q):=R"xQ={wecRr’: 7t (w) € Q}.
The cut-and-project set X (A, Q) associated to the data (A, Q) is
X(A,Q) =7l(AnS(Q)) . (3.1)

We call d the dimension of the data (A,€). A given cut-and-project set X may be con-
structed in many ways, using different pairs (A, Q) and (A’, Q') of different dimensions. Some
authors allow the window € to be a closed set.

An alternate definition of cut-and-project sets, which is used in [25] and [60], appears
slightly different but gives the same sets. It takes a fixed lattice Z%in R% and projects it onto
an arbitrary pair (E”7 E1) of orthogonal subspaces of dimensions n and m, respectively, using
orthogonal projections 7l and 7+, respectively. It identifies Ell with R” by a linear map, and

takes a window set Q in EL.

Definition 3.2 A cut-and-project set is nondegenerate if 7!l : R—R™ is one-to-one on A, i.e.
if
An({o} xR™) ={(0,0)} .

It is irreducible if it is nondegenerate and 71 (A) is dense in R™.
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An irreducible cut-and-project set coincides with the concept of model set of Meyer [53].
Meyer proved that a Delone set X is a Meyer set if and only if there is an irreducible cut-and-

project set X’ and a finite set I’ such that
XCX' +F (3.2)
see [24,25,27].

Meyer sets are Delone sets of finite type, hence are finitely generated. We characterize
which finitely generated Delone sets are Meyer sets in terms of their address maps, using the

following concept due to Meyer.

Definition 3.3 A map ¢ : [X] = R%is an almost linear mapping on X if there exists a linear

map Ly : R"—R? such that
l|(x) — Ly(x)|| < C', allxe X . (3.3)
This condition (3.3) applies only to x € X and not to general elements of [X].

The following result gives several characterizations of Meyer sets. These characterizations
are mainly due to Meyer, (see also Moody [56]); the equivalence of (iv) and (v) seems to be

new.

Theorem 3.1 The following properties of a discrete set X in R™ are equivalent.
(i) X is a Meyer set. That is, X — X is a Delone set.
(i) X is a Delone set and there is a finite set I' such that

X-XCX+F.

(iii) X is a finitely generated Delone set and every homomorphism v : [X]—=R? for some

d > 1 is an almost linear mapping on X.

(iv) X is a finitely generated Delone set and the address map ¢ : [X]—=7Z* is an almost linear

mapping on X, i.e. there is a linear map L : R"—R* and a constant C such that

lo(x) - L(x)[|<C, all x€X . (3.4)

(v) X is a finitely generated Delone set and there exists a nondegenerate cut-and-project set

X' of dimension at most rank(X) such that

XCXx'. (3.5)
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Remark. The cut-and-project set X' containing X that appears in (v) is not necessarily

irreducible.

Proof. (i) < (ii). This is proved in Lagarias [39].
(ii) = (iii). This result is due to Meyer and a proof can be found in §8 of Moody [56]. We
mention some important points. The map L : R"—R* can be constructed as an “ideal address

map,” as follows. For each y € R" define

(3.6)

where x;, € X satisfies ||x; — 2Fy|| < R. Using the Meyer set property one proves that this

limit exists and is unique, and satisfies

Licy +y') = cL(y) + L(y") , y,y' €R",
hence is linear. We call L an ideal address map because it satisfies the identity
y = Zszﬁ(y)jvj- , ally e R". (3.7)
j=1
This identity is derived from (3.6) using the address identity
X = ZS:¢(X)]‘V]‘ , all x e [X].
j=1

(iii) = (iv). Immediate.

(iv) = (ii). Given x,x’ € X, the hypothesis (iv) gives
G- x) — g(x — x| < © (3.9

Since X is a Delone set, there is some point x” € X with

"= (x+x)l< R,

and by hypothesis
IL(x") = o(x")|| < C . (3.9)

Now

IL(x" = x+x)|| < Cllx" = (x+ x| < C'R, (3.10)

where C’ = [|L||. The triangle inequality applied to (3.8)-(3.10) gives
l6(x" = (x = x))|| = [lo(x") = d(x = x)[| <20+ C'R.. (3.11)
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hence there are a finite number of choices for addresses in Z? satisfying (3.11). Since the address
map is one-to-one on [X7], there are a finite number of y = x”" — (x —x’) € [X] satisfying (3.11),

and we call this set F'. We have shown that
X-XCX+F,

which proves (ii).
(iv) = (v). We use the almost linear mapping L : R*—R* associated to the address map
by (3.7) to construct a suitable nondegenerate cut-and-project set. Set s = n+ m, som > 0,

and let the vector space

Vi:={L(x):x €R"}

by the image of the map L. We first show that dim (V) = n. Define ¥ : R°*-R"” by

S

¢(u17 LR us) — Z U;Vvy
=1
and observe that (3.7) gives
@boﬁ(y) =y allyeR”™.

Thus ¥ (V) = R™ hence dim (V) = n. Now set
W= ker(v) ={(t,...,0s) ZéjVj =0} .
7=1
Now dim(W) = s — n = m. Choose an orthonormal basis of W,

Z(i):(€i17...7€i5)7 1<i<m,

and set

wj=L(vj)—ej, 1<j<s,

where e; = (0,,...,1,...,0) is the j-th coordinate vector. Now (3.7) implies that w; € W,

hence we may define coefficients {a;;} by
wi=> ol 1<j<s. (3.12)
i=1
Let A = Z[v?,...,v] be the additive subgroup of R® spanned by

V5= (Vi 1, oy @), 1< J <
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We claim that A is a full rank lattice in R To show this, it suffices to prove that the vectors

*

A

are R-linearly independent. So suppose that

S
Z u;v; =0.
i=1
The first n coordinates give
S
Z u;v; =0,
i=1
hence u = (uy,...,uq) € W. Now the last m coordinates give

S
Zu]'aﬁ:O, 1<1<m.
j=1

Thus
DW= U (Z O‘J'if(i)) => e (Z ujOéji) =0,
7=1 7=1 =1 i=1 i=1

and the definition of w; yields
Eu]-i(vj-) — (u1,ug,...,us) =0 . (3.13)
Since each coordinate is linear,

(upy...,us) = E(Zs:u]'Vj) =L(0)=0.

J=1

Thus [v],..., v}

*] are linearly independent, and A is a full rank lattice in R®.

The projection 7!l : R*¥—5R" sends
rlw)=v;, 1<j<s,

hence it is one-to-one on A since [X] = Z[vy,...,v] is a free module.

Now suppose that x € [X] and its address is
x=>_ ¢(x);v;, with¢(x); €Z.
j=1

Then

has x* € A, and 7ll(x*) = x. Now set
ﬂ'J'(X*) = Z o(x) (1,052, .., 0m) = (21, ..y Zm) -
7=1
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Since the vectors £() are orthonormal, we have

7 = (ZZ?) =13 =€

= [lo(x) - L)l ,
where (3.12) and (3.13) were used at the last step. The almost linear property (3.4) then yields
7t () < C.
It therefore suffices to take the window set
Q={zecR™:|z|]| < C+1}.
to obtain a nondegenerate cut-and-project set X (A, Q) of dimension s with
X CX(AQ),

which is (v).
(v) = (iv). This is a result of Meyer, for which see Moody [56, Theorem 9.1]. Alternatively

one can directly reconstruct the map f(x) from X', using

L(x):= (7' x)nA forxe X .

This is well-defined since X’ is nondegenerate. Now L extends to a linear map on [X], and
(3.4) holds by the cut-and-project property of X’'. O

The following result of Meyer follows directly from property (v) above.

Corollary 3.1a If X is a Meyer set and Y is a Delone set with'Y C X, then'Y is a Meyer
set.

We obtain a similar result for sets locally derivable from Meyer sets.
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Corollary 3.1b  If X is a Meyer set and Y is a Delone set locally derivable from X, then Y

is a Meyer set.

Proof. We claim that Y C X + F’ for some finite set F’. Indeed there are only finitely many
different R’-patches of X, and the elements of ¥ can be viewed as obtained by individually
shifting the center of each R'-patch of X, in a finite number of different ways, so the claim
follows. Since X is a Meyer set, the set X' = X + F’ is a Meyer set because it satisfies property
(ii) above:

X' - X' CX'+(F+F-F). (3.14)

Now Y is a Meyer set by Corollary 3.1a. O
We also apply Corollary 3.1a in the following example.

Example 3.1. There exists a Meyer set X C Z" in R" such that
Nx(T) > exp(C3T™), all T > 1, (3.15)

with C5 = %log 2.

We will arrange that 2Z™ C X C Z", which guarantees that X is a Meyer set by Corollary
3.1a. We use a simple random construction: pick each point in Z™\2Z" independently to be
in X with probability 1/2. Now consider a box of side 2"7T" centered at a point in 2Z". Every
possible assignment of cells in the box not in the lattice 2Z"™ occurs with positive probability,
hence for any fixed assignment the possibility that no such configuration occurs in X is zero.
The union over all such exceptional events, for T'= 1,2, 3, ..., then has probability zero, hence
with probability one every possible assignment occurs, for every T' > 1. Thus, with probability

one,

N%(2"T) > exp((log2)(2" — 1)T™), forall T >1,

as required.

There are much stronger examples known than the one above. A Delone set X of finite
type is minimal if it has the repetitivity property: For each T > 0 there is a finite value
Mx (T) such that every ball of radius Mx(T) contains a copy of each patch of X of radius
T. Furstenberg [16, Theorem I11.2] constructs a symbolic sequence giving a minimal set with
positive entropy. By using intervals of different integer lengths to represent the symbols, we

obtain a one-dimensional Meyer set which is minimal and satisfies (3.15) for some C5. Pleasants
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[62] constructs such examples in arbitrary dimensions. Minimal sets are important because
they are an analogue of “ground state” configurations, cf. Radin [65], and the introduction to

part II.
4. Inflation Symmetries

We recall the basic definition.

Definition 4.1 A Delone set X in R™ has an inflation symmetry by the real number n > 1
if nX C X.

If 0 ¢ X then X’ = X U {0} is also a Delone set with an inflation symmetry by 7,
so without loss of generality we may assume that 0 € X. An inflation symmetry is not a
complete symmetry of a Delone set X, because the set X\nX contains infinitely many points.
Inflation similarities occur in Delone sets constructed as control points of self-similar tilings,
see [33], [75].
A (complex) number 7 is an algebraic integerif f(n) = 0 for some nonzero monic polynomial
f(u) € Z[u], i.e.
n—1
flu)=u"+ Z a;u’ .
=0

The degree of 7 is the minimal degree of any nonzero polynomial f(u) € Z[u] with f(n) = 0.
The algebraic conjugates of n are the other roots of the minimal degree monic polynomial in
Z[u] which 7 satisfies.

Several classes of real algebraic integers appear in studying inflation symmetries.
Definition 4.2 Let n be a real algebraic integer with n > 1.
(i) nis a Pisot number or Pisot-Vijayaraghavan number if all algebraic conjugates |n’| < 1.
(ii) 7nis a Salem number if all algebraic conjugates |n’| < 1 and at least one || = 1.
(ili) nis a Perron number if all algebraic conjugates |n'| < 7.
(iv) nis a Lind number if all algebraic conjugates || < n and at least one |n’| = 7.

Pisot and Salem numbers have been extensively studied, see Bertin et al. [4]. Perron
numbers were introduced and studied by Lind [47], [48], [52] and Lind numbers are introduced

here.
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Theorem 4.1 Let X be a Delone set in R™ such that nX C X for a real number n > 1.

(i) If X is finitely generated, then n is an algebraic integer. If X has rank s, then the degree
of n divides s.

(ii) If X is a Delone set of finite type, then 1 is an algebraic integer with all algebraic conju-

gates |n'| < n. That is,  is a Perron number or a Lind number.

(iti) If X is a Meyer set, then 1 is an algebraic integer with all algebraic conjugates |n'| < 1.

That is, n is a Pisot number or a Salem number.

Proof. (i). Let 0 € X and suppose that X has rank s, so that
[X]:Z[X]:Z[Vb"'vvs] (41)

for suitable vectors {v; : 1 <7 < s} independent over Q. Now nX C X implies that n[X] C [X],

hence
Vi

nV=MV 6 with V=] : ) (4.2)
VS

in which M is an s X s integral matrix and V is an s X n real matrix. Now
f(z) =det(AI — M) € Z[)]

is a monic polynomial, and f(n) = 0 since I — M annihilates an n-dimensional subspace of
R®. Thus 7 is an algebraic integer, of degree at most s.
To show that d = degree(n) divides s, we use the rational canonical form of M. Let the

f(X) € Z[A] be the minimal degree monic polynomial that 7 satisfies, and write

d
F)Y =214 a\t

i=1

Now (6.2) gives 7'V = MV for 1 < j < d, hence

fM)V = (M? + zd: a; M=)V =0 . (4.3)

i=1

Each row of f(M) is an integer vector, so (4.2) gives

i:f(M)ijVj =0, 1<i<s. (4.4)
7=1
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The vectors v; are independent over @, so it follows that all f(M);; = 0, hence f(M) = 0.
Thus the minimal polynomial of M divides f(A), and since f(A) is irreducible over Q, it must
equal f(A). It follows that the rational canonical form of M (over @) can only be a block
diagonal matrix with all blocks equal to the d x d companion matrix Cy of f, see [2, p. 199].
Thus d divides s.

(ii). Since X is a Delone set of finite type, by Theorem 2.1 it is finitely generated, of rank s,
say. Now 7 is a real algebraic integer by (i). Let 7 be of degree d and set Z[n] := Z[1,7,...7%71],
which is a ring.

We now argue by contradiction, and suppose that 5’ is an algebraic conjugate of 1 with
7’| > n > 1. We first observe that the Z-module [X] is actually a Z[n]-module, because if
y € [X], then so is ny, since we can express y as a finite integral combination of elements of
X, and if x € X then nx € X. Now [X] is not necessarily a free Z[n]-module, but there exists
a free Z[n]-module [W]in R” containing [X] as a submodule of finite index. It can be obtained

from the matrix converting M to canonical form in (i) above. Now d divides s and we have
[(X] € W] =Znllwy, wa, ..., wya]
i.e. there is some Z-basis [vy,...,v,]| of [IW] with
Vit(on)sa=1"'w;, 1<i<d, 1<j<s/d. (4.5)
We now define the Z[n/l-module

(W' := Z[n[wi, wa, ..., Wyl ,

which we regard as a set of points in C*, viewing 1’ € C even if 7 is real. We call this space

C™ the shadow space, and we measure distances on it, using the Hermitian norm
n
|z —2'||3 = Z |z; — 20|*, where z = (z1,...,2,) €C" .
=1
We define a shadow map o : [W] — [W'] by o(w;) = w; for 1 < j < s/d and extend it using

the Galois map from Z[n] to Z[n], so
o(yi1+y2) = o(y1)+olyz)
o(nyr) = n'o(y1)

for y1,y2 € [X]. Let [X'] denote the image of [X] under the shadow map, and choose a

point x € X whose image o(x) # 0. We obtain a contradiction by measuring the length
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of the shadow image of the vectors y; = n*x — x in two different ways, as k—oo. First,

o(yx) = (7')*o(x) — o(x) hence

loyll = 10" =1l llo(x)l|m

coln'|F as k—oo . (4.6)

v

On the other hand, both x, 7*x € X and using the Delone property of X we can find a path

of elements xg,x1,...,X,, € X from xg = x to x,,, = Tkx, where
[|xr — xp—1]| <3R, 1<k<m, (4.7)

and m = %||(n* — 1)x||. Indeed, draw a straight line connecting x and 7*x in R”, and by the
Delone property there is a vector x; € X within distance R of the point (1 + k“%“)x, and
the bound (4.6) follows from the triangle inequality. Since X is of finite type, there are only
finitely many vectors in

(X - X)N B(0,3R) ,

hence

C:=max{||lo(y)|lg:y € (X —X)NB(0;3R)} . (4.8)
is finite. It follows from (4.7) that
llo(xx — xg-1)llm < C. (4.9)

Now the linearity of o on [X] gives

o(ys) = 3 (k) ~ olxi)
hence (4.9) gives B
ol < iufr(xw—a(m_l)nff
< mC =~ = 1)xl[C

R
< C’mk as k—oo.

If |n'| > 7, this contradicts (4.6) for k large enough, so (ii) follows.
(iii). This is a result of Meyer [17, Theorem 6]. Here we present an alternative proof. Since X
is a Meyer set, the address map ¢ : [X]—=R?® is an almost linear map. Let L : R">R* be the

(unique) linear map such that

i

|p(x) — L(x)| <C, allxe X . (4.10)
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Part (i) of this proof showed that there is an integer matrix M such that
o(x) = Mo(x) , all x € [X], (4.11)

and that the minimal polynomial of M is the monic irreducible polynomial f()) € Z[A] that n

satisfies. Write
d

d
FO) =TI =m) = A+ 3 a2
=1 7=1
with » = 7. Part (i) also showed that M is diagonalizable over C, and has a direct sum

decomposition into eigenspaces
C=Vi+Vot...+Vy, (412)

in which V; is the eigenspace for the eigenvalue 7;. We also have
Mv =p;v forallveV;,, 1<;<d,

and dim(V;) = §. The image ¢([X]) spans R*, so there exists x € X with ¢(x) # 0. Now ¢(x)

uniquely decomposes into eigenvectors using (4.12), i.e

d
o(x) = ZV]‘ , with each v; € V; .

=1
Since ¢(x) € Z°\{0}, every v; # 0, because the Galois group of f(X) permutes all the v;
transitively.
Iterating (4.11) gives
d
=Y "(m)fv;, allk>1. (4.13)
i=1

On the other hand (4.10) gives
|L(r"x) = ¢(n"x)| = 1" L(x) - MFo(x)| < C.

Combining this bound with (4.13) yields

d
IF(L(x) = vi) = D (m))fvil| <C, allk>0. (4.14)

=2
We claim that this implies that L(x) = vy and that |n;| < 1 for all j > 2. To show this,

consider the i*h coordinate vector. Then (4.14) gives |h§j)| < (', where
0 _y
hy! = wii(ny)* (4.15)
i=1
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where vj; is the i-th entry of L(x) — vy for i = 1 and of —v; for ¢ > 2. This relation yields the

identity
d

ihg)zkzzlf#, 1<i1<s,
k=0 j=1 Nz

where both sides converge as functions of the complex variable z for sufficiently small |z|. The

relations |h§f)| < C imply that the power series on the left converges in the unit disk |z] < 1.

Since all n; are distinct we must have v;; = 0 for any |n;| > 1. Thus v;; = 0for 1 < ¢ < s,

hence L(x) = vy. Since each v; # 0 for j > 2, for each such j there exists some v;; # 0 hence

we infer that |n;| < 1forj>2. O

Remarks. Each of (i)-(iii) is apparently sharp, in the sense that given any algebraic integer 7
one can construct a one-dimensional Delone set X C R of the appropriate type having nX C X.
For (iii) this was shown by Meyer. For (i) it is quite easy to give a recursive construction of
X C R, with [X] = Z[n], such that 0 € X, X = —X and X C X. To do this, construct
points in [1,7), then recursively construct points in [7*, n**1) by first including all points 7y
for y € [7*~1,n*), and adding some new points as necessary to preserve the Delone property.
For (ii) this construction can apparently be carried out but requires ingenuity in choosing the
correct new points to add; I have verified it for 7 = v/2, which is a Lind number. The proof
of Theorem 4.1 above works more generally for real numbers 7 such that || > 1, with the
condition in (ii) modified to require that all algebraic conjugates |n’| < |n|. R. Kenyon observes
that the Delone set of finite type X := {-ny/2 :n = 1,2,.}U{n : n = 0,1,2,...} has an
inflation by —/2.

There are results in the literature for self-similar tilings which are analogous to Theorem 4.1.
Kenyon [34] proves a result analogous to (i) for tilings. The results for self-similar tilings (see
Thurston [79] and Kenyon [33], [35]) analogous to cases (ii) and (iii) differ slightly in that they
rule out inflation symmetry factors i that have an algebraic conjugate n’ which satisfies the
equality || = nin (ii) or |5/| = 1 in (iii). That is, they rule out Lind numbers and Salem
numbers in (ii) and (iii), respectively. R. Kenyon (private communication) observes that if to
Theorem 4.1 one adds the extra hypothesis that the Delone set X is repetitive (i.e. minimal),
then Lind numbers can be ruled out in (ii), and Salem numbers can be ruled out in (iii).
The repetitivity property holds for self-affine tilings with the unique composition property, see
Solomyak [76].
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5. One-Dimensional Delone Sets of Finite Type and Symbolic Dynamics

In this section we contrast properties of general Delone sets of finite type and Meyer sets by
studying various one-dimensional examples. In particular, we consider diffraction properties
of such sets.

One-dimensional Delone sets of finite type X are in one-to-one correspondence with tilings
of the line by intervals of finitely many different lengths. If X = {z,, : —00 < n < oo} with
the points of X numbered in increasing order, then we may regard X as tiling the line with
intervals I, = [z, 2,41]. Theorem 2.1 implies that these intervals have finitely many different
lengths, call them aq,aq,...,a,. It also implies the converse assertion that any such tiling
gives a Delone set X of finite type. Such a tiling is determined by the location of the point zq

together with the symbolic expression
Sx = (...,5.1,50,81,.-.) €{0,1,...,m}" (5.1)

in which s; is a symbol indicating the type of the 7" interval, and type j denotes an interval
of length a;. Since we only consider sets X up to translation, we may suppose that zo = 0,
in which case the symbol sequence Sx and the assignment of lengths a; to symbol type j
completely describes X.

We now specialize to the case in which X has intervals of only two lengths, 1 and «, in
which case a symbol sequence S € {0,1}% and the length o completely specifies a Delone set
X = X,(5) with zg = 0. We will show that conditions for the sets X,(5) to have a unique
autocorrelation measure v and a unique diffraction measure 4 depend on the symbolic address
S but not on «, while in general the property of X being a Meyer set depends on both S and

('8

Definition 5.1 A symbol sequence S € {0,1}% is almost linear if there is a real number 3
such that the partial sums S,41 :=so+s1+ ...+ s, and S_,, :==s_1+ 59+ ...+ 5_,, for
n > 0, satisfy

|S, —npB| <C, alnez, (5.2)

for some constant C.

The following result characterizes when X, (.9) is a Meyer set.
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Theorem 5.1 Let S € {0,1}” be a symbol sequence. If S is almost linear then X,(S) is a
Meyer set for all positive . If S is not almost linear then X, = X,(S) is a Delone set of

finite type and satisfies:
(i) If o is rational then rank(X,) =1 and X, is a Meyer set.

(ii) If a is irrational then rank(X,) = 2 and X, is not a Meyer set.

Proof. If a € Q then X,(S) has rank 1 for any S C {0,1}% If o has denominator m then
X, (S) C L7Z hence S,(9) is a Meyer set by Corollary 3.1.
If « ¢ Q, then if S € {0,1}* is not 0 or 1*°, then X,(S) has rank 2. Now z, =

(n —S,) + S,a, so the address map ¢ : [X]—=7Z? obtained from the basis vy = 1,v; = a is
d(z,)=(n—95,, S,), alnezZ.

By Theorem 3.1 X, is a Meyer set if and only if there exists a linear function L : R—R2, say
L(z) = (b1, Bax) such that

16(zn) = L(z,)[| <C alln ez,
for some constant C'. This gives

(1= B)n+ (Bra—Bi— 1S, , fan+ (aa—B— DS SC, allnez, (53)

Each coordinate separately is bounded, and at least one of them implies (5.2), so that for X,
to be a Meyer set, S must be almost linear. Conversely, if S is almost linear, then (5.6) holds

for the choice

__1-5 s
1=f+ap l-f+ap’

so X4(9) is a Meyer set. This includes the cases when S is 0% and 1*°. O

B and 3, =

Results analogous to Theorem 5.1 hold for sets X derived from symbol sequences drawn
from an alphabet with m letters, and tiling R with intervals of length ag, a1, g, ..., 1.

For results concerning autocorrelation measures and diffraction intensities for one-dimensional
sets X, we rely on results of Hof [25] [27] and Solomyak [74]-[77]. Recall from [25] that an
autocorrelation measure v of a Delone set X in R™ is any limit point in the vague topology of
the sequence of measures

'yL =2L)™ Z Ox—x! for L=1,2,3,....
x,x'eXn[-L,L]4
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We are primarily interested in sets X that have a unique autocorrelation measure «. In order
for a unique autocorrelation measure v for X, (9) to exist, the symbol sequence S must have
limiting frequencies for the tiles of lengths 1 and «, i.e. there must exist a value d such that

lim lSn = lim lS_n =d. (5.4)

n—oo 7 n—o0o 7

We can easily construct Meyer sets X for which such limits do not exist. For example take

X = X;(S) with s, = s_,, and with the s, for n > 0 being given by

St = ﬁ(ooﬁk(m)?’“(n)?k . (5.5)
k=1

Here X3(S) C Z is a Delone set with R = 2, hence is a Meyer set, and (5.4) fails to hold.

Definition 5.2 (i) A Delone set X of finite type is said to have uniform patch frequencies if
for each patch P = (X —2) N B(0;7) with z € X, and each ¢ > 0 there is a value L = L(P, ¢)
such that for any interval of length L on the line X contains copies of the patch P having a
density between d(P) — ¢ and d(P) + ¢. That is,

d(P)_€<#{y5y+77§Xandu§y§u+L}
- H#rrrzeXandu<z<u+ L}

<d(P)+e. (5.6)

We say that a symbol sequence S C {0, 1}% has uniform patch frequencies if this holds for
the Delone set X, (S) obtained from S by taking o = 2. It is easy to see that the symbol
sequence S has uniform patch frequencies if and only if the same is true for all X,(S), a > 0.
Solomyak [77] observes that this property implies that the tiling dynamical system attached
to each such X, (9) is uniquely ergodic, and that they each have a well-defined autocorrelation
measure v in the sense of Hof [25], [27]. Furthermore 7 is a pure discrete measure supported
on X — X, with

= Y W, (5.7

yeX-X

in which f(y) is the uniform limiting frequency of occurrence of the distance y in X. The
Fourier transform % of the autocorrelation measure is the diffraction measure of X,(S5), and is
a positive measure.

Solomyak [75, Theorem 5.1] gives sufficient conditions under which X has uniform limiting
patch frequencies. In particular, these conditions are satisfied for S arising as fix-points of
irreducible substitutions, and X = X,(5) have the properties above for all @ > 0. Such X, (5)
are non-Meyer sets if « is irrational and the largest eigenvalue of the substitution system S is

not a Pisot number.
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Under the assumption that S has uniform patch frequencies, each set X, (S) has a well-
defined diffraction measure 4,. The occurrence of a nonzero discrete component in 4, depends
on both S and «, as is shown by examples in Kolar et al. [37]. Their examples suggest
that a two-letter irreducible substitution system can only have a nonzero discrete component
when X, (S5) is a Meyer set. The associated expansion constant of the substitution S is then
necessarily a Pisot number. Solomyak [74] has shown there exist multi-letter substitution rules
with largest eigenvalue not a Pisot number, which have a discrete component in the spectrum
of the associated substitution dynamical system. (See also [13].) At present it is not known
whether there exist non-Meyer sets X,(S) with S having uniform limiting patch frequencies,
such that the diffraction measure 4 contains some nontrivial discrete spectrum.

Several authors have considered analogous problems for self-similar tilings and tiling dy-
namical systems. Gihler and Klitzing [19, Theorem 4.1 ff] state that the set of control points
of a self-similar tiling with inflation factor n can have a nontrivial discrete component in the
diffraction measure only if 7 is a Pisot number. Solomyak ( [75, Theorem 8.1], and [76, The-
orem 1.4]) gives sufficient conditions for a self-similar tiling dynamical system to have pure
discrete spectrum. When these conditions apply, the diffraction measure 4 of any Delone
set X constructed from a tiling in the dynamical system by marking tiles is a pure discrete

measure. It seems likely that such Delone sets X must always be Meyer sets.

Acknowledgment. [ am indebted to Michael Baake, Ludwig Danzer, Franz Géihler, Richard
Kenyon, Doug Lind, Peter Pleasants, Jim Reeds, Marjorie Senechal, Boris Solomyak, Paul Wright
and the referees for helpful comments. Martin Schlottman supplied a correction concerning
Voronoi tesselations on an earlier version of the paper, and suggested including Delaunay

tesselations in Theorem 2.2.
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