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integer a. All these indecomposable tilings have the same weight since that is determined
only by a and J of (7.3). There are uncountably many translation-inequivalent tilings
among them since the differences of the elements of B take a finite number of values (mod
1) one of which is #;.
Example 7.5. A characteristic function that tiles R but only with multiple tilings.

The function f = x7 for T' = [0, 2]U[3, 4] does not give a tiling of R of weight 1. However

it has a tiling of R of weight 3 with the tile set Z.
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and it is clear that, for example, whenever ¢y € (1/2,3/4) there is a t3 such that g(+1) = 0.
Thus there is a large supply of tilings of f of the form (7.2).
Our purpose is to prove the existence of an indecomposable tiling of f with a tile set of

the form

az+{ﬁ1,...,ﬁj} ) (73)

with the ratio (8 — 1)/« being irrational for some k, [, something which, according to the
result of [6], could not happen if f were the characteristic function of a compact set.

Any tiling of f with tile set A asin (7.2) can be written as a finite sum of indecomposable
tilings. Each of those is periodic of the form (7.3). Because it is contained in in the tile
set (7.2), the period a is necessarily rational, and we can always take a to be an integer
by enlarging the number of cosets. The set B = {fy,...,0s} is then constrained to be a
subset of {0,..., [a]} 4+ {0,+t;, +2}. Consequently there are countably many choices for
the set 5.

It is clear that f does not tile with any tile set C Z. Therefore any indecomposable
component of the tile set A of (7.3) cannot involve only integers. Thus there is an indecom-
posable tiling of f with tile set B which contains an integer m and a number of the form

n+1t;, wheren € Zand j =1or2,say j = 1:
B={m,n+t,...}. (7.4)

Fix one of the countably many choices for B and let #; vary in the interval (1/2,3/4)
with 3 defined accordingly from the requirement that ji(+1) = 0. For all but countably
many values of ¢; the set B contains two cosets, namely m and n + ¢1, whose difference is
irrational. Letting B vary we see that the total exceptional set of #;’s is countable. But t;
is allowed to vary over a whole interval, thus there is a ¢; for which the tiling (7.2) contains
an indecomposable component of integral period and two cosets with irrational difference.
Example 7.4. A nonnegative function having uncountably many translation-inequivalent
indecomposable tilings, all of the same weight.

The function is the same as in Example 7.3,i.e. f(z) =14 cos27rz for 0 <z < 1 and 0
otherwise. Notice that at least one set B of the type (7.4) occurs uncountably many times

(as ty varies) as the set of cosets of an indecomposable tiling of the form (7.3) for a fixed
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Let x be the characteristic function of the interval [—1,1], whose Fourier transform is

2671 sin £, Define a rapidly decreasing sequence ¢, — 0 so that the sequence

fr(z) = %X(ﬂﬁ/ﬁ)*---*%x(ﬁ/%) (7.1)

converges uniformly to a function f which is nonnegative and of compact support equal
to the interval [—R, R], for R = > 72, €x. (This is certainly possible since, for & > 1,
the function fi is uniformly continuous and fry1(z) is an average of the values of fi in
a small interval around z.) Because of the uniform convergence and the compact support
we then have, for each £ € R, f(f) = limg_ ﬁ(f) Since ﬁ(f) is the product of the
Fourier transforms of the convolution factors in (7.1) we conclude that f vanishes at the
points mn/eg, for all k = 1,2,..., and n € Z\{0}. By Theorem 3.1(ii) f tiles with tile set
Ap = 2¢,7, for each k. Since [ f(t) dt = f(0) = 1 the corresponding weights wy, are
equal to (2¢)7L.

Now choose the numbers €; so that the set {wy : k£ =1,2,...} is linearly independent
over Q. This implies that the semigroup W( f) requires infinitely many generators.
Example 7.3. A function having an indecomposable tile set aZ 4+ {1, ..., 3} with integral
period o and two cosets B and [; such that B — B; is irrational.

Let f(z) = 1+ cos2rz for z € [0,1] and let f(z) = 0 otherwise. We consider tilings of

f with tile sets of the form
A=7+ {O,itl,itg}, 11,19 € [0,1) (72)

For f to tile R with A it is necessary and sufficient that the function 1+ cos 27wz defined on
the circle R/Z tiles R /Z with tile set {0, 4%, +¢2}. Doing harmonic analysis on R/Z instead
of R, the analogue of Theorem 3.1(i) is that a necessary and sufficient condition for A to
tile is that the measure p on R/Z giving unit mass to the five points 0,+¢;, +t5, has Fourier
transform pi (defined now on Z, the dual group of R/Z) whose support is contained in the
union of {0} and the integer zero set of f Since f vanishes at every integer but at 0 and
+1 it is enough to ensure that f(£1) = 0. But
1

p(£l) = / eI du(z) = 1 + 2 cos 2ty + 2 cos 27ty ,
0
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for j = 1,2, and are pictured in Figure 7.1.
2— 2—

Figure 7.1: f; and fs.

The function fi(z) tiles R with weight 0 using the tile set Z of bounded density. However
it also tiles R with weight —1 using a general tile set A; that consists of taking all points

n € Z with multiplicities mq(n) = n?. This tile set has polynomial growth
TP < #{acA: o <T} < T?.

hence p4 is a tempered distribution. The conclusion of Lemma 2.3 (i) fails to hold for the
general tile set A;. In this case the measure pyg = Y, o, n%6, has the Fourier transform
=2y 6
HA = 2T Z 2mn
nesk

(2)

which is a tempered distribution that is not a measure. (Here 65" is the second derivative
of the point mass 4,.)

The function fy(z) tiles R with weight 1 using the tile set Z of bounded density. It also
tiles R with weight —1, using a general tile set A, that consists of taking all points n € Z
with multiplicities mq(n) given by the recursion my(0) = 0, my(1) =1 and

dma(n —1) —ma(n—2)+2, ifn>0
ma(n) =
ma(—n), ifn<0.
The solution to this recursion grows exponentially, with mgy(n) ~ ¢(2 4+ V/3)" as n — oc.
The locally finite measure pa, = 3,5 ma(n)éy is a distribution which is not a tempered

distribution. The conclusion of Lemma 2.3 (ii) fails to hold for the general tile set A,.

Example 7.2. A function f having a weight semigroup W( f) that is not finitely generated.
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which shows that f(£) contains each (27 /a;)Z\{0} in its zero set, for 1 < ¢ < n. However
Theorem 1.2 implies that for 1 < ¢ < n, f tiles R using A; as a tile set, and the weight is
positive since f has positive integral. O

We conclude this section with an application of Theorem 1.1 to the characteristic func-
tion xs of a set S, to obtain a strengthening of a result of [6].
Theorem 6.1. Assume that S is a bounded measurable set and that its characteristic func-
tion ys tiles R with some weight w. Then w is a positive integer and the tile set is periodic.
Proof. Since xgs is nonnegative, all tilings are of bounded density, and since xg is a char-
acteristic function, the weight w of any tiling is a positive integer. Theorem 1.1 (ii) says
that any such tiling is a finite union of indecomposable tilings, and that all indecomposable
tilings are periodic. The period a of any such tile set A = aZ 4+ {f1,...,37} is a rational

multiple of L, where L = [ xs(t) dt = | 5], since the asymptotic density of A is

using Lemma 2.3. Thus each such tiling is periodic with period the least common multiple
of the periods of a finite set of indecomposable tilings into which it partitions. O
Theorem 1.1 of [6] proved periodicity of tilings for compact sets S that tile R. Such sets
necessarily have a boundary of measure 0. The theorem above includes other measurable
sets. For example, let C C [0, 1] be a Cantor set of positive measure, so that the boundary
JC = C, and take S = CU([1,2]\(14C)). Then xg tiles R with weight 1 and tile set Z, and

S has boundary of positive measure.
7. Examples

We give several examples exhibiting the possible structure of tilings. All examples involve

compactly supported functions f € L'(R).

Example 7.1. Functions admitting general tilings of R that are not of bounded density.
We give two examples, the first with [ fi(z)dz = 0, the second with [*7_ fo(z)dz = 1.

The functions f;(z) are given by

J lz] < 1/2,
file) =4 —1/2 1/2 < |zf < 3/2,
0 2| > 3/2,
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Now
27
Z,

supp jig C —
(8

and supp fi4 is determined by the set of n € Z where the function
h(n) = Z 07, with 6; = e~ 2mibi/a,
=1
does not vanish. The Skolem-Mahler-Lech theorem [7, 15] says that the set of integers at
which any such exponential polynomial vanishes consists of a finite number of complete
arithmetic progressions plus a finite set, which we call the exceptional set. Since h(0) =
J # 0, none of these arithmetic progressions passes through 0. Let ¢’ be the least common
multiple of the periods of these complete arithmetic progressions, and let £ be the maximal

element of the exceptional set if it is nonempty, and let & = 1 otherwise. We set £ = {'k,

and conclude that h(¢n) # 0 for all n € Z. Thus

27l
a

7 C supp jia -

Now Theorem 3.1 (i) implies that if o/ = 27¢/a then

~

o/Z\{0} C{¢: f(€) =0} (6.1)

For the reverse direction, suppose that (6.1) holds. Take A = aZ with a = 27/a’. Then

2T

G

/a(f) Z‘Sna’ 5 (6'2)

n€w

is a locally finite measure, hence Theorem 3.1 (ii) applies to show that f tiles R using the
tile set A.

Proof of Theorem 1.3. It suffices to show that for any set {ay,aq,...,a,} there is a
function f that tiles R with each of the sets A; = o;Z, for 1 <1 < n, because any translate
of a tile set is itself a tile set. Clearly the function fj(z) = X0, tiles R using A;, and ]?Z
vanishes on (27/a;)Z\{0}. We choose

f=hxfax-xfu.

Then
F=h-FaTu,



— f(z) if necessary, we may suppose that L > 0. Lemma 2.4 says that the weight of any
tiling of bounded density has weight at least L/(2R). We now prove that any tiling of
weight w partitions into at most |[2Rw/ | indecomposable tilings, by induction on n > 1,
for tilings with weights w satisfying nL/(2R) < w < (n+1)L/(2R). For the base case n = 1
the tiling A must be indecomposable, else it partitions into tilings A; U Aj, at least one
of which has weight less than L/(2R), a contradiction. The induction step is clear, using
o) + Ly) < Lo+ y).

Suppose next that I = 0. Lemma 2.2 says that all tilings A of bounded density have

weight 0. Part (i) shows that each such tiling A has an asymptotic density
A(A) = Jim o pae A: o <T)
N Tl—Irnoo 2T “ A= ’

because A is a finite union of arithmetic progressions. We claim that d(A) > 1/(2R) for
all tilings of bounded density. If not, we can find some @’ € A, such that the interval
(a’,a" + 2R + €) contains no element of A. There now exists a set U of positive measure

in the support of the function f(z — a’) which is disjoint from the support of all f(z — a),

a € A\{da'}. Then
Zf(m—a);éo forz e U,

a€A
which contradicts w = 0, and this proves the claim. Since d(A; U A3) = d(Ay) + d(Az),

we proceed as in the L > 0 case to prove any tiling of density d(A) partitions into at most
|2R d(A)| indecomposable tilings, by induction on n, with the induction step applying to
all tilings A having densities d(A) satisfying n/(2R) < d(A) < (n + 1)/(2R).

Now suppose that A is indecomposable. The last part of Theorem 5.1 says that any
bounded density tiling A partitions into a finite union of periodic tilings. Thus A must
already be a periodic tiling. O
Proof of Theorem 1.2. Suppose that f € L'(R) has compact support and tiles R with
the tile set A of bounded density. Theorem 1.1 (ii) shows that f has a periodic tiling with
tile set A = aZ + {f1,...,07}. The Poisson summation formula (3.3) then shows that the

measure p4 has Fourier transform

- 27
HA=| |

J
- Z (Z eXp(—Qﬂiﬁjn/a)) 02mn/a -
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In particular each fig is a locally finite measure. Since the ratio of any two distinct o is
irrational by construction, the supports of the measures ji; are disjoint except at 0.

The Fourier transform ji4 of g4 is the sum of the measures fig, 1 < k < K, hence its
support is the union of the supports of the ji; except possibly at 0, because none of the
weighted point masses in Jir can cancel except possibly those centered at 0. Since f tiles

R, Theorem 3.1(i) implies that f(£) vanishes at all nonzero reals £ at which 4 has mass.

These coincide with the nonzero reals £ at which some i has mass, whence

~

supp jur € {0} U {&: f(§) =0},

for 1 < k£ < K. Since each [i; is a locally finite measure, Theorem 3.1 (ii) applies to show

that each set A gives a tiling of R by f. This completes step 4 and the proof. O

6. Compactly Supported Functions

In this section all functions f € L'(R) are assumed to have compact support.

Proof of Theorem 1.1. (i) We show that if f € L'(R) has compact support then its
Fourier transform f(f) satisfies the hypotheses of Theorem 5.1, i.e. f(f) € C*(R) has a
discrete zero set satisfying (5.1). If f has support in [— R, R] then the Fourier transform of

complex argument
R

f(z)= / e " f(x)dx , z€C,
“R

is an entire function, which satisfies the growth bound

7 " eem() Rl
Fes [ e @ )lde < ||l

~

Thus f(z) is an entire function of order 1 and type R. If N(T") counts the number of zeros

~

of f(z) in the disk {z: |z| < T}, an application of Jensen’s formula gives

T)

N
lim sup (T <eR,

T—oo
see Boas [1], Theorem 2.5.13. Thus (5.1) holds for f, so Theorem 5.1 applies to give the
decomposition (1.2) of A as a finite union of complete arithmetic progressions.
(ii) To show that A is a finite union of indecomposable tilings, we treat two cases,

according to whether L = [ f(z)dz is zero or not. Suppose first that L # 0. By taking
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We are now in a position to apply Meyer’s theorem to the measure fi4. Indeed,

[al([=R, R]) < sup les] - #{be B: [ < R} < R,
S

~

by the assumption (5.1) on the zero set of f(£). Thus, by Theorem 4.2,

k
A=FA (24 8;) ,

=1
for some finite set F. If A" = U;?:l(ajZ + ;) then the Poisson summation formula (3.3)
implies that fi4s is a weighted sum of point masses on arithmetic progressions. Then
A = jia + Z et _ Z et
nEF—(A'NF) nEA'NF

This shows that /' must be the empty set, because iy has no continuous part by (5.4).
This proves (5.2).
Step 4. There is a partition A = Uf:l Ay in which each Ay is a periodic tile set for f.

Given the decomposition (5.2) of A, call the arithmetic progressions o;Z +f3; and o; Z+ f3;
equivalent if a;/o; is rational. Group the arithmetic progressions into equivalence classes,
and let the sets A, 1 < k < K, consist of the union of the arithmetic progressions in each
equivalence class. We first show that each Ay is periodic. If {e;,,..., ;  } denotes the set
of periods of the arithmetic progressions in Ay, then each a;; = (p;/¢;)a;,. If my is the least
common multiple of the p; then Ay is periodic with period o) = myaj, . (Simply split each
arithmetic progression (mod aj,) into arithmetic progressions (mod a},) since o} /a;, € Z.)
Now we may write

Ay = alz 4+ 8P, ..., 80} .

It remains to show that each set Ay gives a tiling of R by f. Define

pr= > 8, 1<k<K .
aEAk

Using the Poisson summation formula (3.3), the Fourier transform of the measure i, is

ﬁk = ng@ﬂ'n/a%)%m/a; s (55)
nes
in which
o ok ,
gr(z) = — Zexp(—zﬁl(k)ac) .
|ak| =1
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where we used |$(£)| & |€]73/2. Thus, as A — oo,

(g, T3)] < A2 3 =22 < AV

n=1

N | =
7]A -

This cannot happen unless mp = 0. Thus fi4 is a Radon measure
fia=Y_ by (5.4)
beB

for certain constants ¢, € C.
Step 2. The coefficients ¢y in (5.4) are bounded.

To prove this, let ¢ € C°(—1,1), with ¢(0) = 1. Fix b € B, and consider the compactly
supported function h(z) = ¢(A(z — b)). For large A the support of h(z) intersects B only
at b. We then have

o0

= (h,fi2) = (h,fia) E
with A = {a, : n > 1} asin (5.3).
Since
R(E) = 1N/,
we obtain

1 3N~
esl < 5 2 |é(=an/N)| = $1 4 52,
n=1

where S7 and S, represent the sum taken over 0 < |a,| < A and |a,| > A respectively.
Keeping in mind that the bounded density of A implies |a,| > n, we bound S, using the
estimate ‘qg(—an//\)‘ < ‘qg‘[ 1] obtaining
1~ 1
XM s o <} <3A= L
We estimate 53 using ‘(E(—an/A)‘ & |—an /A|7* < A2/n? to obtain

1 A2
$2< 5 > —<</\Z—<</\
|an|>A n>A

>/

Thus |ep| < 1.

Step 3. The set A is a union of doubly infinite arithmetic progressions.
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Recall that a distribution supported at a single point b € R is a finite linear combination
of derivatives of 65, cf. Rudin [12], Theorem 6.25. Since the support of fi4 is discrete, we

conclude that

=y v

beB

where

myg .
vy = ZCb,ﬂ?g]) :
7=0

To show that iy is a measure we must show that m; = 0 for all b € B (6£j) is the j-th
derivative of 83, in the sense of distributions; see [12]). Fix b € B, and take a test function
¢ € C®(—1,1) such that ¢{)(0) = (=1)7 for 0 < j < my. We consider the distribution ji;

acting on the scaled test function g(z) = ¢(A(z — b)), whose Fourier transform is given by

3 = 3 PEN)

and let A — oco. If A is large enough then the support of g(z) intersects B only at the point

b in question. We then have

(g.0a) = (g,vs)
= Y a9 (0)
7=0

my

= > (epi(=1Y D (0)N

7=0
my )
= Ecmx\] .
7=0
This is a polynomial in A of degree my. On the other hand
(9,/2) = (G, fia) = DY 9(—a) .

a€A

Now enumerate the points of A = {a, : n > 1} in increasing order of absolute value.

The bounded density of A implies that |a,| > n. Thus, as n — oo,
R 1)~ 1 —3/2
el = fdam] <5

_an

A

< \1/2,,-3/2 :
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Theorem (Rosenthal [10, p. 71]) The elements of the ring of cosets of Rq which are discrete
in the usual topology of R are precisely the sets of the form

k
FA U (0 Z+ B5) (4.4)

where I' C R is finite, a; > 0 and 3; € R.

This completes the proof of Theorem 4.2. O
5. Structure Theorem for Tile Sets

We prove a result giving conditions on f € L'(IR) guaranteeing that all tile sets of bounded
density for f are finite unions of complete arithmetic progressions. In §6 we show these
conditions include all compactly supported f.

Theorem 5.1. (Structure Theorem) Let f € LY(R) have a Fourier transform f(£) € C*(R)

which has a discrete zero set satisfying the bound

~

#{E: () =0 and || < R} <cR, (5.1)

for some positive constant c. Suppose that f tiles R with the tile set A of bounded density.

Then the set A is a finite union of arithmetic progressions
J
A= U(Oé]'Z + ﬁ]) , alla; #0 . (5.2)
i=1
Furthermore every such tiling has a finite partition
K
A= U Apg
k=1
in which each Ay is a tile set for f which is periodic, i.e. Ay = a}Z + {ﬁyc), .. ,ﬁ%’;)}

Proof. We will show that the measure p4 satisfies the hypotheses of Meyer’s Theorem 4.2.

By Theorem 3.1 (i) the support of the tempered distribution fi4 is contained in the set

~

B={o}ufcer: f(&)=0},

which by hypothesis is a discrete set satisfying (5.1).

Step 1. The tempered distribution [i4 is a Radon measure.
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ol ok _22k<<n
n ok 7

which implies

— 1
Flnse) <n Y <,
2k+1>n

and with the similar inequality for |fi,|((—o00, —n]) the proof of the claim is complete.
Notice also that lim, o, ptn(2) = ¢, if z € A and is 0 otherwise. This is a consequence
of the fact that A is discrete and the support of ¢(nz) shrinks to 0.
We use the following properties of R, the Bohr compactification of R (see for example

[11, p. 30]).

1. R is the dual group of Ry, the real line with the discrete topology. Therefore R is a

compact group.

2. R C R as topological spaces and R is dense in R. Identifying the continuous functions

on R with bounded continuous functions on R we get that
C(R) CC(R)N L*®(R)
is a Banach space inclusion.

Since the measures fi,, are uniformly bounded they act on all bounded continuous functions
of B, and consequently also on all continuous functions on R, that is they constitute a
uniformly bounded family of linear functionals on C'(R). By the Banach-Alaoglu theorem
there exists a measure v on R such that for every f € C(R) there is a subsequence of [,

call it again fi,,, such that

<f7ﬁ;b>_><f71/>7 as n — o0.

Applying this with each character of R in place of f we obtain that v(z) = lim,_ ,L/T:L($) =
2re_,, if —z € A, and is 0 otherwise, hence U has the finite range 275. By Theorem 4.1
the set —A, and thus A, belongs to the ring of cosets of Ry. At this point we use a theorem
of Rosenthal [10] which describes the elements of the ring of cosets of Ry which are discrete

in R. (See also [5].)
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where S C C\{0} is a finite set. Suppose that p is a tempered distribution, and that [i is a

Radon measure on R which satisfies

lal([-R,R]) €< R, as R — oo . (4.2)
Then the set A is of the form
k
A=FA (a2 4 5;) (4.3)
7=1

where a; > 0,3; € R, and the set I' C R is finite (here A denotes symmetric difference of
sets).

In Meyer’s original formulation in place of condition (4.2) there was the stronger re-
quirement that g4 was uniformly locally finite, i.e. |gal|([z,z + 1]) < C, for all 2 € R.
We do need the relaxed hypothesis (4.2) for our application. The proof of Theorem 4.2 is
along the same lines as that given by Meyer. A result of Cérdoba [4] establishes the same
structure (4.3) without using Cohen’s theorem but under the extra assumption that g is a
linear combination of point masses with nonnegative coefficients (no growth condition like
(4.2) is then needed).

Proof. Let ¢ € C°(—1,1),¢(0) = 1, so that its Fourier transform satisfies |<$(£)| < €7

for all &« > 0. For positive integers n define the functions

() = 9(n) 5 p(z) .

Their Fourier transforms satisfy

() = - 36/ A(E)

(as distributions) hence the fi,, are all measures. We claim that the measures fi,, are uni-

formly bounded measures, i.e. |fi,|(R) < 1. Indeed

finl([=n,n]) < —[1lloo Al ([-n,n]) < 1,

3| =

by our assumption on the growth of |ji|([~n,n]). Furthermore, if 2¥ > n we have (using

the fact that |$(£)| < €% as &€ — o0)
_ 1~ R
Al ([25,251]) < — [@lignpmpve g ([0, 2°F1))
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is in the ring of cosets of I.
(Such measures are called idempotent, the reason being that pu*p = pu.)

The next theorem follows easily from Cohen’s [dempotent Theorem, using an argument
of Cohen [3, p. 204].
Theorem 4.1. Let G be a locally compact abelian group and T its dual group. If p is a
finite Borel measure on G and the range of [i is a finite set S = {s1,...,8,} C C then, for

each j =1,...,n, the preimage of s;

(1)~ '(s;)={yel: a(y)=s;}

is in the ring of cosets of I.
Proof. Fix j € {1,...,n}. Let P(2) = a;, 2™ 4+ --- 4 ap be a polynomial that takes the

value 1 on s; and 0 on s for k£ # j. Define the measure v as the convolution polynomial
v=Pp)=a,p™ + -+ ap+ ao,

where p** = p -~ % (k times), which is well-defined since y is a finite measure. Then,

for each v € T', we have

which implies

(W)~ (sj)={veT: fi(y)=s;}={yeTl: v(y)=1}.

Now v is an idempotent measure on G, so by Cohen’s Idempotent Theorem we have that
(fi)~'(s;) is in the ring of cosets of I'. O

Take for example the case of G = T = R/(277Z) and, consequently, I' = Z. As we saw,
the ring of cosets of Z consists of all eventually periodic sets and it is precisely those sets
that support the Fourier transform of an idempotent measure on T. Of course, the converse
of the theorem is also true and is easy to prove: for every A in the coset ring of I', the
characteristic function y4(7) is the Fourier transform of a finite Radon measure on G.

Theorem 4.1 allows us to prove the following variation of a result of Meyer [8, p. 25].
Theorem 4.2. Let A C R be a discrete set and u be the Radon measure

= anéa, cq €9,
a€A
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for w = (20)= (0T ({0}).

By Lemma 2.2 the function G(z) = 3,c4 f(z — a) is locally integrable and we need to
prove G(z) = w almost everywhere. For all z € R we have (there is no exceptional set of
measure zero since F' € §)

w/oo P(t) dt = ZF(m—a)

—ee a€A

/_O;w(t)(Zf(w—t—a)) dt,

a€A

with the interchange of summation and integration justified as in part (i). Since ¢ € S is
arbitrary the function (of t) G(z —t) = 3_,c4 f(z —a —1) is equal to the constant function
w as a tempered distribution. Being a locally integrable function G(z — t) is equal to w

a.e.(t), therefore 3~ ., f(z — a) = w for almost all z € R. O

4. Idempotent Measures and a Theorem of Meyer

To state Cohen’s theorem on idempotent measures we first need the following definition.
(For definitions of the dual group and the Fourier transform for locally compact abelian
groups see, for example, [11].)

Definition 4.1. The ring of cosets of a locally compact abelian group I is the smallest set
which contains all open cosets of I' and which is closed under finite unions, finite intersections
and complements.

As an example, when I' = Z every subgroup is of the form mZ for a fixed m > 0. All
these groups are open and so every coset is of the form z + mZ (when m = 0 the coset
consists of one point). The ring of cosets of Z consists thus of all sets which are eventually
periodic, that is they are finite unions of doubly infinite arithmetic progressions up to the
addition or removal of a finite set of integers.

Cohen’s Idempotent Theorem (Cohen [3], [11, p. 59]) Let G be a locally compact abelian
group and 1" its dual group. If u is a finite Borel measure on G' and is such that ji(v) € {0,1}
for all v € T then the support of [i, which is

suppfi ={y € I': fi(y) =1}, (4.1)

14



/_O;¢(t)zf(x—t—a) dt

a€A

w/ P(t)dt = w .

The interchange of summation and integration is justified using Fubini’s theorem. For this
we need that Y~ 4 [0 [(t)] - | f(z —t — a)| dt < co, which is true because the set A is of
bounded density and | (¢)| decreases faster than any power of t.

Since g/A) has compact support and fis smooth the function J)f is in § and so is then

F = 1« f. Taking the Fourier transform of Fxpus = w we get
Fii = (2nw)b, .

Notice that F and f have the same zero set within an open interval that contains the
support of ¢. It follows that ¢/ﬁ’ is a smooth function whose compact support is disjoint
from B. We get

-

(6./72) = (6/F, Fita) = (¢ F, (2rw)do) = 0.,
since 0 is not in the support of ¢. This proves (i).
(ii) Let ¢ € & be arbitrary and define F' = ¢» x f. Consider now ¢ € C*(0,+00). We
have
(¢, Fjia) = (6, fia) - (3.4)
But F vanishes wherever f does. That is, F vanishes throughout the support of iz (with
the possible exception of 0) and since ji4 is a locally finite measure the second term in
(3.4) is 0 (this is not necessarily true without the assumption the fiy is a locally finite
measure). Since ¢ was arbitrary in C'2°(0,4+00), ﬁﬁ;‘ has no support in (0,00). Using a
similar argument for ¢ € C°(—00,0), we conclude that the support of the measure ﬁ;ﬁ is

{0}. Therefore

o0

P = (Fomon) s = ( [

— 00

o(t) dt) - (FOmD) bo

which implies

Fapa = 2o FO@U) [ swdi=w [~ w i,

— 00 — 00

13



for some ¢ > 0.

Suppose now that A is a set of bounded density. Then (3.2) holds, hence the measure
i4 is a tempered distribution, with Fourier transform iy € §’. For A = aZ the Poisson
summation formula asserts that

oo
fia = (E %) = ol (Z 52m/a> : (3.3)
nem n€z
In this case fi4 is a Radon measure; in general iy need not be a measure.

Harmonic analysis comes into the study of translational tilings via the following theorem.
Theorem 3.1. Let f € L'(R) have a Fourier transform f € C*(R) and let A C R be a set
of bounded density.

(i) If f tiles R with weight w using the tile set A then

~

supp fia € B={0}U{{ €R: f(§)=0}.

(ii) If ta is a Radon measure and if supp fia C B then A is a tile set of R using f, with
some weight w.

Remark. The idea of the proof is as follows. The fact that f tiles with A can be written

fxpa=w.

Taking the Fourier transform gives

fiia = (2rw)dy .

This in turn implies that f vanishes on the support of iy except at 0. However neither
f x4 nor f ji4 is well-defined in general, hence the introduction of the function F' € § in
the proof below.

Proof. (i) Note that B is a closed set, f being a continuous function. To prove that
supp jia € B we need to show that (¢, ) = 0 for every ¢ € C°(R\B). Fix such a ¢ and
take » € § to have QZ € CP(R) with 12(()) =1 and QZ(E) # 0, for all £ in an interval that
contains the support of ¢. Write I/ = ¢ x f. We first prove that F x ug = w. Indeed
(Fxpa)(z) =73 ,ca F(z — a), with the sum converging absolutely since I’ € S. Next

S Pz —a) = Z/O;f(:v—a—t)w(t) di

a€A a€AY ™

12



study the measure p4 associated to a discrete set A by
HaA = Z 6[1 ’ (31)
a€A
which is a Radon measure. A Radon measure p is uniformly locally finite if there is a

constant C' such that

(T, T+1)<C, al TeR.

The measure gy of (3.1) is uniformly locally finite if and only if A is of bounded density.

In order to define the Fourier transform we work in the space 8’ of tempered distribu-
tions. Let D denote the space of compactly supported C'*°-functions (called test functions).
The distributions D’ are the continuous linear functions on D with respect to its Frechét
topology. The action of the distribution § on the test function ¢ is denoted by (g, 3). The
Schwartz class S consist of C'"*°-functions g such that H|:E|°“g(m)(:n)Hoo < oo forall @ > 0
and all nonnegative integers m > 0. The Fourier transform is a continuous linear bijection
from S to itself. The tempered distributions S’ are the continuous linear functionals on S
with its Frechét topology. We identify S’ with a subset of D’. The Fourier transform is a
continuous linear mapping from &’ to &’ whose inverse is also continuous, with B defined
by

(9.8) =(3.8), ge8,8€8,

where E(Jz) = B(—z). For each ¢ € S and 8 € S’ we define ¢3 € S’ by (g,66) = (¢g, ),
for all ¢ € S. We define the convolution g% 8 of any g € S with any 3 € 8’ by defining its
Fourier transform: g/a;\ﬁ =g- B

The support of 8 € §', denoted supp 3, is defined as the smallest closed set X C R for
which ¢ € C(R\X) implies (¢, 5) = 0.

We identify locally integrable functions and Radon measures with distributions, as in
[12, 6.11]. The distribution associated with the point measure §, is sometimes called the
Dirac delta function centered at a. The Radon measure py is a distribution, but it need
not be a tempered distribution. A sufficient condition for g4 to be a tempered distribution

is the growth condition
#{a€ A: |la| <R} < R°, as R — o0, (3.2)

11



Lemma 2.4. Suppose that f € L'(R) with L = [*_f(z) dz > 0, and that supp f C
[—R,R]. If f has a tiling of R of bounded density and of weight w then

L

> —
Y

(2.5)

Proof. We know that w > 0 by Lemma 2.2, and first show that w # 0. If w = 0
then Lemma 2.2 shows that the tile set A has density zero. In particular there exists a
point ag € A, such that the open interval (ag,ag + 3R) contains no point of A. Then the
rightmost Lebesgue point z* of f(z — ag) has a neighborhood outside the support of any
other translate f(z —a), a € A\{ao}. Then }_,c4 f(z —a) = mf(z — ag) # 0 in a small
enough neighborhood of 2*, which contradicts w = 0 (m is the multiplicity of ag in A).
Now suppose w > 0. Lemma 2.2 asserts that A has density w/L. If w/L < 1/(2R)

then for any € with 0 < € < 2R — L./w we can find an open interval (a,a + 2R + €) which
contains no point of A. Then the interval (a + R,a+ R + ¢€) is disjoint from the support of
all f(z —a), a € A, hence

Ef(l‘—a) =0 forz€(a+R,a+ R+¢).

a€A

This contradicts w # 0. It follows that w/L > 1/(2R). O
3. A Spectral Condition for Tiling

Let f € L'Y(R). We derive a necessary condition on the Fourier transform f(f) for f to tile
the line. We also derive a sufficient condition.
For conventions concerning Fourier transforms, measures, and distributions we generally

follow Rudin [12]. The Fourier transform of f € L'(R) and its inversion are normalized as

~

fo= [~ e sw=5- [T e,

o 2T Joo

With this definition f(z) = 27 f(—z).
A measure is a (complex-valued) regular Borel measure on R, which may have infinite
mass. A Radon measure p is a measure on R which is locally finite, i.e., it is finite on

compact subsets of R. The measure consisting of a point mass at @ € R is denoted §,. We

10



To bound Fs5(T'), we use the bounded density of A, to obtain

T
Ean) <20 [ (fa ) do

neEZ
[n|>T+R

Now split the interval [—T,T] into 27 intervals of length 1 and rearrange terms to obtain
|Eo(T)| < 4CT/ If(2)| dz < 4CT .
R

Substituting these estimates into (2.3), and using (2.1) to replace N(T' — R) with N(T)
yields
INA(T)L — 20T| < 6C¢T + 2CR(L + M) . (2.4)
This inequality relates w and N 4(7') for all L.
(i) Suppose that L = 0. Then (2.4) yields

M
|lw| < 6Ce+ C}; .

Letting T — oo, and then letting ¢ — 0, gives w = 0.

(ii) Suppose that L > 0. Then (2.4) can be rewritten

o< ey 7

‘NA(T) w|  3C CR(L+ M)
27 L]~ L LT

This yields

/ NA(T ' NA(T ,
%6211?—?0]?( ;‘; )— %) Zlijminf <ﬁ_ E) > _ﬁg

Now let € — 0 to obtain

CONAT)  w
| =2
o o L’

which shows A has asymptotic density w/L. Since N4(7') is nonnegative, we have w > 0,
proving (ii). O

It seems that the condition L = [*7_ f(z) dz > 0 should rule out the existence of tilings
of bounded density with weight w = 0. However we shall only demonstrate this for functions
of compact support. For those functions the following lemma bounds inf W ( f) away from

Zero.



(i) If L = 0 then any tiling of R of bounded density by f has weight 0.

(ii) If L > 0 then any tiling of bounded density by f has weight w > 0. The tiling set A

has asymptotic density w/L.

Proof. We first derive a formula to estimate
NA(T)=Na(-T,T)=#{ac A: -T<a<T}.
The assumption of bounded density gives
NA(T+U)— Nag(T)<2CU, forU > 1,

and in particular

Ny(T)<2CT forT >1.

Since A is a tile set,
Z f(z —a)=w almost everywhere .
a€A

We integrate this relation over the interval [—T',T7], to obtain

2wl = [T ,eal(e—a)da

= Nu(T-R)L+ ET),

in which E(T') is a remainder term, given by a sum of three terms:

EAT) = - /W > fa-a)da,

aEA
lal<T—R

T
Bry o= [ X fe-ade,
=T aEA
T—R<|a|<T+R
and

Eg(T):/_TT S fa—a)de.

a€EA
la|>T+R

To bound the E;(T'), set [* |f(z)|dz = M and, given ¢ > 0, pick R so large that

Jizsj>r |f(z)|dz < e. Then, assuming 7' > R > 1 and using (2.1), we obtain

[E(T)] < Na(T - R) /|I|>R|f($)l da
< eNa(T — R) <2CeT

EAT)| < (Na(T+B) = Na(T = B) [ |f(o)ds
< 2CRM .

(2.1)

(2.2)

(2.3)



Proof. By hypothesis

E f(z —a)=w almost everywhere ,
a€A

and w > 0 since [%_ f(z)dz > 0 rules out the zero function. Choose B > 1 so that
J = (B f(z) dz > 0. Now
T+R+1

2R+ 1Dw = / Z flz —a) dzx

T-R a€A

/T+R+1 E flz —a)dx

T-R  pescri1

v

R
Na(T, T+ 1) /_R f(z) de .

Thus N4(7,7+ 1) < (2R + 1)w/J is bounded independent of 7. O
The usefulness of the bounded density assumption lies in the following simple fact.
Lemma 2.2. If f € L'(R) and A is any set of bounded density then
Ge)= Y f(z - a)
a€A
is absolutely convergent almost everywhere and is locally integrable.
Proof. Suppose that N(7,7 + 1) < C for all T. Then

< [T Y1)

T a€A

IN

> /TTH (1f(z = [a))]| + |f(z = a] = 1)|) d=

a€A

N
DO
Q

S

=
]
|
S
U
5]

This gives local integrability, and implies that G(z) is defined as an absolutely convergent

series almost everywhere. O

Lemma 2.3. Suppose that f € L'(R) and set L = [*_ f(z) dz.



supported with L = [ f(z) dz > 0 the minimal weight of a tiling of bounded density is
at least L/(2R), where f is supported in [— R, R].

In §3 we derive for a class of f € L'(R) conditions on the Fourier transform of f which
are necessary to have a tiling of R of bounded density. We also derive a sufficient condition.

In §4 we state results concerning Cohen’s idempotent theorem, and prove a variant of a
result of Meyer [8] giving sufficient conditions for a measure ps =Y ,c4 6, to have A be a
finite union of arithmetic progressions. (Here §, is a point mass at a € R.)

In §5 we prove a structure theorem for tile sets A of bounded density for a class of
functions f € L'(R) whose Fourier transform fe C*(R) has a discrete zero set which
contains O(R) zeros in [—R, R] as R — oo. This class of functions includes all compactly
supported f € LY(R). In §6 we deduce Theorems 1.1, 1.2 and 1.3, using this result.

In §7 we present a collection of examples of compactly supported functions in L'(R)
showing various senses in which results cannot be improved. These include functions that
have tilings that are not of bounded density, a function having uncountably many inde-
composable tilings all having the same weight, a function having a weight semigroup W ( f)
requiring an infinite number of generators, and a function which has an indecomposable
tiling with rational period but with two cosets having an irrational difference.
Notation. The symbol f(z) < g(z) means that there exists a positive constant C' such
that f(z) < Cg(z) for the indicated range of z.

The characteristic function xs(z) of a set S is 1 if z € S and is 0 otherwise.

We denote by |f|; the supremum of the function |f| on the set F.

We define the counting function of a set A C R by:
Nu(Th,T2) = #(AN [T, T]).
2. Tilings of Bounded Density

The assumption of bounded density allows information about tilings to be extracted using
arguments that estimate areas covered by the “tiles” f.
Lemma 2.1. If f € L'(R) is a nonnegative function with [*_ f(z) dz > 0 then every

general tiling of R by f is a tiling of bounded density.



Using this result we establish the following converse to part (i) of Theorem 1.1.

Theorem 1.3. If A consists of a finite union of complete arithmetic progressions
J
A= J(ea;Z+ B;) , all aj >0,
i=1

then there exists a compactly supported function f € L'(R) which tiles R using the tile set
A, with weight w > 0.

The corresponding converse question to (ii) of Theorem 1.1, concerning which sets of
the form (1.3) occur as the tile set of some indecomposable tiling, we leave unresolved. We
give in §7 an example of an indecomposable tile set (1.3) in which the differences §; — f3;
are not all rational multiples of the period a. This shows that the rationality result of [6],
valid for weight 1 tilings for characteristic functions xgs of compact sets 5, is not generally
true for compactly supported functions f € L(R).

Theorems 1.1-1.3 are proved in §6. Theorem 1.1 is deduced as a consequence of a
stronger result (Theorem 5.1) that applies also to some functions not of compact support.
The proof of Theorem 5.1 relies heavily on Cohen’s classification of idempotent measures
on arbitrary locally compact abelian groups [3], [11, p. 59], i.e. measures whose Fourier
transform takes only the values 0 and 1. The group on which we use Cohen’s theorem is
the Bohr compactification of the real line R. We use a slight modification of a result of
Meyer [8] on the structure of infinite collections of point masses whose Fourier transform is
a measure having total variation growing at most linearly (Theorem 4.2).

The tiling structure of Theorem 1.1 does not generalize to nonnegative bounded func-
tions f € L°°(R) having infinite mass. There are examples of (infinite) aperiodic sets
A, B C Z such that every element m € Z has a unique representation m = a+b, with a € A
and b € B. One such example takes A = {a: a > 0is a sum of distinct odd powers of 2},
see Tijdeman [14], §4. If T" = [0,1] + B then f = xr tiles R with the aperiodic set A of
bounded density.

The contents of the paper are as follows. In §2 we derive some elementary results related
to tilings of bounded density. For a nonnegative f € L!(R) every general tiling is a tiling of
bounded density. For f € L'(R)if [*_ f(z) dz = 0 then all tilings of bounded density have

weight 0, while if [%_ f(z) dz > 0 such tilings have nonnegative weights. If f is compactly



contradicts the fact that f has no tilings of weight less than 2, since f is nonnegative and

70y =2,

1V V2 0 VE- 143

Figure 1.1: Trapezoidal Tile

Our main result gives a complete classification of the structure of the tiling sets possible
for compactly supported functions.
Theorem 1.1. Let f € LY(R) have compact support, with f # 0.

(i) Any tile set A of bounded density for f is a finite union of arithmetic progressions

J
A= J(o;z4+8)), (1.2)

j=1
with all a; > 0.
(ii) Fvery tile set of bounded density for f partitions into a finite union of indecomposable
tile sets. Furthermore, each indecomposable tile set of bounded density A is periodic, i.e.

there exists a > 0 such that

J
U aZ+ 3;) . (1.3)

The expressions for tile sets A above allow 3; = 3;, to include tile sets with multiplicities.
Note that (ii) implies (i), but our proof establishes (i) before (ii).

We complement Theorem 1.1 with a criterion for a function f to tile R with some tiling
of bounded density.
Theorem 1.2. A compactly supported function f € L'(R) tiles R with some tile set A
of bounded density if and only if the set of real zeros of its Fourier transform f(f) =
[ e f(z)dx contains a set aZ\{0} for some a > 0. If so then f tiles R with some

weight w using the tile set A" = (27 /a)Z



for almost every (Lebesgue) z € R, where the convergence in (1.1) is absolute. The tile set
A is required to be discrete, i.e. for each T > 0 the set {a € A : |a| < T} is finite, and
we allow elements of A to occur with finite multiplicity. Our object is to determine which
functions tile R and to specify the structure of possible tilings.

General tilings by a function f permit the pathology that mass can “leak out to infinity,”
cf. example 7.1 in §7. To exclude this pathology we restrict the class of allowed tilings. A

tile set A is of bounded density if there is a constant ' > 0 such that for all T € R,
#{lacA: T<a<T+1}<C.

The associated tiling (1.1) is called a tiling of bounded density. For nonnegative functions
a general tiling is necessarily of bounded density, see Lemma 2.1.

This paper studies bounded density tilings and characterizes their possible structure for
compactly supported functions. Lagarias and Wang [6] previously considered the special
case of tilings of weight 1 by the characteristic function y7 of a compact set T'. They
showed that all such tile sets are periodic, i.e. of the form aZ 4+ {f31,...,8s}, and that the
differences 3; — 3; of cosets are rational multiples of the period a. Here we show that for
arbitrary functions a wider variety of tile sets occur.

Two tilings with weights wy and wsy, and tile sets A; and Aj, respectively, yield a
combined tiling using the tile set A; U Ay, with weight wy + wy. (We adopt the convention
that the union of tile sets counts points with multiplicity.) Thus the set of all weights
occurring from tilings of bounded density using a given function f form a semigroup W(f),
which we call the weight semigroup of f.

If a tile set A can be partitioned into two nonempty sets A; U Ay such that each is
separately a tile set for f, we say that the tile set A is decomposable; otherwise it is inde-
composable.

To illustrate these notions, consider the trapezoidal function f pictured in Figure 1.1,
which is given by the convolution of the characteristic functions x[_; ;) and X[-v3v/3]" It
tiles R with the two different tile sets A = 2v/27Z and A = 27, having weights 2 and
6 — 2v/2 = 3.18, respectively. Both of these tilings are indecomposable. To see this, note

that if A = A; U As, then one of the A; would have weight at most half that of A, which
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1. Introduction

Traditional problems of tiling concern whether or not a subset S of R™ can be tiled using
a given set of allowed tile shapes (“prototiles”). Such problems may be formulated as that
of representing the characteristic function xs as a sum of characteristic functions of sets
isometric to prototiles using the allowed group of tile motions. A natural generalization is
to relax this condition to allow tilings of ys using more general functions. The supports
of the copies of the functions used in such a tiling may now overlap (“soft tiles”). Soft
tilings are a special case of “soft packings”, which have been studied to obtain bounds in
sphere packing and coding theory [9]. Tilings by translates of functions arise naturally in
wavelet theory: the scaling function for a compactly supported wavelet basis of R™ given by
a multiresolution analysis must always have a lattice tiling of R™ in this generalized sense,
see Strichartz [13], 1.17. Such tilings also arise in subdivision schemes in curve and surface
design and in approximation, see [2, p. 14]. In addition, multiple tilings using copies of
a set T are a special case of tilings by functions, in which the functions used are scaled
characteristic functions M ~1'y7, where M is the multiplicity.

This paper studies tilings of the line R by translates of a single function f € L1(R). A
tile set A gives a general tiling of (constant) weight w provided that

Z fle+a)=w, (1.1)

a€A
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Abstract

A function f € L'(R) tiles the line with a constant weight w using the discrete tile
set Aif 37 o4 f(z — a) = w almost everywhere. A set A is of bounded density if there
is a constant C' such that #{a € A: n < a < n+4 1} < C for all integers n. This
paper characterizes compactly supported f € L'(R) that admit a tiling of R of bounded
density. It shows that for such functions all tile sets of bounded density A are finite unions
of complete arithmetic progressions. The results apply to some noncompactly supported
f € L'(R). The proofs depend on Cohen’s theorem characterizing idempotent measures on
locally compact abelian groups. We use a result of Meyer which, using Cohen’s theorem,
characterizes the collections of point masses on the real line whose Fourier transform is a
locally finite measure with total variation that grows at most linearly.



