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49. We conclude that if m < 0 and g(m) = 0, then ¢’(m) > 0. Since g(0) > 0 and g(—o0) = —o0,
we see that g(m) = 0 has exactly one real solution with m < 0. Let m, be this root of ¢g. Note

that g(m) > 0 for m € (my,0), and g(m) < 0 for m € (—o0, my).

It is easy to see that m, = m, if and only if @16y = 1. Assume a1b; = 1; then, since
u(m) = v(m) = 0 implies g(m) = 0, we have m, = m, = m, = —b}/S. We obtain the reduction
1+ b; m?
f(m) = m® —— T

(14 b; rsm?)v(m)?”

We see that f(m) is monotonically decreasing on (—o00,m,) and monotonically increasing on
(my,0), tending to 0 from below at both endpoints and tending to —oo from both sides at
my. We conclude in this case that, for m < 0, (9) has no solutions for & > 0 and exactly two
solutions for a < 0.

Next, assume m,, > m,. The argument here is similar to the one above. In this case, we
have m, € (—o00,m,) is the sole critical point of f in m < 0. On (—o0,m,) we have f < 0
and unimodal, tending to zero at the endpoints. On (m,, m,) we have f > 0 and f' > 0 with
f(my) = 0 and f(m,—) = +00. On (m,,0) we have f < 0 and f’ > 0, with f(0) = 0 and
f(my+) = —oo. We conclude that (9) has exactly one negative solution if & > 0 and at most
three negative solutions if a < 0.

Finally, assume m, < m,. Since f(m,) = f(0) = 0 and f(m) < 0 for m € (m,,0), we
observe that f/(m) = 0 has a solution in (m,,0). We conclude that m,, the sole negative critical
point of f, is in (m,,0). Thus, on (m,,0) we see that f is unimodal and negative, and tends
to zero at the endpoints. On (m,,m,) we have f > 0 and f' < 0, while f(m,+) = +oc and
f(my) = 0. On (—o0,m,) we have f < 0 and f' < 0, while f(m,—) = —o0 and f(—oc0) = 0.
We conclude that (9) has exactly one negative solution if @ > 0 and at most three negative

solutions if & < 0. This completes the proof. O

Conclusion

Sturmfels paid us the $500.
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By Descartes’ rule of signs, © and » both have at most one root in m < 0. It is clear that both
have at least one negative root, hence, both have exactly one negative root. We will let m, and
m, denote the negative root of u and v respectively.

Step 5: Here we consider the range m > 0. If @ < 0 then there are no solutions to (9) with
m > 0since f(m) > 0in this case. We claim that, if & > 0, then there are at most two solutions
to (9) with m > 0. Note that f(0) = 0 and f(4o00) = 0. Since v(m) > 1 for m > 0 the claim
follows if we show that f has a single critical point (necessarily a maxima) for m > 0, i.e., f(m)
is unimodal.

Differentiating m”u(m)v(m)~3 with respect to m, we obtain

"(m) = mb g(m)
f( ) U(m)47
where
g(m) = (Tu(m) + mu'(m))v(m) — 3u(m)mv'(m)

= —Trom™— (a; +9a; rg)m12 —3a;2m"0 —4ry b, m? +
+(=6b,a;, +14—14ry3+6a; rs b])T’Z?‘I‘
+4 a, m5+3b12r3m4+(r3 by +9b1)m2—|—7.
The coefficients of ¢ for terms of degree greater than 7 are negative and the coefficients for
terms of degree less than 7 are positive. Thus, Descartes’ rule of signs implies that g(m) has
at most one positive root, hence, f has at most one positive critical point.
Step 6: We consider the remaining range m < 0. We claim that for m < 0 equation (9) has

at most one solution if @ > 0 and at most three solutions if a < 0. This will complete the proof.

We will first show that f/(m) = 0 can have at most one solution in m < 0. Note that here
f'(m) = 0 implies g(m) = 0. Now,
mg'(m) —7g(m) = —rym? (49 m'% 4+ 8b; m® 49 612)
—(9 ay Il 1 8a;, md + 49)
—5(a; +9a; ry) m!'? —5(rgb; +9b;) m?
< 0.

The inequality follows by noting that 49m'® + 8 b; m® + 9b,% is positive everywhere, being

quadratic in m® without real roots, and that a similar statement applies to 9 a;2m'°+8 a; m® +
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8 b 3
<1 - (1_3) asm’y® = m—a; m®— as (m L) ; (8)
bs bs

If a3 = b3 then (7) reduces to
mé+ a; mé —b, m*—m=0.

By Descartes’ rule of signs, this has at most one root for m > 0 and no roots for m < 0. It is
clear that one positive root exists, and for this single positive root there is a unique real value
of y that solves (5) (uniqueness here follows from Descartes’ rule of signs). Thus, there is one
solution to the original system in this case.

Henceforth we assume az # bs, and set

T3 = (Lg/bg 7£ 1.

In this case (7) and (8) are equivalent to (5) and (6). Note that when az # b3, then for fixed m
there is a unique real value of y satisfying (7), and similarly for (8).
Step 4: Eliminate y by cubing both sides of (8) and dividing them into the respective sides

of (7). Then multiply through by m? to obtain

—bs (1 — 7‘3)_2 as > = ! <1 —agm® —m’ b, m2) .
(1 —a; m5 —rg (m7 — b, m?))°

Note that the right-hand side does not depend on ay. Thus, the left-hand side can be set to
any non-zero constant independent of the right-hand side. It is notationally more convenient
to replace m with —m. Thus, we are left to consider

m” (1 + a; m® +m” + b; m?)

(14 a; m>+ry (m7+ b, m2))*’

where a can be any non-zero constant. Let us write this equation as

_ 7 u(m)
f(m) =-m ‘U(’I’IZ)S = o, (9)
where
u(m) = 1+ a m® +m’ + b; m?

1+ a; m5—|—r3(m7+ b, m2).

<
—_

3
~—

[l
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Figure 4: B. Sturmfels at Mathematisches Forschungsinstitut Oberwolfach. (Photo courtesy of
G. Ziegler.)

coefficients positive; and in all other cases resulting from these two by sign changes of the
variables z — —z or y — —y.

Theorem. For ay,az,by,bs > 0, azby > 0, the system (4) has at most 3 roots in (R*)2.
Proof. Step 1: Without loss of generality we can assume ay = by. If ag # by then we obtain
1/7

an equivalent system in which ay = by as follows. Let v := (by/az)"/*. Substitute y — vy into

and multiply through the second equation in by y~>.

Step 2: Let = y/m, and write the equations in the equivalent form

m = a;m®+ap m3y3 + as Z/g (5)

m® = by m®+ asm3yP + by 0. (6)

This birational transformation preserves roots in (R*)%.
Step 3: Eliminate m3y® and y° respectively from these to obtain the following pair of

equations:

(ag — bs)y® = m—a;m®—(m®— b, m?) (7)
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sum of the volumes of the mixed cells in any subdivision 7, of Ay + Ay + ...+ A,, i.e.,

V(Al,AQ,...,An) = Z UOln(F) )

F  a mixed cell
of 7w

see [6]. In the example 7, in Figure 3, the three mixed cells have areas 15,21 and 27, and
V(A1,Az) = 63. Itenberg and Roy observed that any mixed cell F' of a subdivision which has

vol(F) = 1 necessarily has wt(F) = 1. It follows that if (Aq,...,A,) has a sufficiently generic

function w = (w1,...,w,) such that all the mixed cells of 7,, have volume 1, then

n(A1,Ag, .. AL = V(AL Ay, LA,
and the Itenberg-Roy conjecture holds.
Sturmfels’s Challenge Problem
B. Sturmfels offered a reward for resolving the Itenberg-Roy conjecture for the system

2 = a; 9’ + as 2°y° + a5 25¢° (4)

Yy = bya’ + b2’y + by a®y°

with aq,aq, as, by, be,b3 > 0. Here the Newton polytope bound of Bernstein’s Theorem for the
number of roots in (C*)? is 63, and the combinatorial bound for roots in (R*)? is 3. Its signed
Newton polytopes (Al,Ag) appear in the example in the preceding section. The system (4)
was found by computer search to be one that exhibits a particularly striking difference between
the Newton polytope bound and the combinatorial bound.

Sturmfels circulated his challenge problem at Oberwolfach and other places as an adver-
tisement for the Itenberg-Roy conjecture, see Figure 4. (The system (4) arises by removing a
factor of z and a factor of y from his first and second equations, respectively.)

We solve Sturmfels’s problem using ad hoc techniques involving Descartes’ rule of signs in
one variable. Perhaps this solution contains the seed of some idea relevant to the general case;
however this is not obvious. It does verify the Itenberg-Roy conjecture in a nontrivial case.

We will actually prove the Itenberg-Roy conjecture for N(Al, Ag) for all sign combinations
of the coefficients for which the conjecture predicts that the system (4) has at most three

2

solutions in (R*)*. These consist of all positive coefficients; of a3 < 0, by < 0 with all other

12
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Figure 3: Polyhedral Subdivision of Ay + Ag.(Function values of w; 3 are indicated.)

For example, if § = (=1, —1) then the mixed cell I above has El(mgl)) = (=1)(=1)*(=1)° = -1,
€1(m§2)) =1, €2(mgl)) =1(1)°(=1)° = -1, €2(mgz)) =1, hence F' is alternating.

The calculations above depend on the signed Newton polytopes, and the dependence on w
is completely specified by the polygonal subdivisions 71,7 and 7,,. Consequently only finitely
many cases must be examined to determine nt(A;, Ay) and n(A, Ay).

The Itenberg-Roy conjecture is true for n = 1 by Descartes’ rule of signs. Itenberg and

Roy observed that it is true for N(Aq,...,A,) whenever n(Al, .. ,An) = V(A1,...,A,) by

Bernstein’s Theorem. The combinatorial mixed volume V(Aq,...,A,) is always equal to the

11



There are three mixed cells in 7, which are the three shaded parallelograms in Figure 3. The
function w = (w1,ws) is sufficiently generic.

The general formulae for (A, Ay,w) and (A1, Ay,w) consist of a sum of contributions
from each mixed cell F' of weights wi*(F) and wi(F), respectively.® Given a two-dimensional
mixed cell, its decomposition is into an edge F} of 7 with vertices mgl) = (mgll),mg)) and

D _ ) () (2) (2)

mg = (mgy,, myy ) in My and an edge F, of 7, with vertices m;”’, m3” in Mj,. The edge F] is
(1) (1)

alternating if the signs of its endpoints don’t agree, that is, if €¢;(m; ') # € (my ’). A mixed cell

is alternating if all its edges are alternating. The weight wit™(F) for a mixed cell I is defined

by

wit(F) = 1 if F is alternating ,
"] 0 otherwise .

The weight wt(F") for a mixed cell I in R™ is defined by
wt(F) := E wtt(Fy) ,
se{+1,-1}n
in which 6 = (61, 62,...,6,), and the system Fjs(x)is the system obtained from F'(x) by replacing
each variable z; by é;x;. This has the effect of changing the sign pattern ¢;(mq,mz) of m =
(mq, m3) to

€(my,mz) = €;(mq, mg)(61)"(62)™2 .

Itenberg and Roy derived a combinatorial formula for wt( ') which shows that it can only take
the values 0, 1, or a power of 2, up to 2".

For the example in Figure 3, there is a mixed cell " = F; 4+ F; in 7, where F} has vertices
mgl) = (3,5),m§1) = (6,8), and F;, has vertices m§2) =(0,5), mgQ) = (8,6). For this mixed
cell, Fy is not alternating and F is alternating, hence wt*(F) = 0. The other two mixed cells

in Figure 3 also have wt™(F) = 0, hence
n+(A1,A2,w) =0.
Further computation yields wt(#) = 1 and

TL(AhAQ,L«)) =3.

*Here wt™(F) and wi(F) depend on the subdivision 7., and the sign patterns e1,..., €x.

10



Figure 2: Signed Newton polytopes and subdivisions 7, 5.

As an example, consider the signed Newton polytopes given by
My :={(0,5),(5,0),(3,5),(6,8)} and M, :={(0,5),(5,0),(5,3),(8,6)}
with sign patterns
g =41,1,-1,1} and e =41,1,-1,1},
together with the functions wy and wy on My and My with values
wy :=1{5,6,2,7} and wo :={1,4,10,7}

corresponding to the vertices above. The resulting signed Newton polytopes A; and A, and
the polyhedral subdivisions 7 and 75 of Ay and Aj are indicated in Figure 2.
The polyhedral subdivision 7, induced by w2 on Ay 4 Ay is pictured in Figure 3 and the

values of wy 2(-) are indicated. Note that for the points x = (5,5) and x = (11, 11), we have

wi,2(5,5) = min(wi(0,5) 4+ we(5,0), wi(5,0) + w2(0,5))

= min(9,7)=7,

wi2(11,11) = min(wi(3,5) + we(8,6), w1(6,8) + wa(5,3))

= min(17,9)=9 .



“sufficiently generic” in a sense explained below. First, the function w; induces a polygonal
subdivision 7 of Ay as follows. Look at the convex hull T'; of the graph of wy on Aq, i.e., of
the points {(m,w;(m)) : m € M;} in B3 This is a polytope Ty in R? and its orthogonal
projection onto its first two coordinates has image Ay. The orthogonal projection of the lower
convex hull of I'y onto A gives the polygonal subdivision. Here the lower convex hull of T'y
consists of the two dimensional faces I’ of I'y such that if (z1,23,%3) € F then (21,23,t) & I'y
if t < t3. The function wy similarly induces a polygonal subdivision 75 of Ay. Together they

induce a polygonal subdivision 7,, of Ay + A, using the function
W M+ My =R,
defined by
wi 2(m) ;= min{w;(my) + wo(mz) : My + My = m, my € My, my € My} .
Each two-dimensional face F of 7, has a unique representation
F=rn+F,

with F7 a face of 71 and F; a face of 7. We say that the function w = (wq,wz) is sufficiently

generic if the equality

dim(F) = dim(F) + dim(F3) .

holds for all two-dimensional faces F’ of 7,,. This condition holds for almost all functions w.
In this polygonal subdivision an especially important role is played by the mixed cells. A

mized cell F of 7, is a cell F = Fy + F, whose representation 2 has

Note that the mixed cells and the polygonal subdivision 7, are completely determined by the
monomial set M and the functions w; and wy. The signs € = (eq,...,¢,) attached to M will
enter in computing n"’(Al, v An,w) and n(Al, v An,w) as a sum of contributions from the

mixed cells.

?In the n-dimensional case a mized cellis acell F = Fy + Fy + ...+ F,, of Ay + Ay + ...+ A, such that
dim(Fy) =dim(Fz) = ... = dim(F,) = 1.



in which ¢ is a parameter such that ¢ is positive and sufficiently close to 0, and
witM;—=RY, 1<i<n,

are essentially arbitrary functions.
A signed Newton polytope A is a set of points M C Z%, whose convex hull is A, together

with an assignment of signs to the points of M, i.e. a function
e: M — {+1,-1}.

Itenberg and Roy obtained lower bounds nt(Ay,...,A,,w)and n(A4,...,A,,w) for the num-
ber of roots of (3) in (RT)™ and (R*)", respectively, which apply when ¢ is positive and suffi-

ciently close to 0. They then define

n+(A1,...,An) = max[nt(A,..., AL w)],
n(Al,...,An) = maX[n(Al,...,An,w)].

These quantities can be determined by a finite calculation, described below. By definition these

quantities are lower bounds for N+(A1, .. ,An) and N(Aq,...,A,),ie.

NY(Ay,.. ., AY)

v
S
+
e
|
2

N(Ay,...,A) > n(Aq,. A .

The multivariate Descartes’ rule conjectured by Itenberg and Roy is that equality always
holds.

Itenberg-Roy Conjecture. For any set of signed Newton polytopes in R",

IV+(A1, .. ,An) = n+(A1, .. ,An)

J\T(Al,...,An) = n(Al,...,An).

This conjecture is based on the belief that the Viro construction includes extremal systems.
It is known that there are arrangements of zeros not produced by any Viro construction (3) in
the limit as parameter values ¢ — 07, in some analogous problems, see Itenberg [8, Section 7].
It remains to describe the formulae for n+(A1, .. .,An,w) and n(Al, .. .,An,w). For sim-

plicity we suppose that the dimension n = 2. The functions w = (w1,w;) are required to be



The bound of Theorem 2.1 can be extended to a bound on isolated zeros in C", see Rojas

[15] and Huber and Sturmfels [7].
Multivariate Descartes’ Rule

For comparison purposes, we reformulate Descartes’ rule of signs for a univariate polynomial
T
fla) =) eja™,
i=1

in terms of its signed Newton polytope A, which consists of the Newton polytope A = [mq, m;],
plus all its points {m; : 1 < ¢ < r} C Zxo, with a sign {e(m;) = sign(c;) : 1 <4 < r}. The line
segment A is subdivided into r — 1 subintervals {J; = [m;,m;;1] : 1 < ¢ < r — 1}, and each

subinterval is assigned a weight counting the sign change, namely

0 if e(m;) = e(mip1),
which is
1
wtt(J;) = 5(1 + sign(cicitr)) -

Then

r—1

NT(f):= Z wtt(J;) .

=1

The number of negative real zeros n~(f) is bounded similarly with a bound N~(f) obtained

from the function f(—=z), which uses the weights
1 e
wt™(J;) = 5(1 + (= 1)™ i sign(ciciqr)) -

Now set wt(.J;) = wtt(J;) + wi™(J;). We obtain the upper bound N(f) for the total number

of zeros in R* = R\{0} given by
r—1

N(f):= Z wt(J;) .

=1

Fach weight wt(.J;) takes on a value 0, 1 or 2.

Itenberg and Roy actually determined lower bounds for the number of isolated zeros of
special systems of polynomials in R™. This they did using the method of Viro [19], as extended
to apply to complete intersections (see above) by B. Sturmfels [17]. They considered systems

filz1, ..., zp0,1) = Z e(m)@m™x™ 1 <i<n, (3)
meM;



Figure 1 pictures the Minkowski sum A; and A, for the example above. The Minkowski sum
of n polytopes is defined similarly. (This definition makes sense for arbitrary convex bodies

Ay, Ay, see Schneider [13].) We define the combinatorial mized volume V(Aq,...,A,) by the

formula
V(AL A, A) =3 (=)™ ST ol (A + .. 4+ Ay, (1)
k=1 11 <10 <. .. <1,
in which vol,(-) denotes n-dimensional volume. In particular V(A,A,...,A) = nlvol,(A).

The combinatorial mixed volume differs by a factor n! from the usual Minkowski definition of
mixed volume, see [13, Lemma 5.1.3].

n

Theorem (Bernstein). The number of isolated zeros in (C*)" of a system of n polynomials

with complex coefficients

is at most the combinatorial mized volume V(A1,Aq, ..., A,), where A; is the Newton polytope
of filz1,...,2y).

Bernstein [1] also observed that a system of “general position” polynomials (2) having
Newton polyhedra Aq,..., A, is a regular system and has ezactly V(Aq,...,A,) isolated zeros
in (C*)". In particular V(Aq,...,A,) is an integer.!

One important special case is where each f;(z1,...,,) is a dense polynomial of total degree

d;, in which M; = {m: E;’L:I m; < d;}. In this case a calculation reveals that
V(A1,...,Ay) =didy. .. d,
which is the upper bound given by Bezout’s theorem for the number of zeros of the system (2)

in C".

In the two-dimensional case, the combinatorial mixed volume formula (1) becomes
V(A1,Ay) = area(Aq + Ay) — area(A;) — area(Ay) .

For the example in Figure 1, we have area(A;) = 0, area(Ay) = 3, area(A; + Ay) = 2, so that
the Newton polytope bound V(Aq,Az) = 2. It is easy to check that this system has no zeros
with #1 = 0 or 2o = 0, hence all zeros in €% are in (C*)%. The Newton polytope bound for this

case strictly improves on the Bezout bound, which is 8.

TEach Minkowski sum Az +A,+.. .+ A;, on the right side of (1) is a lattice polytope, hence its n-dimensional
k

n!

volume is of the form = for some integer k. This however only guarantees that n!V(Aq,...,Ay) is an integer.



Fewnomials and their Complex Zeros

Polynomials described in terms of their constituent monomials are called fewnomials or
sparse polynomials, see [6], [11]. (The term fewnomial is due to Kushnirenko.). A monomial

m my 12

™ = z{"zy? ... 27" is indexed by the integer vector m = (my, mg, ..., my) € Z2,. The sparse

representation of a polynomial f(x) is the data {¢(m): m € M}, where

meM
and all coefficients ¢(m) # 0 for m € M. The set M := M([f] C Z3, indexes the monomials
present in f(x).
A fundamental invariant of a fewnomial is its Newton polytope A = A(M), which is the
convex hull of the points of M. This polytope is a lattice polytope in R™, i.e. all its vertices are

in Z™. Figure 1 pictures the Newton polytopes A1, Ay for the system

filzr,z2) = 1+ 2129 + 32723,

fo(z1,22) = 1—21 422129 .

This example illustrates that Newton polytopes may be of lower dimension than n.

Aq Ao Ay 4+ Az

Figure 1: Newton polytopes

In 1975 Bernstein [1] and Kushnirenko [12] obtained upper bounds for the number of so-
lutions in (C*)" of regular systems in terms of the mixed volumes of their associated Newton
polytopes. Mixed volumes can be defined in terms of volumes of Minkowski sums of polytopes.

The Minkowski sum Ay + Ay of two polytopes is

A1—|-A2 = {X1—|-X22X1 GAl,XQGAQ},



0 in (R*)" can be bounded purely in terms of the cardinality S; := | M|, by

n

H(SZ' -1).

i=1
This conjecture remains open. In 1980 A. G. Khovanskii [10] obtained a weaker upper bound

depending only on the 5;, namely
(TL+2)SQS(S+1)/2 ,

in which S is the total number of distinct monomials appearing in all the p;(z1,...,2,), so
that S < 37 ,.5;. Bounds on the number of real zeros have applications in computational
complexity theory, see Risler [14].

In studying these questions it is natural to look for a multivariate analogue of Descartes’
rule of signs. Consider, for a regular system with real coefficients, its sets of monomials M :=
{M; :1 <i<n} and the pattern of signs € = {¢; : 1 < i < n} attached to its coefficients; each
€ M; — {+1,—1}. Set A; = (M, €), and let N+(A1, .. ,An) and N(Al, .. ,An) denote the
maximal possible number of roots in the positive orthant (R*)™ and in (R*)", respectively. In
view of Khovanskii’s bound these numbers are well-defined and finite. A multivariate Descartes’
rule would be algebraic formulae for the numbers N*(Aq,...,A,) and N(A4,...,A,). Recent
developments in real algebraic geometry due to O. Viro [18] have suggested a possible answer.
Sturmfels [17] developed formulas for Viro’s method applied to regular systems. Using these, I.
Itenberg and M.-F. Roy [9] produced conjectural explicit combinatorial formulae for the values
of N"’(Al, .. ,An) and N(Al, .. ,An) These formulae are known to be correct in a few special
cases. To raise awareness of the Itenberg-Roy conjecture B. Sturmfels proposed as a challenge
problem a special case, and offered a $500 reward for its solution, see Figure 4.

In this paper we give an overview of the Itenberg-Roy conjecture and then present a solution
to Sturmfels’s challenge problem. The combinatorial invariants in the Itenberg-Roy conjecture
involve triangulations of the Newton polytopes A; attached to the polynomials fi(z1,...,z,).
We first describe Newton polytopes, and their relation to the complex zeros in (C*)" of regular

systems. In the following section we describe the Itenberg-Roy conjecture in the special case

n = 2 (to reduce notation), and in the final section we solve Sturmfels’s problem.
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Descartes’ rule of signs bounds the number of positive real zeros n™( f) of a polynomial f(z)

in one variable. If
f@) =Y eja™ .
=1

with 0 < m; < mg < ... < m, and with all coefficients ¢; # 0, then the number of positive
real zeros of f is upper bounded by the number of sign changes N*(f) between consecutive
coefficients ¢; when taken in order of increasing j, see [2], [5, Chapter 6]. There is a similar
upper bound N~(f) for the number of negative real zeros of f which follows by applying this
bound to the polynomial f(—z). Together these give an upper bound N(f) = NT(f)+ N~(f)
for the total number of zeros in R* = R\{0}. For any set {m; : 1 < i < r} one can construct
polynomials f(z) in which the upper bounds N*(f) and N(f) both hold with equality.

It immediately follows from Descartes’ rule of signs that the number of nonzero real roots

n(f) of fis bounded in terms of the number of monomials r appearing in f, namely

n(f) <2(r—1).

This bound does not depend on the degrees of these monomials. In contrast, the number of
nonzero complex roots of f is exactly m, — mq, by the fundamental theorem of algebra.

In the 1970°s A. G. Kushnirenko raised the problem of bounding the number of real roots
in (R*)" of a system of multivariate polynomials purely in terms of the monomials appearing

in the various polynomials. Call a system F = {fi,..., f,} of n polynomials in n variables
fi(xla'r?a"'a‘rn):oa 1<i1<n

a regular system if its zeros in C* are isolated and nondegenerate, that is, if the system F'is a
complete intersection. (Here nondegenerate means that the Jacobian determinant of the system
is nonvanishing at each zero.) Let M; denote the set of monomials appearing in fi(z1,...2,).

Kushnirenko [10, p. 123] conjectured that the number of roots of a complete intersection F(x) =
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Abstract

Descartes’ rule of signs bounds the number of real roots of a polynomial f(z) in terms of
the sign pattern of its nonzero monomials. Recently I. Itenberg and M.-F. Roy conjectured
a multidimensional generalization of Descartes’ rule of signs, which, if true, would be best
possible. B. Sturmfels circulated a special case of this conjecture as a challenge problem. This
paper describes the Itenberg-Roy conjecture and solves Sturmfels’s challenge problem.



