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ABSTRACT

The atomic structures of quasicrystalline materials exhibit long range order under transla-
tions. It is believed that such materials have atomic structures which approximately obey local
rules restricting the location of nearby atoms. These local constraints are typically invariant
under rotations, and it is of interest to establish conditions under which such local rules can
nevertheless enforce order under translations in any structure that satisfies them.

A set of local rules £ in R"™ is a finite collection of discrete sets {Y;} containing 0, each of
which is contained in the ball of radius p around 0 in R™. A set X satisfies the local rules £
under isometries if the p-neighborhood of each x € X is isometric to an element of £. This paper
gives sufficient conditions on a set of local rules £ such that if X satisfies £ under isometries,
then X has a weak long-range order under translations, in the sense that X is a Delone set of
finite type; A set X is a Delone set of finite type if it is a Delone set whose interpoint distance
set X — X is a discrete closed set. We show for each minimal Delone set of finite type X that
there exists a set of local rules £ such that X satisfies £ under isometries and all other Y that
satisfy £ under isometries are Delone sets of finite type.

A set of perfect local rules (under isometries or under translations, respectively) is a set of
local rules £ such that all structures X that satisfy £ are in the same local isomorphism class
(under isometries or under translations, respectively). If a Delone set of finite type has a set of
perfect local rules under translations, then it has a set of perfect local rules under isometries,
and conversely.
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1. Introduction

This paper is motivated by the goal of describing the structure of crystals and quasicrystals
in terms of “local” conditions, see [50]. The atomic structures of crystalline and quasicrystalline
materials exhibit strong long-range order under translations, in the sense of having X-ray diffrac-
tion patterns containing sharp spots (“Bragg peaks”). The physical mechanisms leading to the
formation and stability of such materials are apparantly well described by Gibbs-type statistical
mechanics models. These models describe equilibrium structures as arising in a competition
between minimum energy and maximum entropy. However no mathematical derivation de-

1. It is empirically observed

termining the possible structures that may occur has been given
that the arrangements of atoms in many materials appear to favor special local configurations,
which can be called “clusters.” This motivates the purely geometric problem of studying those
discrete sets X such that the p-neighborhood of each x € X is isometric to one of a finite list
L of p-neighborhoods of 0. We call a set £ used this way a set of local rules under isometries.
This object of this paper is to show that a wide variety of structures that possess a weak form
of long-range order under translations can arise as a forced consequence of “local rules” which
themselves are invariant under the larger group of isometries.

There are many special structures for which such “local rules” have previously been obtained.
A set X in R" is an ideal crystal if it consists of a finite number of translates of a full rank
lattice. In 1976 Delone et al. [14] showed that local rules under isometries existed for all ideal

crystalline structures whose symmetry group is transitive on the set of all points. (‘regular point

system’.) A similar result was established for all ideal crystals in Dolbilin et al. [15]. There are

'It is still an open problem to rigorously prove that crystalline structure can arise as a minimal energy
arrangement of atoms under electromagnetic forces. See Radin [49], [50] and Simon [58, problem 11].



now many results giving local rules under isometries characterizing various special classes of
aperiodic structures with crystallographically forbidden symmetries, e.g. tilings with 5-, 8-, 10-
and 12-fold rotational symmetries. These structures typically have perfect local rules, in the
sense that all structures that satisfy the local rules are locally isomorphic under translations.
They also have strong long-range order under translations which is manifested as a well-defined
diffraction pattern, which usually includes some discrete spectrum. For such results, see the
survey of Ingersent [29].

The results obtained in this paper apply to a general class of structures X which possess a
weak long-range translational order without necessarily having a well-defined diffraction mea-
sure. This weak long-range translational order is that the additive group [X] generated by the
elements of X is finitely generated, i. e. [X] is a quasilattice in the terminology of Le et al [39]
and Mermin [44]. In the cases where our results apply, the local rules obtained enforce weak
long-range translational order on all structures that satisfy them, but these local rules may be
imperfect in the sense that the structures satisfying them may not all be locally isomorphic.

To proceed we formulate basic definitions. Delone sets are a mathematical idealization of a

“solid-state” structure.
Definition 1.1 A Delone set or (r,R)-set is any set in R™ having the two properties:

(i) Uniformly Discrete. There is an r > 0 such that each open ball of radius r contains at

most one element of X.

(i) Relatively Dense. There is an R > 0 such that each closed ball of radius R contains at

least one point of X.

In part 1 we introduced a large class of discrete sets in R”™ possessing a weak long-range
translational order which we called Delone sets of finite type. This class of sets apparently
include nearly all proposed models for the atomic arrangements of quasicrystalline materials,

as well as other sets, see [34], [35], [40], [41].

Definition 1.2 A Delone set of finite type is any Delone set X such that X — X is a discrete

closed set, i.e. the intersection of X — X with any closed ball is a finite set.

In part I we showed that a set X is a Delone set of finite type if and only if, for each 7" > 0,

it has only finitely many different T-neighborhoods of a point under translations. Here the



T-neighborhood of a point x € X is
Px(x;T):=XnNB(x;T) ,

where B(x;T') is the closed ball of radius T centered at x. A centered T-patch P = Px(x;T)—x
is any translate of a T-neighborhood to the origin. Part I showed that Delone sets of finite type
are characterized by local rules under translations, i.e. a set X is a Delone set of finite type
if and only if the set £ of centered 2R-patches of X is finite; any set Y that satisfies £ under
translations is a Delone set of finite type. An important property of Delone sets of finite type
X is that they are finitely generated, i.e. the group of translations [X] spanned by the vectors
in X is finitely generated. Thus [X] is a quasilattice, which is any finitely generated group of
translations in R™ that spans R™ as an R-vector space, see Le et al [39]. By picking a basis
[V1,..., V] of this Z-module [X] we can describe elements of X using s integer coordinates,
and we may regard X as a linear projection of a subset X of the lattice Z* in R®. In particular,
such sets X can always be described using a finite number of “internal dimensions.”

The basic question that this paper addresses is: For which Delone sets of finite type X do
there exist local rules £ under isometries such that X satisfies £ and any set Y that satisfies
L is also a Delone a set of finite type? Our main result is that the class of sets X for which
such local rules under isometries exist includes all Delone sets of finite type that are minimal.
A Delone set of finite type X is minimal if it is repetitive (under translations), i.e. there is a
function Mx (T) such that for each positive T', any ball of radius Mx (T") centered at a point of
X contains a translate of every T-patch of X. Minimal sets are an important class because they
can be viewed as a mathematical analogue of a “ground state” of a physical system. Indeed
this notion of minimality coincides with minimality of an associated dynamical system with an
R™action, see §4, and Radin ([48], [49], [50], [53]) defines a “ground state” for analogous models
in statistical mechanics to be a set of configurations that is minimal and uniquely ergodic, i. e.
strictly ergodic?, under a R"-action for tiling systems or under a Z"-action for lattice systems.
Our notion of what constitutes a “ground state” is thus slightly more inclusive than Radin’s.

In §3 we give sufficient conditions for a set of local rules £ under isometries to enforce

2For a Delone set X of finite type, strict ergodicity implies that any 7-patch occurs in X with a positive
limiting asymptotic density, so that X has a well-defined diffraction measure (Fourier transform of autocorrelation
measure), see Hof [28]. Thus it has long-range order in the sense of part I. This diffraction measure need not
have strong long-range order in the sense of having “Bragg peaks” (delta functions).



structures X which are Delone sets of finite type (Theorem 3.1). In §4 we show that these
sufficient conditions can always be satisfied for minimal Delone sets of finite type, and so

obtain:

Theorem 1.1 Let X be a Delone set of finite type X in R™ which is minimal. Then there
exists a set of local rules L under isometries such that X satisfies L and any other set'Y that

satisfies L is a Delone set of finite type.

This result applies to a large variety of structures, because minimal sets are ubiquitous.
Given any Delone set of finite type X there always exists a minimal set X’ which is a limit of
larger and larger patches of X. That is, there is a sequence of translations{xy : & > 1} such
that for each T > 0,

X'NnB(0;T) = lim (X —xz) N B(0;T) (1.1)

k— oo

where the limit is taken pointwise. (This fact follows by a standard argument in topological
dynamics, using Zorn’s lemma, cf. Furstenberg [18, p.29].)

The configurational entropy of a Delone set of finite type X in R” is given by

H.(X) := lim sup —log (Nx*(T)), (1.2)
Tooo 17

where Nx*(7T') counts the number of translation-inequivalent T-patches of X, see part I. The
known constructions of Delone sets of finite type having perfect local rules apparantly all have
zero configurational entropy. This has been proved in special cases®, notably for Penrose tilings,
which contain at most O(7?) different T-patches, because all T-patches appear at least once
inside any patch of radius ¢T', for ¢ = 11.09, see Griinbaum and Shephard [25, p.563]. It is known
that there exist Delone sets of finite type that are minimal but have positive configurational
entropy, as follows in the one-dimensional case from a result of Furstenberg [17, Theorem I11.2].
Such sets are covered by Theorem 1.1.

The “local rules” whose existence is shown by Theorem 1.1 do not necessarily identify a
single local isomorphism class of structures. Let £7(X) denote the set of all T-patches of X. It
seems possible that the configurational entropy of the class of structures ¥ (L7 (X)) produced

by the local rules of radius 7" can be larger than the configurational entropy H.(X) of the initial

#See Elser[16] and Gahler [19]. Related entropy zero results for lattice gas models appear in Radin [49], [51].



structure X . However we conjecture that as the radius 7T increases, the configurational entropy
H.(X(L7(X)) decreases to H.(X) as T — 0.

Theorem 1.1 thus shows how local rules under isometries can lead to a wide variety of
structures describable using a finite number s of “internal dimensions,” where s is generally
larger than the dimensionality n of the space R™. It remains an open question whether every
Delone set of finite type X satisfies a set of local rules £ which themselves can be satisfied only
by Delone sets of finite type.

In §4 we give several characterizations of minimal Delone sets. We define a concept of
minimality of a Delone set X under isometries, which we call isometry-minimal, and show
that it corresponds to minimality for a topological dynamical system with an £"-action, where
E™ denotes the Euclidean group of isometries of R™. We prove that for Delone sets of finite
type that the properties of minimality and isometry-minimality coincide (Theorem 4.3). In the
remainder of §4 we prove Theorem 1.1.

In §5 we study perfect local rules. A set X has perfect local rules L under translations
if all sets Y that satisfy £ under translations are locally isomorphic to X under translations.
Any set X having perfect local rules is necessarily a Delone set of finite type that is minimal.
We define perfect local rules £ under isometries analogously: any two sets X that satisfy
L under isometries are locally isomorphic under isometries, i.e. they have the same set of T-
neighborhoods under isometries, for each positive T'. It is generally easier to verify the existence

of perfect local rules under translations than to verify it for isometries. In §5 we prove:

Theorem 1.2 Let X be a Delone set of finite type in R™. Then X has perfect local rules under

translations if and only if X has perfect local rules under isometries.

Structures having perfect local rules under translations or under isometries seem to be
extremely special. The known examples of sets having perfect local rules under translations
make use of a self-similarity property, as described in Gidhler [20]. Ideal crystals are included
under such constructions, using a similarity factor which is an integer m > 2. There may well
exist examples of structures having perfect local rules under translations, that are based on
self-affine constructions rather than self-similar constructions. The most general result on sets

having perfect local rules under isometries is that of Goodman-Strauss [24], which proves that



perfect local rules under isometries exist for nearly all substitution tilings.

There do exist Delone sets which have perfect local rules under isometries, but do not
have perfect local rules under translations. One such example comes from the pinwheel tilings
of Radin [52]. Another example comes from the vertices of the SC D-tiles in Danzer [12], for
SC'D(m/n,s,h) with n odd, using fact (13) in Danzer [12]. The quaquaversal tilings of Conway
and Radin [9] can be suitably decorated to yield a Delone set with perfect local rules under
isometries, using the result of Goodman-Strauss [24]. Theorem 1.2 implies that these structures
are not* Delone sets of finite type.

There have been many previous studies of “local rules” for quasicrystals. Much of this work
has been based on tiling models for quasicrystals. In Appendix A we relate various notions of
“local rules” and “matching rules” for tiling models to the concepts defined here for Delone
set models. We include a formaldefinition of “perfect matching rules”, which is a more general
concept than “perfect local rules”. This concept of “perfect matching rules” involves the notion
of one tiling being locally derivable from another, which was introduced by Baake, Schlottmann
and Jarvis [4]. Most previous work on tilings allows prototiles to only be moved by translations;
in that case decorations of these tilings yield Delone sets of finite type. Several authors have
developed “local rules” (under translations) for tilings which enforce stronger properties, for
example “quasiperiodicity,” see for example Gahler et al. [22], Ingersent [29], and Le [22]-[24].
The use of Delone set models for certain quasicrystals and interconversions between Delone sets
and tilings, particularly with “perfect matching rules,” is discussed in Klitzing and Baake [32].

Concerning physical quasicrystals it is now known that there are some materials (for ex-
ample Al Pd Mn) that exhibit a quasicrystalline phase that is thermodynamically stable, i.e.
which at some temperatures and pressures is the structure that minimizes the free energy, see
Goldman et al. [5, p. 236]. Recent proposals of Steinhardt and Jeong [60] present mechanisms
to explain how Penrose tilings can arise as “energy-minimizing” arrangements of overlapping lo-
cal configurations, and Burkov [7], [8] supplied similar results for tilings related to the Tubingen
triangle tilings. These configurations are specified by a kind of “local rules under translations.”
The interpretation of “local rules” as representing energy-minimizing interactions at low tem-

perature has been repeatedly proposed, see Levitov [42], Ingersent [29, Section 6], and Géahler

4This fact can be proved directly for these structures, without recourse to Theorem 1.2.



et al. [22].

A wide variety of other quasicrystalline materials are not known to be thermodynamically
stable but instead are currently believed to be entropically stabilized. For entropically stabilized
materials the possible configuations consist of a large number of nearly equal energy configu-
rations which are interchangeable among themselves. These configurations minimize the free
energy at the given temperature and pressure, in a competition between minimum energy and
maximum entropy. We view these sets of configurations as being analogous to minimal sets
[[X]]e in §4 with positive configurational entropy. Sets of positive configurational entropy given
by local rules may arise in “random tiling” models for quasicrystals, cf. Henley [26], [27].

The results of this paper demonstrate the existence of local rules under isometries that
enforce weak long-range translational order. Our purpose here is only to show that such local
rules exist, without giving reasonable bounds on the distances over which these local rules act,
so we were able to make the simplifying assumption that all local rules consist of spherical
neighborhoods. More flexible “local rules” that use non-spherical neighborhoods appear in the
concept of “Delone graph” introduced in Danzer and Dolbilin [13], and in the “local rules”
considered in Steinhardt and Jeong [60].

Finally we observe that the results of this paper apply to more general solid state structures
than those which have strong long-range order given by an X-ray diffraction pattern consisting
entirely of delta functions (“Bragg peaks”). There are minimal Delone sets of finite type which
do not have long-range order in this sense. It is therefore at least conceivable that there exist
thermodynamically stable materials which have atomic positions described by a Delone set
of finite type, which are not quasicrystalline. Such structures would not necessarily have X-
ray diffraction patterns with any “Bragg peaks” from which the translational ordering can be

inferred. Possibilities of this sort have been advocated by L. Danzer [11].

Notation. When Y is a finite set, |Y| denotes the number of elements of Y. If Y is in R",
then [Y] denotes the additive subgroup of R™ generated by the elements of Y; we regard [Y] as
a Z-module.

The Fuclidean group £" consists of all (Euclidean) isometries of R”, i.e. of all motions



¢ :R™ — R" given by
p(x) =Qx+t, with @€ O(n,R)and t € R",

where O(n,R) is the orthogonal group, i.e. O(n,R)={M : MM"' = 1I}.
The translation group T" is the subgroup of £” where @ is the identity; we sometimes
identify it with R”™.

For an arbitrary set Y in R"™ we define its point symmetry group (at x = 0) by
Psym(Y):={Q € O(n,R): QY =Y} .

For a collection of sets X' we analogously define Psym(X) ={Q € O(n,R): QX = X'}.

The notations [[X]]e and [[X]]7 denote the local isomorphism classes of X under isometries
and translations, respectively. For a collection of local rules £, the sets ¥g(L£) and X7 (L)
consist of all sets Y that satisfy the local rules under isometries and translations, respectively.
For a Delone set X, the sets ¥¢(X), and ¥7(X) consist of all structures Y each of whose
T-neighborhoods is isometric (resp. translation-equivalent) to a T-neighborhood of X, for all

T > 0.
2. Preliminary Results

In this section we prove basic properties of Delone sets of finite type under translations
and under isometries, respectively. We also relate the local isomorphism classes of X under
translations and isometries, respectively.

The concept of an enclosed point, which was introduced in Dolbilin et al [15], plays an

important role in many proofs in this paper.

Definition 2.1 (i) A point y € Y is called an enclosed point of Y if it is in the interior of the
convex hull of Y.

(ii) A set Y is called an enclosing set if it contains an enclosed point.

For an enclosed point the vectors {y’ —y : y’' € Y} span R". It follows that if V is an

enclosing set then an isometry ¢ of R” is uniquely determined by the datay — ¢(y) fory € Y.



Definition 2.2 (i) A point x € X is R-enclosedif it is an enclosed point of the set X N B(x; R).
(ii) A point x in a set X is an R-point or is strongly R-enclosed if each closed ball of radius

R that contains x on its boundary contains also another point of X.

Lemma 2.1 (i) Any strongly R-enclosed point x € X is R-enclosed.
(ii) If every point x € X is strongly R-enclosed then X is relatively dense with constant R,

and conversely.

Proof. See Dolbilin et al. [15, Lemma 3.2]. =
We define “local” properties of sets X under isometries and under translations. We first

consider isometries.

Definition 2.3 (i) A 7-staris any T-neighborhood Px (x;7’) of some x € X, viewed as being
movable by isometries. We call x the center of the T-star. A centered T-star P is obtained by
translating it to the origin, i.e.

P=XnBx;T)-x. (2.1)

(ii)The T-atlas of X under isometries, denoted A5 (T), is the set of all isometry equivalence

classes of T-stars of X.

Definition 2.4 (i) Two sets X and X' are locally isomorphic under isometries if X contains

an isometric copy of each T-star of X’ and vice-versa, i.e. if
A5 (T) = A (T), foreach T >0 . (2.2)

We let [[X]]s denote the collection of all sets X’ locally isomorphic to X under isometries.

There is a partial order <g on such local isomorphism classes, in which

[(XTe <e [[X7Te (2.3)

provided that for each 7" > 0, X' contains an isometric copy of every T-star of X.

Definition 2.5 A local isomorphism class [[X]]¢ is isometry-minimal if it is minimal in the

partial order <g. We also say that a set X is isometry-minimal if [[X]]¢ is isometry-minimal.



Definition 2.6 A Delone set X is a Delone set of isometry-finite type or is of finite type under

isometries if | A% (T)| is finite for all T > 0.
These sets are characterized by the following finiteness condition.

Theorem 2.1 Let X be a Delone set in R™ with relative denseness constant R. Then X is
a Delone set of isometry-finite type if and only if it has finitely many isometry classes of 3R-
neighborhoods, i.e. if and only if | A% (3R)| is finite.

Proof. One direction is clear. For the other direction, suppose that |A§( (3R)| is finite, and we
must show that for each T" > 0, that X has only finitely many T-neighborhoods up to isometries.
We may suppose 0 € X by translating X if necessary. By hypothesis there is a finite number of
choices of a 3R-neighborhood Px (0;3R), up to isometry. Let this neighborhood be fixed. We
show there are only finitely many possible ways to extend it to a neighborhood Px(0;7). For
each point x € Px(0;3R) with ||x|| < 2R, its R-neighborhood

Y = X NB(x;R) CPx(0;3R)

is completely determined by Px(0;3R). By the remarks before the proof, Y is an enclosing set
of x, s0 {x' — x : x' € Y} spans R". For a rotation @ € O(n,R), the images {@x' : x' € Y}
determine () uniquely, hence it follows that there are only finitely many ways to extend Y to
a 3R-neighborhood of x using a set isometric to one of the sets in A% (3R). By the Delone
property the resulting 3R-neighborhoods for all such x cover a larger region which includes
B(0;4R). We now proceed by induction on k, for k£ > 4, to extend to X N B(0; (k+ 1)R) given
X N B(0;kR), making a finite number of choices of cardinality bounded in terms of n, r, R and
k, using the Delone property of X. Continuing in this way we eventually determine Px(0;7),
while making finitely many choices in all, so | A% (T)]| is finite. Thus X is a Delone set of
isometry-finite type. =

We now define analogous concepts for equivalence under translations.

Definition 2.7 (i) A T-patch P is any T-neighborhood of x € X, regarded as movable by
translations. A centered T-patch is a T-patch translated to the origin, again given by (2.1).
(ii) The T-atlas of X (under translations), denoted Ax (T'), is the set of translation equiv-

alence classes of T-patches of X.
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Definition 2.8 Two sets X and X' are locally isomorphic (under translations) if X contains

a translate of each T-neighborhood of X’ and vice-versa, i.e. if
Ax(T)=Ax/(T), foreachT >0. (2.4)

We let [[X]]7 denote the collection of all sets X’ locally isomorphic to X under translations.

We have a partial order <7 on such sets, where

(XN <7 [X 7 (2.5)

means that the set X’ contains a translate of every T-patch of X, for each T > 0.

Definition 2.9 A local isomorphism class [[ X ]]7 is minimal (under translations) if it is minimal

in the partial order <;. We also say that X is minimal (under translations) if [[X]]7 is minimal.

In part I it was shown that a set X is a Delone set of finite type if and only if |Ax (7] is
finite for all T > 0.

Theorem 2.2 Let X be a Delone set in R™ with relative denseness constant R. Then X is
a Delone set of finite type (under translations) if and only if it has finitely many translation-

equivalence classes of 2R-neighborhoods, i.e. if and only if |Ax (2R)| is finite.

Proof. This result for 3R-neighborhoods can be proved similarly to Theorem 2.1. A proof
for 2R-neighborhoods appears in part I, Theorem 2.1. =

We clarify the relation between translation and isometry local isomorphism classes [[X]]7
and [[X]]¢ in the next two lemmas. Recall that for a collection of sets X" the group Psym/(X)
is the set of rotations € O(n,R) for which QX = X'.

Lemma 2.2 Suppose that X is a Delone set of finite type in R™. Then the group Psym([[X]]7)

of rotations that leave [[X]]7 invariant is finite.

Proof. PickY € [[X]]rwith0 € Y. If Q € Psym([[X]]7) then QY € [[X]]7 as Q(Px(0;2R))
must be in the 2R-atlas Ax(2R). Now Px(0;2R) is an enclosing set of 0, so the isometry @)

is uniquely determined by the images of the points in Px(0;2R). Since |Ax (2R)| is finite, and

11



each patch in Ax (2R) contains finitely many points, there are only finitely many possibilities
for@. =

An ideal crystal X in R™ is any set that consists of a finite number of translates of a full
rank lattice in R”. In this case Psym([[X]]7) is the point group of the ideal crystal X, and it is
well-known that there is an upper bound on the order | Psym/([[X]]7)| that depends only on the
dimension n. This fact does not hold for general Delone sets of finite type; in each dimension
n > 2 one can construct examples X in which |Psym([[X]]7)| is arbitrarily large.

For any Delone set X in R™, we have the inclusion
O, ®)[XTlr € [1XTle | (2.6)

in which O(n,R) is the orthogonal group in R™. We say that X is rigid if equality holds in
(2.6).

Lemma 2.3 Any Delone set X in R”™ of finite type is rigid. That is,

[XTe = O(n, B)[[XT]T . (2.7)

Proof. LetY € [[X]]e, and without loss of generality we may translate Y so that 0 € Y. We
wish to show that there exists Q € O(n,R) and X € [[X]]7 such that

Y:Q/?7

Since each T-neighborhood of Y around 0 is isometric to some T-neighborhood of X, for each

integer £ > R we can find @, € O(n,R) and x; € X such that
Y N B(0;k) = Qr(X — xx) N B(0; k) (2.8)

and, in particular,

Y NB(0;R) =Qr(X —xx)N B(O,R) . (2.9)
Fix kg = [R] 4+ 1. For any k > ko, the last equality gives
(X —xp) N B(0; R) = Q7' Qry (X — x4,) N B(O; R) . (2.10)
We claim that there are only finitely many choices for
Q= Q;'Qr € O(n,R)

12



as k varies over all £ > ko. To see this, note first that the finite set X := (X —xz,) N B(0; R) is
an enclosing set because X is R-relatively dense. It follows that the points {x € Xy} span R",
hence the image x—@Qx for x € Xy determine ) uniquely. Second, the set (X — X) N B(0; R)
is a finite set because X is a Delone set of finite type. Now for each x — x, € X there exists
x’ € X such that
y =% —xp = Qx — xp,)
hence
y € (X —xx)NB(0;R) C (X - X)NB(O;R) .

There are only finitely many maps ¢ : Xo — (X — X) N B(0; R), hence there are only finitely
many choices for Q.

We can now pick an infinite subsequence {k; : 1 < j < oo} with k;—00 on which Q, = Q

is constant. We then have
Y N B(0;k) = Q(X —xi,) N B(0;k;) , allj>1. (2.11)
The pointwise limit

X = lim (X - Xk, ) N B(0; k;)

j—o0

is a well-defined set by (2.11). Clearly X € [[X]]7, and (2.11) implies that Y = QX. =

3. Local Rules
We use the term “local rules” to describe a set of local restrictions on the points in a Delone
set X.

Definition 3.1 (i) A set of local rules L of radius p is a finite collection of discrete sets {Y;}
containing 0 which are contained in the open ball B(0;p).
(i) A set X satisfies the local rules £ under isometries if each p-neighborhood Px(x;p) of

X is isometric to a set in £ under an isometry that sends x to 0. We set
Ye(L):={Y :Y satisfies £ under isometries } . (3.1)

(ili) A set X satisfies the local rules £ (under translations) if each p-neighborhood Px (x; p)

of X when translated to 0 is a set in £. We set

Y7(L£) ={Y :Y satisfies £ under translations } . (3.2)
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Note that if Y € Y¢g(£) then its local isomorphism class [[Y]]e C ¥¢g(£). Furthermore ¥¢(L)
is closed downward under the ordering <g, namely if [[Y]]e C X¢(L) and [[Y']]e <g [[Y]]e, then
[[Ye C Xe(L). Tt follows that if Xg(L) = [[X]]e, then X is isometry-minimal.

We similarly have that if Y € YX7(£) then [[Y]]7 C X7 (L), and X7 (L) is closed downward
under the ordering <7. It follows that if ¥7(£) = [[X]]7, then X is minimal.

The property of being a Delone set is enforceable by local rules under isometries. We say
that a set of local rules £ of radius p > R is strongly R-enclosing if 0 is a strongly enclosed

R-point of each Y; € L.

Lemma 3.1 Let L be a set of local rules, of radius p > R, such that L is strongly R-enclosing.
Then any set X that satisfies L under isometries is a Delone set whose relative denseness

constant is at most R.

Proof. First, X is uniformly discrete, because there is a lower bound r of closeness between
any two points in any Y; in £, because £ is finite. Second, to show that X is relatively dense
with constant R, we argue by contradiction. Suppose not, and take some empty ball B(z;T)
with T" > R. Choose a point x € X that is a closest point to z and translate the ball in the
direction x — z until x is on its boundary. By the triangle inequality, the resulting ball B(z';T)
contains no point of X \{x}, for any such point would be closer to z than to x. This contradicts
x being an R-point of X, which it must be since L is strongly R-enclosing. =

This result immediately extends to give local rules that enforce the property of being a

Delone set of isometry-finite type.

Lemma 3.2 Let L be a set of local rules of radius p > 3R, such that each set'Y; in L is strongly
R-enclosing. Then any set X that satisfies L under isometries is a Delone set of isometry-finite
type. Conversely, if X is a Delone set of isometry-finite type, then its set L of centered 3 R-stars

is a set of local rules in which each set'Y; in L is strongly R-enclosing.

Proof. By Lemma 3.1 X is a Delone set with relative denseness constant R. Since p > 3R and

all its 3 R-stars are isometric to sets in £, it follows from Theorem 2.1 that X is of isometry-finite

type. =

There is an analogous result for local rules under translations.
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Lemma 3.3 Let L be a set of local rules of radius p > 2R, such that each Y; € L is strongly
R-enclosing. Then any set X that satisfies L under translations is a Delone set of finite type.
Conversely, if L is a Delone set of finite type, then its set L of centered 2R-patches is a set of

local rules in which each Y; in L is strongly R-enclosing.

Proof. Similar to Lemma 3.2, using Theorem 2.2 instead of Theorem 2.1. =

Lemma 3.2 shows that for each Delone set of finite type X there exists a set of local rules
L with the property that the set ¥g(L£) contains only Delone sets of isometry-finite type. To
prove that for a specific £ all elements of ¥¢ (L) are Delone sets of finite type requires proving a
finiteness result for the set of all rotations used in applying the elements of £. This appears to
be a nontrivial problem, because for some Delone sets of finite type X in R” the set of rotations
Psym([X — X]) that leave the Z-module [X — X] invariant may contain elements of infinite
order if n > 2, and may be infinitely generated if n > 3, cf. Piunikhin [47] and Le et al. [39].

We give below sufficient conditions on a set of local rules £ for every set in ¥¢(L) to be a
Delone set of finite type. These conditions force every set X € ¥g(L) to contain a relatively
dense set of copies of a particular finite configuration A under isometries, such that these copies

occur only in a finite number of orientations.

Definition 3.2 Let A be a finite set in R” and let G be a finite subgroup of O(n,R). We say

that A is a watermark with respect to G for a set of local rules £ under isometries if:

(i) 0 € A and 0 is a T-enclosed point of A for some T < 1p, where p is the radius of
the local rules £. Call 0 the center of A.

(ii) Each Y; € £ contains an isometric copy of A'in Y; N B(0;p — T).

(iii) A set Y; € L is A-centered if it contains an isometric copy of A centered at 0, i.e.
it contains A’ = QA for some @ € O(n,R). For each A-centered Y;, every isometric copy

A" of A’ contained in Y; satisfies

A"=Q"A"+t", with Q" € G and t" € R™ (3.3)

(iv). For each A-centered Y; in £, the centers {t"} of all isometric copies of A contain

0 as a strongly %p—enclosed point.
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A A-centered Y; may contain several distinct copies A’ of A centered at 0, and these copies
must differ by rotations in G. In particular, the group G must contain the group Psym(A).
(The T-enclosing property of A guarantees that Psym(A) is a finite group.) In principle, one
can check by a finite computation® whether a finite set £ has some (A, ) such that A is a

watermark with respect to G for L.

Definition 3.3 Let a finite set £ have a pair (A, G) as a watermark. We define the normal-
ization L of £ with respect to (A, G) to be the set of local rules obtained from £ by replacing
each A-centered Y; by the set of all QY; for @ in O(n,R) such that QY; contains A centered at
0.

It is clear that the normalization LA is a finite set and that the local rules £ and LA under

isometries give the same sets.

Theorem 3.1 If L is a set of local rules of radius p that contains a watermark A with respect
to G, then
Ye(L) =O(n,R)X7(GLA), (3.4)

so that ¥¢(L) consists entirely of Delone sets of finite type under translations. Furthermore,

each X € Y¢(L) contains a relatively dense set of isometric copies of A and has

Psym([[X]]7) CG . (3.5)

Proof. The inclusion

O(n,R)ET(GLA) C Xe(L), (3.6)

is clear. For the other direction, uppose that X € ¥¢(L£). Since by property (ii) every rule
Y; € L contains an isometric copy A’ of A, so does X. For convenience, we first shift X by a
global isometry to X = QX +t, in such a way that A’ is moved to A, and view A as “marked”
in X. It suffices to prove that X is a Delone set of finite type.

Let LA be the normalization of £ and set

La=GLa={gY:Y eLr,geCG}. (3.7)

5Here we assume given a “black box” algorithm that can decide whether two given interpoint vectors in R™
are equal.
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We show that X can be built up using local rules from £ under translations, starting from the
“marked” set A centered at 0. We proceed by induction on the number of “marked” isometric
copies of A. The p-neighborhood of 0 is isometric to some set in £, necessarily A-centered,
hence it must be equal to some set in £a, according to property (ili). Now (3.3) implies that

every isometric copy of A in B(0;p) is translation-equivalent to
QA forsome Q € G . (3.8)

Now “mark” all these copies of A having centers within distance %p of 0, and let their center
locations form a list Cy of eligible A-centers, and let the “already inspected” list M; = {0}.
The induction hypothesis will be that Cj is nonempty and only includes centers of copies of A
that satisfy (3.8). At the (k + 1)-st stage we take the first element of the list x, and find an
clement of £ that agrees with X on its p-neighborhood. This element xj is in £a and by the
induction hypothesis it is translation-equivalent to an element of £a, since G is a group. Let
Cix+1 be obtained from C; by removing x; and adding any new A-centers within distance %p
of x to the end of this list. Then update the “already inspected” list to Mgy = My U {x}.
Any new A-centers added to Cy4; satisfy (3.8) by condition (iii) The ordered list Cg41 cannot
be empty, for if it were, then My, would have the property that every element in it was a
%p—point, by property (iv). Then Lemma 2.1 implies that Mj4q is %p—relatively dense, hence
infinite, which contradicts |[My41| = k + 1. Now consider the “eventually inspected” set
oo oo
M= U M = U Cr .
k=1 k=1

Every element of M is a A-center of X, and by property (iv) xi € My is an %p—enclosed point
of My U Cgy1. Thus every point of M is %p—enclosed7 hence by Lemma 2.1 M is %p—relatively
dense. But each element of X is specified by an element of £ centered at X, of radius p. Since
all elements of M are A-centered and satisfy (3.8), the same holds for every isometric copy A
of A centered at x’ € X, by virtue of property (iii) applied at some x € M, with ||x'—x|| < %5.
The p-stars at all x € M cover X and are each a translate of an element of £, hence X only
has finitely many p-stars under translation. Since X is Delone with relative denseness constant
R < %p, it is a Delone set of finite type by Theorem 2.2.

Finally, A is an enclosing set, so the image of its points under an isometry determines the
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isometry uniquely. Since all isometric copies of A in any set X satisfy (3.8), we must have
Psym([X]]7) € &,

as required. =
Remarks. (1) In §4 we show that any Delone set of finite type that is minimal satisfies a set
of local rules £ having a watermark (A, G) to which Theorem 3.1 applies.

(2) We defined “watermark” above so that every isometric copy of A in X is “marked.”
One can prove a strengthening of Theorem 3.1 in which only some copies of A are “marked,”
by changing the definition (iii) of “watermark” to have (3.3) apply only to those copies A" for

which |t| = r; for some fixed set of radius values
O=ro<m<...<rp<p-T, (3.9)

and by changing (iv) that 0 be a §p-enclosed point of the set of all {t”} with [t”| = r; for some

1, 0 <1< m.
4. Minimality

The notion of “minimality” arose in topological dynamics. The introduction of ergodic
theory in studing lattice gas models in statistical mechanics goes back to work of Ruelle and
Sinai around 1970. Later Radin ([48],[49], [51], [53]) pioneered the use of dynamical systems
with a Z"™action, R™action, or an £"-action in studying the structure of “ground states”, for
tilings and quasicrystalline structures. Dynamical systems with an R"™-action were used in
studying tiling models for quasicrystalline structures in Robinson [55] and Solomyak [59], and
dynamical systems with an £"-action were used in Radin and Wolff [54].

Recall that a Delone set of isometry-finite type X is defined to be isometry-minimalif [[X]]e
is minimal in the partial ordering <g, and that a Delone set of finite type X is defined to be
minimal if [[X]]7 is minimal in the partial ordering <7. The first part of this section relates
these two types of minimality to topological dynamical systems with an £”-action and an R"™-
action, respectively (Theorems 4.1 and 4.2). These equivalences are standard in the dynamical
systems literature, and are included here to make the paper self-contained. The second part of
this section shows for Delone sets of finite type that these two concepts of minimality coincide

(Theorem 4.3), and then applies this result to prove Theorem 1.1.
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We first give several equivalent conditions for isometry-minimality.

Definition 4.1 (i) A Delone set X is isometry-repetitive if for each positive T there is a radius
R’ depending on T such that each R’-neighborhood of X contains an isometric copy of each
T-star of X.

(ii) The isometry-repetivity function M% (T) of X is the function that gives the least such

value of R for each T > 0.

This definition is equivalent to X being a Delone set of isometry-finite type, such that the
set of isometric copies of any T-star occurring in X is relatively dense.

We construct a topological dynamical system with an £”-action associated to an arbitrary
Delone set X. Let D, g be the collection of all Delone sets with parameters (r, R). We topologize
D, g using the natural topology, which is defined by a metric

dist(X, X) =Y 27 gist(x, X) + 37 27I¥I dist(x, X) (4.1)

xeX %X
That is, two Delone sets X and X are close in this metric if in some large ball of radius T
around the origin the points of X and X are in one-to-one correspondence, with each pair of
points separated by distance at most e. It is easy to check that this is a metric, and that D,
is a complete metric space and is compact. (That is, every sequence {xj : £ > 1} has a limit
point in D, g.) Note also that D, g is invariant under the action of the Euclidean group £" of

all isometries.

Definition 4.2 (i) Given a Delone set X, let Og(X) denote the orbit of X under isometries
E™ie.
Oe(X) :={o(X): 0 €&} . (4.2)

(ii) The isometry orbit closure X¢(X) is the closure of Og(X) in the natural topology, i.e.

Se(X) = Og(X) . (4.3)

Since Og(X) C D, g, the set Xg(X) is a compact set in the natural topology. Thus we obtain

a topological dynamical system (X¢(X),£&") with an £”-action.

Now suppose that X is a Delone set of isometry-finite type. For these sets the closure

process yielding ¥¢(X) introduces no new 7-neighborhoods, for any 7 > 0.
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Lemma 4.1 If X is a Delone set of isometry-finite type, then

Se(X)=MXTe= U [V (4.4)
[¥De<[xDe

Proof. By definition ¥¢(X) = [[X]]g, because any element Y of ¥g(X) is the limit in the
natural topology of isometric copies of larger and larger stars of X, and all these T-stars occur
in any element of [[X]]s. Any T-star in Y is isometric to some T-star in X, because there are
only finitely many 7T-stars up to isometry, so in any Cauchy sequence in the natural topology

the approximating T-star becomes constant, up to isometry, hence the limit 7T-star is isometric

to a T-star of X. Thus
Se(X)c U DT

Ive<lXTe

Conversely any element in such [[Y]]e with [[Y]]s <g¢ [[X]]¢ is the limit in the natural topology
of isometric copies of larger and larger patches of X, hence [[Y]]¢ C ¥g(X), so (4.4) follows.

Definition 4.3 The topological dynamical system (X¢(X), ") is minimal under isometries if

every £"-orbit of Yg(X) is dense.

We prove the following characterization of isometry-minimality.

Theorem 4.1 If X is a Delone set of isometry-finite type, then the following conditions are
equivalent.
(1) [[X]le is isometry-minimal.
(ii) The topological dynamical system (Lg(X),E™) is minimal, i.e. [[X]]¢ is a closed set.
(iii) X is isometry-repetitive. That is, for each T-star P of X the set Xg(P) defined by

Xe(P) :={x"€ X : Px(x';T) = ¢(P) for some isometry ¢} (4.5)

is relatively dense.

Proof. (i) < (ii). By Lemma 4.1 [[X]]¢ is isometry-minimal means that ¥¢(X) = [[X]]¢. For
any X' € [[X]]¢ we have by definition X¢(X’) = X¢(X), hence every orbit closure Xg(X') is the
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whole space. If to the contrary Xg(X) # [[X]]e by Lemma 4.1 there is some [[X']]s <g [[X]]e

and then

Ye(X') = U Y]l & Be(X)
[V1le<[[X"Ne

hence X' doesn’t have a dense orbit in (Xg(X),E™).

(i) = (iii) We prove the contrapositive. If for some T-star P there are no isometric copies
of P in arbitrarily large regions of X, say in (X — x;) N B(0;7;) with T;—00 as i—00, we can
translate these regions to the origin and extract a subsequence that converges in the natural
topology to a limit set Y that contains no isometric copy of P. Thus [[Y]]e <¢ [[X]]e, so [[X]]s
is not minimal under isometries.

(i) = (i). Given a T-star P in X, by (iii) there is a radius 7" such that every T’-star
of X contains an isometric copy of P. Thus given any Y € m, since each T'-patch in Y
is isometric to a T’-patch of X, it contains an isometric copy of P. This holds for all P, so
Y € [[X]]e. Thus X¥g(X) = [[X]]e = [[X]]e, which is therefore isometry-minimal. =

Our next object is to derive several equivalent conditions for minimally under translations.

Definition 4.4 (i) A Delone set X is repetitive if for each radius 7' > 0 there is a finite value
Mx (T) such that each Mx (T")-neighborhood of X contains a translate of each T-patch of X.
(ii) The repetitivity function Mx (1) of X is the smallest such value for each 7" > 0.

A Delone set X is repetitive if and only if it is a Delone set of finite type, such that the set
of occurrences of each T-patch in X is relatively dense.
We next construct a topological dynamical system with an R™action association to a given

Delone set X, analogous to [50].

Definition 4.5 (i) Given a Delone set X ,let O7(X) denote the orbit of X under translations
7™, 1. e.
Or(X)={X+t:tcR"}.

(i) The translation orbit closure ¥7(X) is the closure of O7(X) in the natural topology,

i.e.

SHX) = OF(X) . (4.6)
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We obtain a topological dynamical system (X7(X),R") with an R™action.

Lemma 4.2 If X is a Delone set of finite type, then

X)) =MXlIr= U [¥lr. (4.7)
<X

Proof. Similar to Lemma 4.1. =

Definition 4.6 The topological dynamical system (X7(X),R") is minimal if every R™-orbit of
Y7(X) is dense.

Theorem 4.2 If X is a Delone set of finite type in R™ then the following conditions are equiv-
alent.

(1) [[X]]7 is minimal.

(ii) The topological dynamical system (X7(X),R™) is minimal.

(iii) X is repetitive. That is, for each centered T-patch P of X, the set X7(P) defined by

X7r(P)={x'"€ X : Px(x;T) =P+t for somet € R"} (4.8)

is relatively dense.

Proof. Similar to Theorem 4.1. =

We next relate minimality under translations to minimality under isometries, as follows.
Theorem 4.3 If X is a Delone set of finite type, then [[X]]e is isometry-minimal if and only

if [[X]]7 is minimal.

Proof. Since X is a Delone set of finite type, Lemma 2.3 gives
[XT]e = O(n, B)[[XT]T . (4.9)

Suppose first that [[X]]7 is minimal, so that [[X]]7 is a closed set in the natural topology.
To show that [[X]]¢ is isometry-minimal we check that it is closed in the natural topology. So
suppose that
Y= lim Q;(X - x;) ,

j—00
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with Q; € O(n,R). We can extract a subsequence with @;, —@), and

Y = kh—g)lo Qi (X - X]k) = khm QX - Xjk) !

—00

using the Delone property of X. Thus
X=Q'y = Jim (X —x;,) € [XT)r

because [[X]]7 is closed. Now Y € [[X]]¢ by (4.9).

Now suppose that [[X]]¢ is isometry-minimal, so that it is a closed set in the natural topology.
If [[X]]7 is not minimal, then there is some minimal set [[X']]7 contained in mT' (This is
a standard fact in topological dynamics, proved by Zorn’s lemma.) Now the set X’ € [[X]]¢ is

dense in [[X]]¢ and Lemma 2.3 gives
[(XT]7 € [X]le = [X"Tle = O(n, R)[X )7 -

There is some subset G C O(n,R) such that [[X]]7 = G[[X']]7. Now consider a patch P of
X' of radius R, which is therefore an enclosing set. Each image {g(P) : ¢ € G} must be a
patch of X, and if g # ¢’ then the action g and ¢’ on the points of the patch P cannot be
identical because P is an enclosing set. Any Delone set of finite type contains only finitely
many translation-inequivalent T-patches for any T, see [34, Theorem 2.2]. It follows that G is

a finite set. Thus
|G|

XN = U 61X

is a closed set in the natural topology, since [[X']]7 is closed. Now [[X]]7 is minimal by
Theorem 4.1. (It follows that [[X]]7r = [[X']]7 and |G| =1.) =
We now turn to the proof of Theorem 1.1, which is based on constructing a watermark with

G = Psym([[X]]7). We need a preliminary lemma. If P is a centered p-patch of a set X, let
Psym(P) :={Q € O(n,R): QP € Ax(p)} . (4.10)

We always have

Psym([[X]]7) € Psym(P) . (4.11)

The following lemma gives conditions where equality occurs.
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Lemma 4.3 Let X be a Delone set of finite type in R™ which is minimal. There is a radius pg

depending on X, with po > R, such that if p > po then every p-patch P satisfies

Psym(P) = Psym([[X]}7) - (4.12)

Proof. If p > R then every centered p-patch is an enclosing set of 0, hence Psym(P) is a

finite group. We first show there is no group of rotations G’ that strictly contains G such that
G' C Psym(P) for all patches P . (4.13)

Suppose there were. Now G’ must be finite, and (4.13) would imply that for each ¢’ € G’ and
X' € [[X]]7 one has ¢'X’ € [[X]]7, because every patch of ¢’X’ is translation-equivalent to a
patch of X by (4.10) and (4.13). Thus G’ C Psym([[X]]7), which is a contradiction. It follows

that we have

ﬂPsym(P) = Psym([[X]]7) -
P

Now take any fixed patch Py of radius R and since Psym(Pp) is a finite group, we can
find a finite set of patches Py, ..., Pr, where P; is a p;-patch with p; > R, such that if ¢’ €
Psym(Po)\G, then ¢’ ¢ Psym(P;) for some 7 with 1 <7 < k. All these patches, including Py,
are of radius at most

pli=max{p;: 1 <i<k}. (4.14)

Since X is minimal, by Theorem 4.2 (iii) it follows for any p > Mx/(p') that any p-patch P
contains a translate of each of the patches Py, Py, ..., Pr. Now (4.12) holds for such a patch P,
because any rotation that maps P to a legal p-patch must simultaneously map each translate

of P; to a translate of a similarly rotated legal p;-patch. =

Proof of Theorem 1.1. We are given a Delone set X of finite type such that X is minimal.
Our object is to show that for any sufficiently large value of p, the set £ = £, of all translation-
equivalence classes of p-patches of X has a watermark (A, G), in which G = Psym([[X]]7). If
so, then Theorem 1.1 will follow from Theorem 3.1.

We apply Lemma 4.3, and take for the watermark A any centered patch P for which (4.12)
holds. Let it be of radius T, with 7" > R, and then P is R-enclosing, hence T-enclosing. We
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claim that the pair (A, G) for the set £L = £, of all p-patches with

Now Mx (T) > T trivially, hence we have T" < %p, so property (i) holds. Property (ii) holds
by definition of the repetitivity function. Property (iii) holds by (4.12). Property (iv) holds
because, by definition of Mx (T'), the set of centers of translated copies of any T-patch is
relatively dense with constant at most Mx (7"), so that any 2Mx (T')-patch centered at a point

x € X which is the center of A has translates that are strongly Mx (T")-enclosing, by Lemma 2.1
(ii). =
5. Perfect Local Rules

Most of the explicit constructions of quasicrystalline structures by “local rules” is the liter-

ature involve perfect local rules.

Definition 5.1 (i) A set of local rules £ are perfect local rules under isometries if all X that
satisfy £ are Delone sets of isometry-finite type that fall in a single local isomorphism class

[[X]]e under isometries, which is necessarily isometry-minimal. That is,
Le(L) = [[X]]e - (5.1)

We say that X has perfect local rules under isometries if [[X]]e does.
(i) A set of local rules £ are perfect local rules under translations if all X that satisfy £
under translations are Delone sets of finite type and fall in single local isomorphism class [[X]]7,

which is necessarily minimal. That is
Sr(L) = [X])r (52)
We say that X has perfect local rules under translations if [[X]]7 does.

The main result of this section is to show that for Delone sets of finite type these two

concepts of perfect local rules coincide. We prove the two implications separately.

Theorem 5.1 Let X be a Delone set of finite type in R™. If X has perfect local rules under

isometries, then X has perfect local rules under translations.
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Proof. Since X has perfect local rules under isometries, it is isometry-minimal. Because X
is a Delone set of finite type, it is minimal by Theorem 4.3.

Suppose that there is a set £ of perfect local rules under isometries for X of radius T'. We
let £, denote the set of centered p-patches of X, which is a finite set because X is of finite type.

Now Lemma 2.3 gives
[X1e = O(n, R)[XT] 7. (5-3)

If p > T then any set X' that satisfies £, under translations also satisfies £ under isometries,

so is contained in [[X]]g, hence is of the form
X' =QX forsome @ € O(n,R) and X € [X]]7. (5.4)

By translating X’ and X we may reduce to the case that 0 € X'. Since p>T > R, the patch
P = P(0; p) of X’ strongly R-encloses 0, and by hypothesis is contained in £,. Now (5.4) yields

Q C Psym(P)

which is a finite group. Since X is minimal, by Lemma 4.3 there is a constant py depending on

X such that for all p > pg, every p-patch P has
Psym(P) = Psym([[X]]7) -
Now (5.3) gives for p > max(pg, T') that

X' e Psym([XTID)[X]lr = [XT]7

hence £, is a set of perfect local rules under translations. =
It seems reasonable to conjecture that if a set X has perfect local rules under isometries of
radius p, then it has perfect local rules under translations for the same radius p.

We now prove a converse result.

Theorem 5.2 Let X be a Delone set of finite type in R™. If X has perfect local rules under

translations, then it has perfect local rules under isometries.
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Proof. We prove this result using a watermark (A,G), where G = Psym([[X]]7). Let X
have perfect local rules under translations of radius 7', say, and note that X is minimal. Then
by Lemma 4.3 there exists a constant pg > 2R such that for all p > pg every p-patch P of X
has Psym(P) = G. Let L consist of all py-patches of X with

p1 = max(2Mx (po), T) . (5.5)

Here p; is finite since X is minimal.
We will show that £ is a set of perfect local rules under isometries for X. To prove this,
let A be a fixed centered pg-patch of X. Since p1 > 2Mx (po), the set £ contains (A, G) as a
watermark. The watermark property is established by the same proof as in Theorem 1.1.
Suppose next that 7 € ¥g(L). Then Z contains an isometric copy A of A, so take an
isometry Z = QZ + t that moves A to A. Now by definition of My (po) the set of centers of
isometric copies A of A in any A-centered element of £ form an My (po)-enclosing set of 0. We

now claim that every isometric copy A of A in Z satisfies
A=QA+t, forsomeQ G and teR". (5.6)

We prove this claim by an inductive proof similar to that used in the proof of Theorem 3.1. Each
point z € Z that is a center of some A must have as a py-patch some QY; +t for some Y; € £. If
this pi-patch contains some region A* that satisfies (5.6), then QY; must be correctly oriented
to match the orientation of A*. Since A* is an enclosing set, this forces Q € G, hence QY; € £
because the set of centered p;-patches of X is invariant under Psym([[X]]7) = G. Thus (5.6)
must hold for every isometric copy of A in this pi-patch. By an induction starting from the
original set A centered at 0, we obtain by induction on lists Cr, M}, that every isometric copy
A of A in Z satisfies (5.6), and furthermore the rules of £ under isometries that were applied
at points z, were actually applied using translations. Since X has perfect local rules under

translations, and since py > T, this yields
Zesr(c) = [X)r .

It follows that
Z € 0(n,R)E7(L) =O(n,R)[[X]]T .

By Lemma 2.3 this gives Z € [[X]]¢, hence Xg(L) = [[X]]le. =
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Remark. To get an explicit bound on the radius p; for local rules under isometry needed
in Theorem 5.2, one needs an upper bound for the order of the group G = Psym([[X]]7) and
upper bounds on the repetitivity function Mx (p). An explicit bound for p; for the case of ideal
crystals X is given in [15], namely p; = 2n?log,(R/r + 2) Rk, where k is the number of points

in a unit cell of X.

Acknowledgments. [ am indebted to M. Baake, L.. Danzer, M. Senechal, C. Radin and the
referees for helpful comments and references. In addition F. G&hler provided helpful comments

and corrections to the Appendix.
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Appendix A. Local Rules and Matching Rules for Tilings

Much of the work on quasicrystalline structures has been formulated in terms of tiling
models of quasicrystals. There is a considerable body of work on “local rules” and “matching
rules” for tilings, cf. Levitov [42], Katz [30], Katz et al. [31], Senechal [57]. These concepts
of “local rules” are intended to enforce specific properties in all the tilings that satisfy them:
these properties may include being a Meyer set or cut-and-project set & or being in a single
local isomorphism class (perfect local rules as defined in this paper). Below we give more
precise equivalences. Much literature on local rules and matching rules of tilings requires that
such rules enforce non-periodicity of any structure X that satisfies them, e.g. Senechal [15,
Definition 7.1]. We make no such requirement here.

We consider tilings of R™ by translations of a finite set F of prototiles, each of which is a
convex polytope. For example, the Voronoi domains associated to the points of a Delone set of
finite type give such a finite set F of prototiles, cf. [34, Theorem 2.2]. To any such tiling 7 we
associate the vertex set V(7)) which consists of all vertices of the polytopes in the tiling, and
the centroid set C(T) which consists of the centroids” (centers of gravity) of all polytopes in
the tiling. It is easy to show that V(7)) and C(7) are always Delone sets of finite type.

Much work in the literature is restricted to the special case in which the prototile set F
consists of all zonotopes generated by all subsets of n linearly independent vectors formed
from a collection of s vectors {vy,vg,...,vs} in R™ Assuming all these vectors are linearly

independent, there are (Z) such zonotopes, given by
Pr=A{zvi, +azavi, + ...+ z,vi, 0 <z, <1}, for I ={i,..., i},

where I = {iy,42,...,i,} C {1,2,...,s}. We shall call any tiling of R™ using such prototiles a
zonotope tiling.
Several notions of local rules were introduced by Levitov [42] for zonotope tilings. A set

of r-rules L consists of a finite list of patches of contiguous tiles, each of which fits completely

5The term quasiperiodic tiling is used by some authors to mean that the tiling has a pure point component
in their diffraction spectrum, whose support is contained in a Z-module of finite rank, cf. [21]. However the
constructions given typically produce cut-and-project sets, which are known to have pure discrete spectrum.

If the polytopes are centrally symmetric, the centroid is the center of symmetry. Thus for a Delone set of
finite type X, we have X = C(T) where T is the tiling given by its Voronoi domains.
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inside a ball of radius r. A (zonotope) quasicrystal® is any zonotope tiling T, resulting from a
cut-and-project construction from the lattice Z?, which is defined using a fixed linear embedding
L : R"—=R* which we call the supporting map for T and a vector ¢ € R® which we call the offset
vector. Here T has vertex set V(7)) given by orthogonal projection of all the vertices of the
unit cubes in Z™ which intersect the translated subspace L(R")+ c onto L(R"), and we identify
L(R") with R™ using L. Levitov says that a zonotope tiling 7 has strong local rules if its set of

r-rules £ for some fixed r has the property
(i) 7 is a zonotope quasicrystal.

(ii) Every zonotope tiling that satisfies £ is a zonotope quasicrystal with the same

supporting map L : R"—=R?* but possibly different offset vector.

This definition implies that the vertex set V' (7) has perfect local rules in the sense of Section 5,
provided that the projection of the lattice generated by the zonotope vertices on internal space
R*~" is dense; otherwise there are uncountably many local isomorphism classes of zonotope
tilings, depending on the offset vector.

Levitov [42] says that a zonotope tiling 7 has weak local rules if its set of r-rules £ for some

fixed has the properties:
(i) 7 is a zonotope quasicrystal.

(ii) Every zonotope tiling that satisfies £ has vertex set V(7)) that is a projection of a
subset of Z" onto L(R?®) 4 ¢ that consists only of points at most a constant distance from

L(R®) + c.

The condition (ii) says the vertex set V(7') of any tiling 7’ that satisfies £ is a Meyer set
which has support function L, see [34, Theorem 3.1]. Burkov [6] shows that a certain 8-fold
symmetric parallelogram tiling of R? does not have weak local rules in this sense. Ingersent [29]
further refines this classification of local rules.

Le and Sadov (see [39, p. 72]) introduce related concepts. Their definition of set of local

rules based on atlases corresponds to a set of local rules under translations for the centroid set

8This is a special case of a quasiperiodic tiling as defined in Le et al. [39].
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C(T). They also define local rules based on colorings, which are a special case of matching
rules, as defined below.

Matching rules enlarge the prototile set by replacing each prototile with a finite number of
related prototiles, by adding marks or colors to the prototiles. Matching rules consist of a finite
list of ways that adjacent tiles with the markings can be legally arranged (under translations).
Sometimes matching rules are prescribed as colorings of vertices or faces of the polyhedra,
with a requirement that colorings on immediately adjacent tiles must match; one can formulate
these as vertex colorings. These definitions have been formulated as restrictions on immediately
adjacent tiles (as in a jigsaw puzzle) but we may obviously generalize them to allow a finite list
of legal colorings of larger r-patches that include non-adjacent tiles. We call these generalized
matching rules. The effect of matching rules is to narrow the class of allowed tilings.

A notion of equivalence of different tilings called mutual local derivability was introduced by
Baake and Schlottmann, [4], [3]. A tiling 73 is said to be locally derivable from a tiling 7y if there
is an isometric? copy 7{ = Q77 +t and if there is a radius R’ such that the location of the tiles
of T3 in the ball B(x,3R) is entirely determined by the patch of 7/ in the ball B(x; R'), where
R is the diameter of the largest tile in T5. Two tilings 77 and Ty are mutually locally derivable
if each is locally derivable from the other. An MLD-class of tilings, denoted M LD(T), is the
set of all tilings mutually locally derivable from 7. It is a union of local isomorphism classes of
tilings. If 7 is a tiling satisfying a set of matching rules then the tiling 7' obtained from it by
erasing the markings is locally derivable from 7, but the converse need not hold: they may be
in different MLD classes.

We say that a tiling has perfect matching rulesif there exists a set of matching rules such that
all tilings that satisfy it are in the same local isomorphism class of tilings under translations.
That is, the allowed tilings with the markings added have perfect local rules. If one tiling in an
M L D-class has perfect matching rules, then they all do, cf. Baake [2, Theorem 11.2].

We can define analogous notions for Delone sets (under translations or under isometries).
A Delone set X3 is locally derivable under isometries (resp. translations) from a Delone set X
if there is an isometric copy Xj = QX 4+t (resp. translation Xy + t) and a value R’ such for

each x € X7 each 3R-neighborhood X; N B(x,3R) is determined by the isometry equivalence

°Baake et al. [4] and Géhler et al. [22] also permit similarities 7;—A7; in this definition. We exclude
similarities here.
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class of the set X{ N B(x, R'). We say that X; and X are mutually locally derivable if each is
locally derivable from the other (under isometries or translations, respectively).

Finding generalized matching rules using vertex colorings is analogous to changing the
Delone set of finite type X (under translations) by replacing it with a new Delone set X' in
which each point x of X is replaced with a particular finite local configuration of points W; + x,
where W; is drawn from a finite list £’ of point configurations, each of which includes 0, and all
are inside the ball B(0, %r), where X is an (r, R)-set. The list £" of configurations plays the role
corresponding to the list of colors that might be assigned to vertex x. In such a construction

the resulting set X' always satisfies

Xcx'. (A1)

In particular, we may choose each element of W; to consist of n 4+ 2 points, which consist of
0 and the vertices of a simplex enclosing 0, with no two of these simplices equivalent under
isometries. In this case we can recover X from X' as the set of centers of %r—stars of X' that
are enclosing sets. Thus X is locally derivable from X', but X’ may not be locally derivable
from X.

We can use the definitions above to define a notion of perfect matching rules for Delone

sets, as follows.

Definition A.1. A Delone set X has perfect matching rules under isometries (resp. under
translations) if it is locally derivable under isometries (resp. under translations) from a Delone

set X’ which has perfect local rules under isometries (resp. under translations).

One can obtain nontrivial sets X which have perfect local rules (under translations) from
translation tilings of R™ with a finite number of tiles that have “perfect matching rules.” One
assigns a different finite set of points to each prototile with the matching conditions added, and
let X be the set of points that results from a tiling that obeys the “perfect matching rules.”
Such a conversion method is described in specific cases in Klitzing and Baake [32] and Géhler
et al. [22]. A general method for proving that certain tilings have “perfect matching rules” is
sketched in Géahler [20]. It is based on tile sets having an inflation-deflation rule having the
unique composition property, which appears in special cases in Ammann et al. [1], see also

Solomyak [59]. In particular, it has been repeatedly demonstrated that Penrose tilings have
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“perfect matching rules” under translations. A three-dimensional generalization appears in
Danzer [10].

In a similar fashion one can convert tilings with perfect local rules under isometries to
Delone sets having perfect local rules under isometries. The most general result demonstrating
perfect local rules under isometries for tilings is that of Goodman-Straus [22], which proves
that perfect matching rules exist for nearly all substitution tilings, i.e. perfect local rules after

the matching conditions are added.
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