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Abstract

We describe methods to label the My x My grid with the integers 1 to M; My so that any
K consecutively labelled cells are relatively far apart in the grid, in the Manhattan metric.
Constructions of such labellings are given which are nearly optimal in a range of conditions.
Such labellings can be used in addressing schemes for storing data on two-dimensional arrays
that include randomly located “blobs” of defective cells. The data can be precoded using block
error-correcting codes before storage, and the usefulness of well-spaced points is to decrease
the probability of “burst” errors which cannot be corrected. Possible applications include the
storage of speech or music on low-quality memory chips, and in “holographic memories” to
store bit-mapped data.

More generally, we present a general family of mappings of the integers 1 to M1 My ... My
onto the d-dimensional grid of size My X Ma X ... X My, called mixed radix vector mappings.
These mappings give labellings whenever they are one-to-one. We give a sufficient condition
for these mappings to be one-to-one which is easy to verify in many cases.
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1. Introduction

Let [ N7, N3] denote the set of consecutive integers { N1, N1 +1, ..., Na}. The d-dimensional
rectangular grid G(My, My, ..., M) is the set of lattice points

G(Ml,...,Md) = [O,M1 —1] X [0,M2 —1] X ... X [O,Md—l]

= {(ml,...,md)EZd:OSijMj—l}. (1.1)

A labelling of G(My, Mo, ..., M) is a one-to-one mapping

d
¢: (1, [[ Mj] = G(My, My,... . My) . (1.2)
7j=1

A labelling ¢ is clearly onto, hence it has a well-defined inverse ¢—!. We think of a labelling as
giving an access ordering to the H?Zl M; cells in the grid G(M, Ma, ... ,Mg). We consider the
general problem of finding labellings with the property that points with labels that are close

are spaced far apart in the grid. We measure distance in the grid using the L'-norm,

d

[(m, .. ma) — (mi, ... ;mg)l| =) |mi — gt (1.3)

i=1

In the two-dimensional case there are a number of applications for such well-spaced la-
bellings, which motivated this work. One application consists of schemes to address memory
locations on chips which have memory arrays containing randomly distributed defects con-
sisting of variable-sized “blobs” of defective memory cells. Such labellings are useful to min-
imize the probability of consecutively accessed locations being defective. The data can be
pre-encoded using a block error-correcting code before storing it in such an array, and the
usefulness of well-spaced points is to decrease the probability of “burst” errors, which block
coding cannot handle. A second application concerns the design of proposed “holographic

memories” to store bit-mapped data, in situations where scanning errors introduce “blocks”



of blank data, cf. Bruckstein, Holt and Netravali [3]. In both these applications one wants
labelling schemes ¢ that are simple to calculate and to invert.
In §2 we give a general construction of mappings ¢ : [1, H?Zl M;] = G(M,,... M), called

mized radiz vector mappings, which are mappings
T
¢(n) = ijYj ) (1.4)
j=1
in which the vectors y1,...,y, € Z% are a given set of  vectors, together with a mapping
n— (k1,....k) , (1.5)

which is the mixed radix expansion of n to base B = (By, Bs,...,B;), as defined in §2. Such
mappings are not necessarily one-to-one. We give a sufficient condition for such a map to
be one-to-one which applies in many situations (Theorem 2.1). Suitable choices of the pa-
rameters {y1,¥y2,.-.,yr} and (B1,Bs,...,B;) yield well-spaced labellings, particularly in the
two-dimensional case.

In this paper we study the two-dimensional case, in §3 and §4. In §3 we consider the
problem of constructing labellings that have every two consecutively labelled points far apart.
We show that every admissible labelling has two consecutively labelled points at L!-distance
at most LWJ We find mixed radix vector labellings that achieve separation of consecutive
labels by | 42| — 2. (Theorem 3.1).

In §4 we consider the problem of constructing labellings that well separate k£ consecutive
labels, for £k > 3. We prove upper bounds for the attainable separation of % if My > %Ml,
and (8]\/[12—]\/[2)1/2 f M < My < ng. (Theorem 4.1). These bounds are shown to be attainable
within a multiplicative factor of 4 by mixed radix labellings for many values of M;, My and k.
(Theorem 4.2)

This paper was motivated by the two-dimensional case and does not consider labellings in
dimension d > 3, except for the criterion of §2 for mixed radix vector mappings to be one-to-
one on d-dimensional grids. We leave it as open problems to obtain good upper bounds on the
maximum attainable L'-distance between members of a labelling at distance at most m, and
to determine whether suitable mixed radix vector mappings give nearly optimal well-spaced
labellings of points for various d-dimensional rectangular grids when d > 3. For the upper
bound we note a connection with a generalization of the unsolved problem D1 “Spreading

Points in a Square” in Croft, Falconer and Guy [4, pp. 108-110]. The problem of packing



k points in an d-dimensional cube, so as to maximize the minimal distance between any two
of the points (using L'-norm) certainly gives an upper bound (after rescaling) on how much
separation is possible in every consecutive k-tuple of a labelling of a d-dimensional cubical grid.
The results of this paper suggest that for d-dimensional grids which are roughly cubical there
exist well-spaced labellings with spacing within a multiplicative constant (depending on the
dimension d) of such an upper bound.

We also note a relation to magic squares, and more generally magic d-cubes. These are a
special kind of labelling of the d-cube G(M, M, ... ,M) by integers in which all the row sums
are required to be equal, cf. [1]-[6]. One of the standard constructions of magic squares and

magic d-cubes using the integers from 1 to M¢ is actually a mixed radix vector labelling, see

[1], [2].
2. Mixed Radix Vector Mappings
We present a general construction of d-dimensional mappings
d
¢:[1 [ M)] = G(My, M, ..., My)
j=1
which we call mixed radix vector mappings, or MRV mappings for short. Whenever such a

mapping ¢ is one-to-one then it gives an admissible labelling of
G(Ml,MQ,... ,Md) = [O,Ml — 1] X [0,M2 — 1] X ... X [O,Md — 1] .

A mixed radix expansion is specified by an r-dimensional vector B := (By, Ba,...,B;) of
positive integers, with all B; > 1, called the mized base. The mized radiz expansion to base B

of an integer m satisfying 0 <m < [[;_; B; is

T i—1
m=Y di[[Bj, with 0<d; <B; for 1<i<r, (2.1)
i=1  j=1

To apply this to the grid G(M;,...,M;) we need

1B =>][M;. (2.2)

The general construction is as follows. A mized radiz vector mapping or MRV mapping of
G(My,...,M,) is specified by a set of > 1 nonzero vectors yi,...,y, € Z% and by a mixed
radix base

B = (B, Bs,...,B,),



such that [[;_, B; > H?Zl M;. For1<m < ngl M; take the mixed radix expansion

r r—1
m—1 :drHBi+dr—1 HBz++dQBl+d1
i=1 i=1
with 0 < d; < B;, and associate to it the integer vector
T
v(m) := Y diyi = (vi(m),va(m),... ,va(m)) . (2.3)
i=1
The MRV map ¢ : [1,[[}_; Mj] = G(Mi, My, ..., My) is given by
d(m) = (v1(m)(mod My),...,vg(m)(mod My)) . (2.4)

The integer r is called the rank of the MRV mapping. It bears no relation to the dimension
d of the image space, and can be smaller or larger than d.

We are interested in the special case of MRV mappings ¢ that are one-to-one. We call these
MRYV labellings. There does not seem to be a simple general criterion for a MRV mapping to
be one-to-one, but we give a sufficient condition in Theorem 2.1 below.

To formulate this sufficient condition we need a definition. Given a set Y = {y1,...,y,} of

vectors in Z¢, and a grid G = G(My,...,M,). Given m = (my,...,m,) € Z" set
w(m) = (wi,wa,...,wy) :=miy1 + ... + myy, . (2.5)
We associate to Y and the grid G the r-dimensional integer lattice
A=Ayg={meZ :wj=0 (mod M;) for 1<j<d}. (2.6)

We call A the embedding lattice of (Y, G), since it describes how the vectors ) fall into G. The
embedding lattice satisfies

(MyMs--- Mgz C A C 7. (2.7)
and the index [Z%: A] := #(Z%/A) always divides H;l:l M;. We say that ) is nondegenerate
for the grid G(M, ..., My) if [z4: A] = []{_, M;.
Theorem 2.1. Suppose that a mized radiz vector map ¢ of G(My, Mo, ... ,My) is specified by

the set of vectors Y = {y1,¥2,---,yr} and the mized radiz base B = (B, Bo,...,B;).

(i). If each nonzero vector m = (mq,mo,...,my) in the embedding lattice Ay ¢ satisfies:

(¥) There is some coordinate i with |m;| > B;, (2.8)



then the map ¢ is one-to-one.

(ii). IfII}_,B; = H?:1Mj then (x) is a necessary and sufficient condition for ¢ to be one-
to-one.
Proof. (i). We argue by contradiction. Suppose that ¢ is not one-to-one, so that there exist

1 <myp <mg < MiMj... My such that ¢(m1) = ¢(myz). Let the mixed radix expansions be
r 1—1
me—1=3d [ Bx, for £=1,2. (2.9)
i=1 k=1
and set d®¥) = (dge),...,d,(«e)) for £=1,2. Now ¢(m1) = ¢(ms) means that the vector

w = (wy,...,wq) given by
w=>Y (" —dy;
i=1

satisfies w; = 0 (mod M;) for 1 < j < d. Thus d¥) —d® € Ay . However the mixed radix

expansion property gives
—Bi<d" -d® <B;, 1<i<r,

because 0 < dgé) < B;. Since d) #£ d®)| this contradicts property (2.8).

(ii). We must show that if [[_; B; = H?:1 M; then any one-to-one MRV labelling map ¢
satisfies condition (*), given as (2.8). Indeed {¢(m) : 1 <m < M1Ms... My} enumerates the
set of My ... My = By ... B, vectors w (mod M), given by

w=dyvi+dyvo+...+dyv,, with 0<d; <B;, 1<i<r, (2.10)

and

w (mod M) := (wy (mod M), wy (mod Ms),...,ws(mod My)) .

By hypothesis these residues are all distinct, and this implies that [Z" : Ay g] > MM, ... M.
Thus
[ZTZA] ZMlMQ...Md ) (211)

and Y is nondegenerate. It follows that
W = {w:w given by (2.10)},

is a fundamental domain for the quotient lattice Z"/Ay ¢. In particular, given any nonzero
vector

e=(e,...,.e;) EZ" with —B;<e;<B; for 1<i<r, (2.12)



set

!
W =e1vyi+...+tev,

then we can find two distinct vectors wi, wo of the form (2.10) such that

WI:W1—W2.

Since the w; are all distinct (mod M) we conclude that w' # 0 (mod M), hence e € Ay .

Thus the embedding lattice Ay ¢ contains no vector of the form (2.12) except the zero vector,

which verifies (2.8). O

As an example, consider the rectangular grid G(6,6), and take the MRV mapping given by

Y ={y1,y2,¥3,y4} with

Y1 = (370)7 y2 = (07 3)7 Y3 = (1,0), and Ya = (Oal) ’

and with radix vector B = (2,2,3,3). We have r = 4 and H;}:lBi = H?:1Mi = 36. The mixed

radix expansion is

m—1=12d4 + 4d3 + 2ds + d7 ,

and

0<d; <B;.

d(m) = d1vi + dova + d3vs + dyvy .

The embedding lattice A in Z* is

A = (2Z x 27 x 6Z x 6Z) + {(0,0,0,0), (1,0,3,0), (0,1,0,3), (1,1,3,3)} .

This lattice satisfies the criterion (2.8), hence Theorem 2.1 shows that ¢ is one-to-one. The

resulting labelling is pictured in Figure 2.1, using matrix notation, so that rows are numbered

downward from 0 to 5, and columns are numbered across, from 0 to 5.

1
13
25

3
15
| 27

5
17
29

7
19
31

9
21
33
11
23
35

2
14
26

4
16
28

6
18
30

8
20
32

10
22
34
12
24
36

We end our discussion of the d-dimensional case by commenting on the problem of com-

puting the inverse of the map ¢ when it is one-to-one. This map may be hard to invert in

the general case. In the special case that II{_; B; = H?Zle, the inversion problem reduces

to solving a system of linear Diophantine equations, and for this there are polynomial-time

algorithms. In the two-dimensional case it appears that there exist good MRV labellings of

this sort having rank r < 4.



3. Two-Dimensional Case: Separating Consecutive Points

We consider the problem of labelling the M; My cells in an M; x M rectangular grid in

such a way that consecutively labelled cells are far apart. The rectangular grid is
G(My, My) :=={(4,§) :0<i< My —1,0<j < My—1} .
Recall that we measure distance in the grid using the Manhattan metric or (L!-norm):
1(2,5) = (&' )= li =1+ =5 -

An admissible labelling of the My x M, grid G(My, M5) is a bijection ¢ : [1, M1 Ms] —
G (M, Ms). The 2-spacing s2(¢p) of a labelling is

s2(¢) = min{[[¢(m) — ¢(m +1)[|1 : 1 <m < MyMp — 1} . (3.1)

The circular 2-spacing wi(¢) is the minimum Manhattan distance between consecutive points

in Gy M, viewing G, v, as a torus. That is,

s3(¢) = min|p(m) — (m +1)[|r: 1 <m < MM, — 1}, (3.2)
in which || - ||7 is the torus Manhattan metric
166, 3) = (@, §)lr := | —i" mod ™ M| +|j —j" mod ™ My, (3:3)

where r» mod * M denotes the least absolute value residue mod M, i.e. that residue which lies

in the range [-M/2, (M —1)/2]. Clearly

s5(¢) < s2(¢) - (3.4)

We start with an easy upper bound.
Theorem 3.1. For any labelling ¢,

M, M.
[%J, if My or My is even

s2(¢) < (3.5)

M, + M
% —1, if My, M, are both odd .

Proof. The “central cell” in the grid is v := ([ 5], | M2EL[). All cells in the grid are at
Manhattan distance at most [%J from v if My or M, is even, and at distance at most

% — 1 from v if M;, My are both odd. The “extreme” cell is (M7, My).

7



Now let ¢(v) = k. At least one of the values k—1 and k+1 falls inside the range [1, M7 Ms)].
If ¥’ denotes this value, then

s2() < 11908 — 6 = 1| (L2521 L2550 ) = Gl

which gives (3.5). O
Theorem 3.2. For all My, My > 2 there exists a mized radiz vector labelling ¢ such that

M, + M.
L%J 1 if My or My is odd

s3(4) = (3.6)

M M.
L%J —2 4if My and My are even .

Proof. We exhibit mixed radix vector labellings having the desired property. We use different
constructions according to the parity of M; and Ms.
Case 1. M, and My are both odd.
Set
L = least common multiple of M7 and Mo,
G = greatest common divisor of M; and M,

and note that M; My = LG. We use the MRV mapping ¢ of rank 2 given by

C(My—1 My+1
Y1 = 2 ; 2

)1 and Y2 = (LO) )

with mixed radix B = (L,G). If m =4iL + j with 0 < i < G and 0 < j < L, then

m) = (i3 (5 ) mod ), 3 (HEE) (mod 1))

We prove that ¢ is an MRV labelling. Suppose that ¢(m) = ¢(m') with associated radix

expansions (4, 7) and (i',5"). Then

j (MQQ_ 1) = (MQQ_ 1) (mod My) .

Since My is odd, 2 is invertible (mod M>), hence this gives j = j' (mod M), so j = j'. Now

M —1 M —1 M; —1
z'-l—j( 5 >:i+j'( > )Ez"+j'( 5 )(modMl)

hence 1 =i’ (mod M;) so i =14', and ¢ is one-to-one.

We now show that

5(0) > [T 1 (37)



To see this, note that incrementing m by 1 increments j by 1 (mod L), while

My —1 My;—1
L(l 2

5 5 )E(0,0) (mod M) .

Thus we always add the vector (Ml{l, %), which has torus Manhattan length w —1.

At certain steps the vector (1,0) is also added, which gives the vector (M12+1, M2271)’ which
also has torus Manhattan length 2322 — 1. Thus (3.10) follows.

Case 2. One of My, M, is even and the other is odd.

We treat the case M) is even and M> is odd, the other case being similar. For 1 < K < M; My
set L* = 2M>s and consider the MRV mapping ¢ with

(M Myp—1
Y1 = 9 2

) and s = (1,0)

and mixed radix base B := (2M2, %) We will show that this is the desired MRV labelling.
We have

M My —1
o) = (i-+3%" moa na), 5 (M271) (mod 21 (3.5)
where
e ) . . .M
m—1:=4L"+j, with 0<j<L"—1, O§z<7. (3.9)

To see that ¢ is one-to-one, observe that the second coordinate of ¢(m) determines j (mod
M,), since M, is odd. Then the first coordinate determines i(mod 22'), and also j(mod 2),

which determines j (mod 2Ms). Now m is reconstructible by (3.9).

My Ms—1 M{+2 My—1
Next, since ¢p(m + 1) — ¢(m) is one of (71, 22 ) by ( 12+ , 22 ), we obtain
. M+ M; -3 M, + M.

as desired.

Case 3. M; and My are both even.
This is the most complicated case. A rank three MRV labelling is required. Define L* to
be the least £ > 0 such that

E(%—l) = 0 (mod M),

é(%—l) = 0 (mod M) .



Then L* is given by

1 M, M.
5 Lem. (Mi,My) if L2 s 0dd
L =
M, M.
Lem. (My, My)  if =22 is even .

Set G* = g.c.d. (My, My) so that My M, = H*G*L*, with

M M-
2 if =L Qisodd,
H* =
M M-
1 if 12iseven.

We use the MRV mapping ¢ defined by

<M1—2 My —2
Y1 =

2 ; 2 ) y Y2 = (07 1) and y3 = (170) ;

with mixed radix base B = (B, Be, Bs) := (L*, G*, H*). In the case that H* = 1 this simplifies

to a MRV mapping on two generators, since y3 can be omitted. If
m=4G*L* +iL* +j
with
0<j<L*"—1;0<i<G"—-1;0<¢<H"-1,

hen
t P(m) = (L+j (M12_ 2) (mod M), i+ j (MQQ_ 2 (mod M2)> (3.10)

We omit a proof that ¢ is one-to-one, which can be derived from (3.10) by an argument
similar to that in Case 2.

To establish the bound
M1 =+ M2 B
2

use the fact that each step from ¢(m) to ¢(m + 1) is one of
Mi-2 My-2) (My My-2\ (M M)
2 7 2 ’ 27 2 ’ 27 2 )

As a Case 1 example, take M; = 5, Ms = 5, in which case L. = 5, G = 5. Here

(1472, 22

s5(¢%) > 2,

Examples.

= (2,2) and the labelling is given below. (We use matrix notation, so that rows

10



are numbered 0 to 4,reading down, and columns are numbered 0 to 4, reading across.)

1 24 17 15 8
6 4 22 20 13
11 9 2 25 18
16 14 7 5 23
21 19 12 10 3

In this example

Note that ¢(5) and ¢(6) are at distance 4 in the torus Manhattan metric.
As a Case 3 example, for M; = 4, My = 6, we have L* = 12, G* = 2 and M* = 1, and

obtain the labelling (in matrix form):

113 5 17 9 21
10 22 2 14 6 18
7 19 11 23 3 15
4 16 8 20 12 24

4. Two Dimensional Case: Separating Several Points

We consider the problem of finding labellings ¢ of G(M;, Ms) that well-separate all se-

quences of k consecutive points. We define the £-spacing of a labelling to be
5e(¢) == min{||p(m) — p(m + )| : 1 <m<m+j < MMy, 1<j<k}. (41)
We define the circular k-spacing s} (¢) analogously; to be
5:(9) == min{||p(m) — p(m + )llr: 1 <m<m+j < MM, 1<j<k},  (42)

using the torus Manhattan distance measure (3.3). Note that s} (¢) < si(¢).

How large can one make si(¢)? We define
Sk (M, M) := max{si(¢) : ¢ a labelling for G n} -

Upper bounds for Si(M1, M3) depend on the shape of the rectangular grid G(Mi, Ms). Using
symmetry considerations we may reduce to the case that M; < Ms. If the grid is narrow in one
direction, there is an upper bound proportional to w, while if M7 and M, are within a
constant ratio of one another, there is an upper bound proportional to %, as the following

result shows.

11



Theorem 4.1. Suppose that k > 3, and that My < Ms.
(i). If Mo > £y, then

3M.
Sk(My, My) < 72 : (4.3)
(ii). If My < My < £M,, then
M- M- 1/2
Sk(My, M) < (8 llg 2) : (4.4)

Proof. Let V(x; D) denote the set of cells within Manhattan distance at most D of a cell x

in the square lattice Z2. The number of such cells is

D+1
1+4< ;):2D2+2D+1.

We obtain upper bounds for S = Si(M;, M;) using a packing argument, based on the geometric
fact that none of the regions V (x;; D) N G(My, M) can overlap, for D = |1S]. If we define

N(x; D) := |[V(x; D) N G(My, M) ,

then we have the bound )

ZN (xi, L%SJ) < MM, . (4.5)

To bound S from above we need lower bounds for N(x; D).

Claim. (i). If D < M; < My, then

D+2 1
N(x;D)Z( + ):—D2+§D+1, (4.6)
2 2 2
and equality occurs if x is a corner cell of G(My, My).
(ii). If My < D < My, then
My +1 1 1
N(x; D) > (D — My)M; + ( 1; ) = DM, — §M12 + 5 M (4.7)

and equality occurs if x is a corner cell of G(Mi, Ms).

The claim follows by inspection of the possible ways that the region N(x, D) may intersect
the boundary of G(M;, My). Figure 4.1 illustrates two cases for D < M;; and Figure 4.2 illus-
trates cases with My < D < Mjy. The distinction below D < M7 and D > M, arises because for
D > M, two opposite sides of N(x, D) always lie on the boundary of the rectangle G(My, Ms).

In all cases the corner cell x minimizes the number of points in V(x, D) N G(M7, Ma).

12



We note that when M; < M, the bound (4.7) of the claim is actually valid for all D < Moy,
because it is weaker than the bound (4.6) when D < M;. However (4.6) can be applied only
when we know that D = [1S] < M;. Note that D = |55 < (M1 + M) < M.

We obtain upper bounds for S by substituting the bounds of the claim into (4.5). Substi-
tuting (4.7) in (4.5) yields

1 1 1
k (LiSJMI - §M12 + §M1> < MM, ,
hence
1 1 M, 1M,
—§<|= g2y )
25 LSJ+2_k+2k (4.8)
since M1 < Moy, this yields
3M.
S < TQ . (4.9)

This bound is universally valid, and gives (i) as a special case.
Now if M, < %Ml, then (4.9) gives S < M. In this case we may legitimately apply the
bound (4.6) in (4.5) to obtain

1/1.\2 31
B e < .
k<2 (LQSJ) +2L28J+1) < MiM;
Thus ) \
1 1 3 1. 1 9 oMM, 1
- <(|= °) == - i -
(2S+1) _<L25J+2> L2SJ +3L2SJ+4_ 1

which yields

8M1 M,

2 <
(S+2)° < %

+1, (4.10)

from which the bound of (ii) follows. O

The upper bounds of Theorem 4.1 are conservative and can potentially be improved by a
multiplicative constant, which varies between /2 and 2, for most values of M; and M,. This
occurs because “nearly all” cells x € G(My, My) have N(x,D) at least twice as large as the
value of N(x, D) of a corner cell, but N(x, D) is never more than four times as large the value
of N(x, D) for a corner cell.

We show that there exist MRV labellings that achieve k-spacings within a multiplicative
constant of % of these upper bound range (i) of Theorem 4.1.
Theorem 4.2. Suppose that k > 3 and consider a grid G(My, Ms) with My > My > 3. If
My > §M1, then there exists a multiple radiz vector labelling ¢ with

58 > (V2] 2. (411)
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

M,

a) x = center cell (D < 1M b) x = corner cell
2

Figure 4.1: Regions V(x, D) N G(M;, M) for D < M; < M.

Proof. We use an MRV labelling ¢ that fills the rows of G(M;, Ms) one at a time. The
M-
hypotheses imply M2 > k, so Lf] > 1. Let ¢ be the MRV mapping of rank 3 that uses the

vectors
M.
Y1 = (Oa I_T2J> y Y2 = (07 1) , Y3 = (]-aO) )
and the base B = (B, Bo, Bs) given by

M. M.
By = 2 7 , By = g.c.d.(MQ, LTQJ) , B3=M .
g.c.d.(Ms, LTJ)

If By =1, then the rank drops to 2, in which case ys is omitted. We have BBy B3y = M1 M>

and the lattice A = Ay ¢ is the set of vectors (my,mg, m3) € Z3 such that
m3 =0 (mod M), (4.12a)

M
mlLT?J +me=0 (mod M) . (4.12Db)

The criterion of Theorem 2.1(ii) for A is easily checked: either |m| > By or |mgy| > By follows
from (4.12b) if (m1,ma) # (0,0) while (4.12a) gives |mg| > M; = Bs if m3 # 0. Thus ¢ is
one-to-one, hence is an MRV labelling.

M,
%

in their second coordinate, in the torus metric. Also the cycle of y; values which occur before

Any k consecutive values of y; have each pair of values separated by at least ||y1|| = |

a repeated value is of length at least k, hence the updates by y2 and y3 occur at time intervals
more than k units apart. It follows that each k consecutive vectors differ from a translate of

consecutive multiples of y; by at most ||yz|| + ||y3|| < 2. This yields (4.11). O
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(a) x = center cell (b) x = corner cell

Figure 4.2: Regions V(x, D) N G(M;, M) for My < D < M.

Constructing MRV labellings to get within a multiplicative constant factor of the optimal
spacing in the remaining upper bound range (ii) of Theorem 4.1 appears complicated, and a
general proof would seem to require consideration of many different MRV mappings. We do
not attempt it here. In the special case that My = My = M, k = /2, and ¢ divides M, a good

MRV labelling is easy to come by. It is of rank 4 with

M M
y1= (077> y Y2 = (7, 0) , ¥y3=(0,1) and y4=(1,0),

with mixed radix B = (¢, ¢, %, %) In this example

)2 (1222) " .

A special case of this mapping appears in Figure 2.1, with M =6, kK =4 and £ = 2. It has

s4(¢)=2z(Li—6J)l/Q—z:1_

We conjecture that for £k > 3 and M7 < My < %Ml there exist MRV labellings that achieve

1/2
MZMZO -2, (4.13)

2(@) 2 o (1

for some positive constant ¢y, e.g. co = %
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out the reference [4, Problem D1].
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