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ABSTRACT
The tent map 3 : [0,1] — [0,1] with parameter 1 < § < 2 is defined by
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This paper derives formulae for its dynamical zeta function and lap counting function, which
exhibits the renormalization structure of such maps. It relates these functions to the centrally
symmetric linear mod one transformation

falz) =Pz +1— g (mod 1) .
The singularities of these functions on the circle |z| = % are explicitly determined.

1. Introduction
The symmetric tent map tg : [0,1] = [0,1] with parameter 1 < < 2 is defined by
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The dynamics under iteration of the tent map have been extensively studied as one of the
simplest examples of hyperbolic discrete dynamical systems. Its name comes from the tent-
like appearance of its graph, see Figure 1.

In Lorenz’s 1963 paper on deterministic aperiodic flow, which introduced the “Lorenz
attractor”, Lorenz computed a statistic of orbits on the “Lorenz attractor” that appeared to
be described by iterating a tent-like map, see [23]. Later Parry [28] exhibited a symmetric
tent map as a factor map in the dynamics of a simplified model of the Lorenz attractor. He
observed that iteration of t3(z) exhibited a “renormalization” behavior depending on the value
of k such that

2" <<t (1.2)
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Figure 1: Tent Map

The tent map also arises in study of the quadratic map (or logistic map)
go(z) :=az(l — ) . (1.3)

For the range of parameters 0 < a < 4, the interval [0,1] is an invariant set. Milnor and
Thurston [24, Theorem 7.4] showed that the map gq(z) is topologically semiconjugate to some
tent map t,(,)(z). That is, there is a continuous nondecreasing function ¢, : [0,1] — [0, 1]
with f,(0) =0, fo(1) =1 such that

Pa © (%) = th(a) © Pa(2) - (1.4)

Here ¢, is generally not invertible: it may have “flat spots.” The map %, essentially captures
the dynamics of g,(x) on the subset ¥, of [0,1] where it is “expanding,” this set 3, is the
intersection of the Julia set J(g,) in C with the interval [0, 1], and is generally a Cantor-like set,
sometimes of positive Lebesgue measure. The value log h(a) is the topological entropy of the
map ¢, on [0, 1]. In the extreme case a = 4, we have ¥, = [0, 1] and the map ¢, is topologically
conjugate and even smoothly conjugate to ta(z). The function h(a) = 0 for 0 < a < ¢y, with
cop = 3.5699... and only for ¢y < a < 4 does the Julia set J(g,) intersect [0, 1], see [24, pp. 471
and 546]. The exact behavior of the function h(a) is apparently quite complicated, and it is
not completely understood, see [7], [24, Section 13].

Two of the simplest dynamical invariants associated to tg(z) are its lap counting function
and zeta function. The lap counting function of a continuous function f : [0,1] — [0, 1] whose
graph consists of a finite number of monotone segments (“laps”) is the formal power series

Li(2) = S L(p)#* (1.5
k=0

in which Lo(f) = 1 and L(f) counts the number of laps of the iterate f¥. This function was
introduced by Milnor and Thurston [24]. The (dynamical) zeta function of f is the formal
power series

Cr(z) :==exp (i PkT(f)zk) , (1.6)

k=1
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Figure 2: Symmetric Linear Mod One Transformation

in which P;(f) counts the number of fixed points of f¥. That is, P,(f) counts the number
of periodic points of f with a period dividing k. This function was introduced by Artin
and Mazur [1], with variations and extensions in Smale [30], Williams [32] and Ruelle [29].
The sequences Ly(f) and Py(f) both have at most exponential growth in k£ under suitable
smoothness conditions on f, in which case these expressions will converge to analytic functions
in some open neighborhood of z = 0.

This paper derives explicit formulas for the lap-counting function and zeta function of tent
maps tg. For these purpose we introduce an auxiliary function, the (centrally) symmetric
linear mod one transformation

falz) =Pz +1— g (mod one) . (1.7)

This map is piecewise linear but discontinuous, and is pictured in Figure 2. Its name is justified
by the appearance of its graph, which is symmetric around z = 1/2, in the sense that

fs(l—z)=1— fa(x) . (1.8)

except at the discontinuity points of fg. We now set

Bp(z) =1+ Y [f3(17) — f3(0)]=" , (1.9)
n=1
in which
£317) = lim F310).

This function is clearly analytic for |z| < 1 since its power series coefficients are bounded, and
®3(0) = 1. The relation (1.8) implies' that

fE(17) =1-75(0), (1.10)

'In general f5(17) = f3(1) unless some iterate f5(1) = 1. In this case let ko be the smallest such k. Then
f5(17) = fg(1) for n < ko, while f5(17) = fgiko(o) =1— f5(1) for all n > k.
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Dp(2) = -2 fR(0)2" . (1.11)
n=0

It is relatively easy to prove that ®3(z) is nonzero in the open disk |z| < %, see [12, Theorem
3.3]. Its singularities on the circle |z| = % are closely related to the dynamics of fg(x).

Theorem 1.1. The lap counting function Ly, of the tent map tg for 1 < 8 < 2 is meromorphic
in the open unit disk |z| < 1. If 927" « 8 < 227" gnd B* = B2, then

_ 1 M50 +2%) L
Ltg(z) = 1— (ﬂz)2k (1 _ Z) H‘I;:O(]' _ Z2j)(1)ﬂ*(z2k) + 1—2"

(1.12)

for |z| < 1. The function ® - (22") is nonzero in the closed disk |z| < %

The formula explicitly exhibits a “renormalization” phenomenon well-known for the tent
map, which was observed as a self-similar structure in its symbolic dyamics in Derrida et al
[9] in 1978. Tt also shows that for 227" 7" < 8 < 227" the closest singularities to the origin of
Ly, (2) lie at radius % and consist of simple poles at the 2¥ points

{%exp (27;:”) ‘1 §m§2k} . (1.13)

The fact that ®g- (22") is nonzero in the closed disk |z| < % is a consequence of the work in
[14, Theorem 1.1] for the lap counting function of linear mod one transformations.

Theorem 1.2. The zeta function (i, (2) of the tent map tg for 1 < B < 2 is meromorphic in
the open unit disk |z| < 1. Let p be the smallest positive integer such that t% (%) = % and set
p = o0 if no such integer exists. If 22757 < B < 227" gnd 6 = ﬁQk, then

1 i +2%)
(82)% (1 — 27) TTF_o(1 — 22) D0 (22°)

Cig(2) = T (1.14)

for |z| < 1, using the convention that 2P =0 if p = oo.

This formula shows that in the open unit disk |2| < 1 the function (;,(z) has its poles at
exactly the same locations as Ly, (2), a fact which already follows from results of Milnor and
Thurston detailed in §2.

The lap-counting function and zeta function of the tent map are either both rational func-
tions, or else both have the unit circle as a natural boundary to analytic continuation. This
follows from a similar dichotomy for linear mod one transformations given in [12, Theorem 3.1],
which carries over through the function ®g-(z). The result for linear mod one transformations
also implies that these functions are rational functions if and only if the iterates {f(0)} of
the symmetric linear mod one transformation are eventually periodic, using (1.11). In §2 we
observe that this is equivalent to the condition that the iterates {tg(%) :n = 1,2,...} of the
turning point of the tent map are eventually periodic.

There is a relation between the singularities of the lap counting function (or, equivalently,
the zeta function) of ¢g on the circle |z| = % and the dynamics of iterating ¢g. It is known that
tg has a unique absolutely continuous invariant measure dug on [0,1], see Li and Yorke [22].
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The location of the poles of (;;(z) on the circle |z| = % correspond exactly to the complete set
of eigenvalues of the Koopman operator U on L?([0,1],dug) given by

Ud(z) = $(ts(x)), ¢ € L*([0,1],dpg) - (1.15)

This follows from similar facts about fg, see [12, p. 456 bottom]. This operator is the formal
adjoint of the Frobenius-Perron operator or transfer operator

#(y)
Fo(z E , 1.16
( ) s (y)=z |t,ﬁ (y)| ( )

acting on a space of smooth functions contained in L?([0,1],dy). The zeta function can be
related to the Fredholm determinant det(I — 2F) of this operator on a suitable function space,
see Hofbauer and Keller [17]. Recently Hasegawa and Saphir [16] suggested a relation of other
poles of such operators to “irreversibility” of the dynamics of such maps. For some general
information on eigenvalues of Frobenius-Perron operators and Koopman operators, see Ding
[10]. Eigenvalues of the Frobenius-Perron operator for tent maps were studied in Doérfle [11].

We prove Theorem 1.1 by relating both functions fz and t5 to an auxiliary function gg,
given by

Bx+2—03, for Oﬁmgl—%,
9p(z) = (1.17)

—Bz + 0, for —1<z<1,

=)

We call this function a peak function with parameter 1 < 8 < 2. Basic relations between the
tent map tg, peak function gg and symmetric linear mod one transformation fgz are described
in §3. The function gg is a factor of fg, while in turn gg captures the non-wandering dynamics
of tg. These relations were first observed by Parry [28] in 1979. The relations between tg, f3,
and gg imply relations between their respective lap counting functions. We derive in Theorem
4.1 a functional equation relating the lap-counting function of the symmetric linear mod one
transformation fg to that of the peak function gg. In Theorem 5.1 we give a functional
equation relating the lap counting function of the tent map tg to that of the peak function gg.
We are then able to apply the results of our previous analysis of the lap-counting functions
of linear mod one transformations in Flatto and Lagarias [12]-[14]. These results include a
renormalization formula

1
Ly, (2) = 5%2 (%), when 1<fB<V2 (1.18)

which is a special case of [12, Theorem 4.2]. The analysis in [14] shows that ®3(z) has no zeros
in [z < 4 for vV2< <2

There are a number of different approaches available to compute the zeta function (¢, (2)-
There is a method of Milnor and Thurston [24] which expresses both the zeta function and lap
counting functions in terms of a kneading determinant Dg(z), which for unimodal maps of a
kind including the tent map family is a power series whose coefficients are given in terms of
the iterates of the turning point z = % under iteration by 3. This implies a functional relation
between the lap counting function and the zeta function of the tent map, and we use it to
show that Theorem 1.1 implies Theorem 1.2. In §6 we show that the kneading determinant is
explicitly given by

Dg(z) = (1 — B2)®p(2) , (1.19)

for 1 < < 2. Another approach to computing (;,(2) can be based on the use of a transfer
operator, see Hofbauer and Keller [17], Mori [26], and Baladi and Ruelle [2].



The formulas for L;;(z) and (;;(2) in Theorem 1.1 and Theorem 1.2 make manifest the
smallest singularities of L;;(2) and (;;(2) on the circle |z = % These singularities do not
seem to be readily apparent from the kneading determinant. In this respect, the formula
(1.19) represents a main result of the paper, because we conclude using it that ®3(z) # 0 for
z < % whenever /2 < 3 < 2, by employing the Markov chain machinery for fs developed in
[12] - [14]. This approach to determining the singularities of the lap counting function on the
circle |z| = % seems quite roundabout, and one may ask whether it is possible to obtain this
result directly from ¢g, without considering fg.

Many other properties of tent maps have been studied. The self-similar nature of the
symbolic dynamics was analyzed in Derrida et al. [9]. The unique absolutely continuous
invariant measure dug of the tent map was explicitly determined by Ito et al [18, Theorem
1.1], along with properties of their periodic points. There has also been work showing that tent
maps have the shadowing property for v/2 < 3 < 2,, see Coven et al [8, Theorem 4.2]. Various
information has been obtained about semi-conjugacies of smooth maps to tent maps, see [31,
Sect. 2.5] and [5]. The behavior of iterates of the turning point for “generic” tent maps has
recently been studied in Brucks and Misiurewicz [4] and Bruin [6].

2. Kneading Determinants and Zeta Functions

This section is based on the results of Milnor and Thurston [24]. Let A : [0,1] — [0, 1] be
a continuous map of the interval such that h(z) has exactly two monotone segments (“laps”)
with one turning point at 0 < ¢ < 1, and assume further that either h(0) = h(1) = 0, or
h(0) = h(1) = 1. We call such a map a pinned unimodal map, to signify that its endpoints are
pinned to the boundary, see Figure 3. Let Iy(c) and I;(c) denote the open intervals (0,c) and

1

Io

Figure 3: Pinned Unimodal Map h

1 if z€l
e(x) = { (2.1)

(c,1), respectively, and set

-1 if zeIl.



For n > 1 we define the kneading sequences of h by

{ e(h(c))  if k() #c,
€n 1= (2.2)
€160+ €,—1 if h"(c)=c.

The graph of h(z) with h(0) = h(1) = 0 is pictured schematically in Figure 3. We define
D, :=¢€e9--€¢, for n>1, (2.3)

and set Dy = 1. Then we define the kneading determinant by
o o0
Dy(2) =) Dp2" =1+ € --eu2" . (2.4)
n=0 n=1

Milnor and Thurston [24] give a different and more general definition of kneading determinant
for continuous maps of the interval with finitely many turning points, but it agrees with the
one above for pinned unimodal maps by [24, Lemma 4.5].

Proposition 2.1. (Milnor-Thurston) For a pinned unimodal map h of the interval, the lap
counting function Lp(z) is given by
z 1

L) = a3 T 12

(2.5)
in which Dy(z) is the kneading determinant of h.

Proof. This follows from Corollary 5.8 and 5.9 of [24]. =
The tent map tg for 1 < 8 < 2 is a pinned unimodal map. On comparing Proposition 2.1
with h = tg to Theorem 1.1, we see that for V2 < B <2 it gives

Dy (2) = (1 = B2)®p(2) -

In §6 we show that this relation holds for the full range 1 < 8 < 2.

Milnor and Thurston [24, Section 9] introduced a reduced zeta function ég(z), which is
closely related to the zeta function (g(z). The reduced zeta function (n(z) differs from ¢, (2)
in only counting monotone equivalence classes of fixed points of h", e.g., it identifies all fixed
points that have the same symbolic dynamics given by lap intervals.

Proposition 2.2. (Milnor-Thurston) The reduced zeta function (n(z) of a pinned unimodal

map 18
h 1

= 2.6
if the sequence of coefficients of the power series Dy(z) is not periodic. It is
- 1
Calz) = (2.7)

- (1=22)(1 = 2)Dal2) ’

if this sequence is periodic with minimal period p.



Proof. This is Corollary 10.7 of [24]. =

We remark that the sequence of coefficients {D,, : n > 1} is periodic if and only if some
iterate h"(c) = ¢, and if so then the minimal period p of {D,, : n > 1} is the minimal period
n > 1 for which A™(c) = c. The proof of these facts is left to the reader.

A piecewise C'-map is strictly ezpanding if there is a positive J such that

B (z)] = 1+6,

for all z € [0,1] where h/(z) is defined. For uniformly expanding maps, all fixed points lie in
different monotone equivalence classes, hence

~

Cn(s) = Cn(s) (2.8)

holds for such functions h.

Proof of Theorem 1.2 assuming Theorem 1.1. For a pinned unimodal map Propositions
2.1 and 2.2 combine to give the formula

R 1—2 1
=— (L — 2.9
) = =7 (B2 - 1=5) (29
in which p > 1 is the minimal value of p such that
hP(c) = ¢, (2.10)

with p = 400 if no such value exists, and with the convention that z°° = 0. Now tent maps
for 1 < 8 < 2 are strictly expanding piecewise C' maps, so we have

Gy (2) = Gy (2). (2.11)

Combining (2.9) with h = tg and (2.11), and substituting the result into Theorem 1.1 yields
Theorem 1.2. =

3. Peak Function and Symbolic Dynamics

The peak function gg is defined by

)

(3.1)

Br+2—pF for 0<z<1-—1%,
gp(z) =

—Br+ 0 for 1—%§:1:§1.

It is pictured in Figure 4; its name describes its graph.

To prove Theorem 1.1 we establish a functional relation between the lap counting function
of the tent map ¢g to that of the symmetric linear mod one transformation fz. This is accom-
plished by relating both of these to the lap counting function of the peak function. All three
functions are piecewise linear with pieces of slope £0.

In this section we relate tg and fg to gg, and give some basic facts on the standard symbolic
dynamics of iterating these maps.
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Figure 4: Peak Function gg

3.1. Relation of f3 and gg

Consider the map

2z for 0<z<1/2,
Y(z) =
21 —2z) for 1/2<z<1.

A computation gives the semiconjugacy

Yofg=gsot, (3.3)

which establishes that the peak function gg is a factor of fg.

3.2. Relation of {5 and g3

The closed interval J = [5(1 — g), g] contains the turning point % of tg in its interior, and
tg maps J into J, see Figure 5.

The restriction tﬁ|J of tg on J is conjugate to gg by the linear rescaling

_e—p(1-9)
P(z) = W (3.4)
which maps J onto I = [0, 1], thus
gs=dotg| of" . (3.5)

The region J contains essentially all the non-wandering dynamics of Z3. That is, we show
that, aside from the endpoints 0 and 1, the orbit of any point { fg(:v) :n > 0} eventually enters
and stays in J. Set

B

Be = B17* (1 — 5) for k>-1, (3.6)
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Figure 5: Invariant Subinterval J = [$y,1 — 1] of Tent Map

and note that J = [y, 1 — B1]. Now define the intervals
Ak = [/Bk’ﬁk—l]’ k Z 07 and Ak = []- - ﬁk—la 1-—- /Bk]’ k Z 2. (37)

They are depicted in Figure 5. The intervals {Ay}x>1 and {Aj}r>2 together with J have
mutually disjoint interiors and cover the open unit interval. The map ¢4 is a homeomorphism
from A, onto A, for k > 1, and is a homeomorphism from A; onto A; i, for k > 2.
Furthermore Ay C J. From these facts, we conclude that the orbit of any point x # 0, 1
eventually enters and stays in J.

3.3. Symbolic Dynamics

We attach a symbolic dynamics to f3 and gg by applying labels 0, 1 to the two subintervals
on which each of the maps is linear. This symbolic dynamics allows us to define lap numbers
for the discontinuous map f3, as was done in [12]-[14].

For fs we use the open intervals Iy = (0, %) and [ = (%, 1) to define a symbolic dynamics.
For any finite sequence (ag, a1, ...,a,—1) of zeros and ones we set

Iaoal...an_l — {O <z<l: fg = Iak’ 0 S k S n— ]_},
and call (ag,ay, ..., a,_1) f-admissible if Ipq,. a,_, 7 2-

Lemma 3.1. For (ag,...an—1) f-admissible, the set Inyq,...0,_, 1S a nonempty open interval.
These open intervals are called n-th stage intervals for fg and are denoted generically by Im),
The I(™)’s gqre disjoint and I = [0,1] is the union of their closures.

Proof: Straightforward induction on n. =

For linear mod one transformations we define lap numbers using symbolic dynamics. The
lap number L,(fg) is the number of f-admissible sequences of length n, i.e. the number of
n-th stage subintervals for fg. This number generally agrees with the number of monotone
linear segments in the graph of fg, but for certain special 8 it can sometimes be larger, when

two segments in adjoining I “glue together.” (An example of this phenomenon is given in
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Figure 1b of [12].) Thus our definition sometimes differs from the geometric definition based
on monotone pieces in the graph of fg.

We have a similar symbolic dynamics describing iterates of the peak function gg. We use
the subintervals Jy = (0, %) and J; = (%, 1). For any finite sequence (ag, a1, ...,a,) of 0’s
and 1’s we let Jy0 1.0, 1 = {0 <z < 1;¢%(z) € Jy,,0 < k < n—1}. We call (ag,a1,---,a, 1)
g-admissible if Jyp4,. 4, 1 7 ¢-

Lemma 3.2. (i) For each (ag, a1, ... ,an—1) that is g-admissible, the set Juya,...0,_, i a nonempty
open interval. These open intervals are called n-th stage intervals for gg and are denoted gener-
ically by J™ . The J™ s are disjoint and I = [0,1] is the union of their closure.

(i) The restriction of gg to any n-th stage subinterval J™ is linear of slope £8". In two
contiguous J™ s, the slope of gg has opposite signs.

Proof: Straightforward inductionon n. =

In view of Lemma 3.2, we can interpret the lap number L,(gg) both as the number of
monotone pieces of gﬁ (“lap number” in the Milnor-Thurston sense) or as the number of
g-admissible sequences of length n (symbolic “lap number”).

4. Linear Mod One Transformation to Peak Function

For a symmetric linear mod one transformation we define the lap counting function by

o

Lyy(2) = 3 La(fp)e" (4.1)

n=0

in which L,,(f3) are the lap numbers defined by the symbolic dynamics in §3.3, and Lo(f3) = 1.
We relate the lap-counting functions of f3 and gg, as follows.

Theorem 4.1. For 1 < 8 < 2, the lap-counting functions of the centrally symmetric linear
mod one transformation fg and the peak function gg are related by

L (2) =14 22Lg,(2) - (4.2)

Proof: We regard § as fixed and write f for f3 and g for gg in what follows. Let L, (f)
denote the set of f-admissible sequences of length n, whose cardinality is L, (f). Similarly let
L,,(g) denote the g-admissible sequences of length n, whose number is L, (g). We will show
that

Lyy1(f) =2Lu(g), for n>0. (4.3)

Assuming this is done, multiplying (4.3) by 2" and summing over n yields (4.2).
To prove (4.3), we define a surjective map

T: En-l—l(f) - ‘Cn(g) ) (44)

and prove that it is two-to-one. To define 7 we use the two-to-one map 1 given in (3.2). This
map satisfies

z:b(Iaoal) = Jao+ay for ag,a; € {07 1} (4.5)

11



in which ag + a1 is interpreted (mod 2). For (ay,...,a,) € L,+1(f) we define 7(ay,...,a,) =
(bo,b1,...,bp—1) by b; € {0, 1} with

b =a;+ajr1(mod 2) for 0<i<n. (4.6)
To prove that 7 has the desired properties it suffices to show that
(1) (b07 bla s ;bn—l) € £n(g)

(ii) For each (bg,...,bp—1) € Ly(g) there are exactly two (ag,-..,a,) € Lp+1(f) with it as
image under 7.

To prove (i), let © € Iogq;...a, and set y € P(x). Then f*(z) € I,,, f*™(z) € I, ,, so that
f¥(z) € Ingay,, for 0 <k <n—1. Then (4.5) gives
gk(y) = gkw(x) = prk(x) € w(IakakH) = ka for 0 < k <n-1. (47)

Thus (bo, b1,...,bp—1) € Ln(g).
To prove (ii), note that (4.6) shows that (a1, ..., a,) are determined by ag and (bg, b1, - -.,bp—1).
Since ag = 0 or 1, we conclude that there are at most two (ag,a1,-..,an) € Ln+1(f) for which

T(ao,al,. ‘e ,an) = (b(),bl,. .. ,bnfl) . (48)

To exhibit two such, suppose that y € Jyp,..5, ,- Then y = p(x) = 9(z1) for some zy € I
and 1 € I;. We can choose y so that zg and z; are both in n-th stage subintervals for f, say
%0 € Iapay-a, and 1 € Igyg,...a,, Dy avoiding a finite set of bad points. By (i) we have

T(ag,ai,...,an) = 7(0, a1, ,an) = (bo, b1,...,bp_1) -

Since ag = 0 and ag = 1 the sequences (ag,a1,...,a,) and (ag,a1,- -, a,) are distinct, which
proves (ii). =

5. Tent Map to Peak Function

We relate the lap-counting functions of ¢5, and gg, as follows.

Theorem 5.1. For 1 < B < 2, the lap-counting functions of the tent map tg and the peak
function gg are related by
222 142
Ltﬁ(Z) = :Lgﬂ(Z) + 1—2 .

We treat (8 as fixed and write f = fz and g = gg in what follows. We use a detailed
analysis of the iteration of t5 on the intervals Ay and Aj introduced in §3.2. We define
refined lap numbers L, (¢, Ax) and Ly, (t, Ax) and prove a set of preliminary lemmas about their
properties.

For A, a closed subinterval of I = [0,1], we let L,(g, A) denote the number of monotone
pieces of the graph of ¢” that occur for x € A. In particular L,(g,I) = Lp(g). We define
Ly (t, A) similarly.

For any 0 <z <1, we set

min{n >0 and g¢"(z =81
ordy(x) ::{ ¢ (@) 7

oo, if no such n exists .

(5.1)

12



We define similarly

min{n:n >0 and "(z)=231
ordy(z) := { { B @ =3} (5.3)

oo, if no such n exists .

For all but a countable number of points, ordy(z) = oo and ord;(z) = oc.

Lemma 5.1. For0 <z <1 andn > 1, g" has a continuous derivative at x for alln < ordgy(x)
and a discontinuous derivative at x for all n > ordyz. A similar statement holds for t".

Proof: An easy inductionon n. =
This lemma can be rephrased geometrically. The graph of g™ consists of line segments of
slope £3". The point (z, g"(z)) is interior to one of these segments precisely when n < ord,(z).
We now define the characteristic function
{ 1 if n<m,
x[n <m] = (5.4)

0 if n>m.

Lemma 5.2. If0=wy < w; < --- < w41 =1 and A; = [w;, wi11] for 0 <i <r, then

La(g) = ) Ln(g, A Zx[n < ordg(w;)] . (5.5)

1=0 i=1
A similar formula holds for Ly,(t).

Proof: The graph of g" consists of line segments of slope 43", and L,,(g) counts the number
of these line segments , which we call total line segments. Now L, (g, A;) counts line segments
of g" over the domain A;, and all of these are total except possibly the rightmost and leftmost
ones. The rightmost segment of A;_; and the leftmost segment of A; form a single total
line segment precisely when (w;, f™(w;)) is interior to some I™). Lemma 5.1 states that this
happens exactly when n < ordg(w;). This justifies the formula (5.5). The proof for L,(t) is
similar. =

We now use the intervals Ay = [Bg, Bp_1] for k > 0 and Ay =[1 — Br_1,1 — B] for k > 2,
in which B = B17%(1 — &) for k > —1, which were introduced in Sect. 3.2, see Figure 5.

Lemma 5.3. Forn > 2,

La) = Lo(@) + 3 In(t A+ 3 Lo(t, Ay)
k=2

k=1
n—1

- Z x[n < ordy(By)] Z x[n < ordi(1— B)] . (5.6)

k=0 k=1
Proof: Set Al = [ ,Bn_1] and Al = [1 — B,_1,1]. The points B,_1, Bu_2,---,01, 5 and
1—p1,1—fa,...,1— B, partition [0, 1] from left to right into the 2n subintervals A}, A,_1,
Apo,... A, J, A2, Az, ... Ay, A From Lemma 5.2 applied to ¢ with these points we get

L,(t) = Lp(t,J)+ Ln(t, Al) + Ly(t, AL)

+ ELn(t,Ak) +T§Ln(t,fik)
- Z x[n < ordy(B)] Z x[n < ordy(1 — B)] - (5.7)
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The linear rescaling of ¢ ; to g given by (3.5) shows that

The map " sends A!, and A!, homeomorphically to [0,3-1]. Since A, C A/, and A, C A’,, we
conclude that
Ln(t7 A{n) = Ln(taAn) =1, (59)

and B
L,(t,Al) = L,(t,A,) = 1. (5.10)

Inserting (5.8)—(5.10) into (5.7) gives the formula (5.6). =
Lemma 5.4. Let B =[0,9(0)] =[0,2 — §]. Then for n >0,

Ly(9,B) = 2Ly(9) — Lpy1(9) + x[n + 1 < ordy(0)] . (5.11)

Proof: Set B =[g(0),1] = [2 — 3,1]. By Lemma 5.2 applied to g with r = 1 and w; = g(0),
we have, for n > 0,

Ln(9) = Ln(g, B) + La(g, B) — x(n < ordy(g(0))) -
As ordgg(0) = ord,(0) — 1, we may rewrite this as
Ln(9) = Ln(g, B) + La(g, B) — x(n +1 < ordy(0)) . (5.12)
Again by Lemma 5.2 we obtain for n > 0
Ln+1(9) = Lnt1(g, Jo) + Lnt1(g, J1) (5.13)

in which Jy = [0, %], Jp = [%, 1] and ordg(%) = 0 so there is no third term on the right
side of (5.13). )

Now ¢ is a homeomorphism of Jy onto B and a homeomorphism from J; onto I = [0, 1],
hence

Ln+1(ga']0) = Ln(gaB)a
Ln+1(g>J1) = Ln(g)'

These last two relations and (5.13) give

Ln+1(9) = Ln(g) + La(g, B) - (5.14)
Eliminating Ly (g, B) from (5.12) and (5.14) yields the desired formula (5.11). =
Lemma 5.5. Forn>2 and 0 <k <n,
Ly(t,Ay) = 2L, (9) — Lp—g+1(9) + x[n — k+ 1 < ordy(5;)] - (5.15)
Forn>2and 2 <k <n,

Ln(t, Ak) = 2Lp_k(9) — Ln—k41(9) + x[n — k + 1 < ordy(Bo)] - (5.16)
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Proof: Recall that 8y = 5(1 — g) is the left endpoint of J and of Ay C J. We first consider
Ap. The conjugacy ¢ : I — [0,1] in (3.5) has

¢ot“‘J: g o (5.17)
and ¢(Ag) = B. These facts, together with Lemma 5.4, give
Ln(t, Ao) = Ln(g, B) = 2Ln(g9) — Ln+1(g) — x[n + 1 < ordy(0)] . (5.18)
Also from (5.17) and ¢(B) =0, ¢(2) = ﬂ we obtain
ordg(0) = ordy(fo) - (5.19)

Inserting (5.19) into (5.18) establishes (5.15) for k = 0.

Next we consider all other A and Ai. In Section 3.2 we observed that t* on Aj is homeo-
morphism sending it onto Ag for k£ > 0, and t* on A} is also a homeomorphism sending it onto
A for k > 2. Since t" = t" % o tk, we conclude that

Ln(t,Ak) = Ln—k(taAO) for 0 < k <n ; (520)
Ly(t,Ay) = L, i(t,Aq) for 2<k<n. (5.21)

Now (5.18) and (5.20) gives (5.15) for 1 < k < n and (5.18) and (5.21) give (5.16) for 2 < k <

n. =n

Proof of Theorem 5.1: From the formulas of Lemma 5.3 and Lemma 5.5 we obtain, for
n>2,

Ly(t) Z 2Ly—k(9) — Ln—k+1(9))
+ D (2Ln—k(9) — Ln—k+1(9))
k=2
n n—1
+ 2 x[n—k+1 < ordy(6o)] Z x[n < ordi(By)]
k=1 k=0
+ i x[n—k+1 < ordi(B)] Z x[n < ordi(1— B)] - (5.22)
k=2 k=1
Since
t*(Br) = t*(1 — Br) = fo ,
we have
ordi(Bg) = ordy(1 — Bx) = k + ordy(fo) - (5.23)
It follows that
x[n < ordi(Br)] = x[n < ordi(1 — Bx)] = x[n — k < ordi(0o)] - (5.24)

Substituting this into (5.22) yields

La(t) = L) +2Ls(9) — Ln(g) + 23 CLu 1(0) — Lnxa(@)) . (5:26)
k=2
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which in turn simplifies to

J=0

n—2
Ly(t) =2 (Z Lj(g)) +2. (5.26)
Also, by inspection,
L()(t) == L()(g) =1 and Ll(t) = Ll(g) =2. (527)

We obtain (5.1) by multiplying (5.26) by 2™ and summing over n > 2, and using (5.27) for the
n=0and n =1 terms. =

Remark. Theorem 5.1 directly follows from (5.27). In deriving this equation we had to
introduce various x-terms which appear in (5.22) but then cancel out in the final result. This
cancellation seems remarkable, and suggests the possibility that there may exist some other,
simpler way of looking at the problem.

6. Tent Map and Linear Mod One Transformation

The previous results now easily combine to relate the lap counting function of tent map
to that of the symmetric linear mod one transformation. We then complete the proof of
Theorem 1.1.

Theorem 6.1. For 1 < 3 <2, the lap counting function of the tent map tg and the symmetric
linear mod one transformation fg are related by

szﬂ(z) 1
. 1
1—2 + 1—2 (6.1)

Ltﬂ (Z) =

Proof: This follows directly from Theorem 4.1 and 5.1. =

Corollary 6.1. For 1 < 8 < 2 the kneading determinant
Dyy(2) = (1 - B2)@4(2) - (6.2)

Proof: Comparing Proposition 2.1 with Theorem 6.1, we obtain

1
By [12, formula (2.24)], we have
1
) = 0 aes ) (04

Now (6.2) follows from (6.3) and (6.4). =
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Proof of Theorem 1.1. We use Theorem 6.1 and apply the formulas of Theorem 4.2 of
[12] to evaluate Lg,(2). The symmetric linear mod one transformation fg is fﬂ .8 in the
T

terminology of [12]. For 1 < 8 < v/2 the point (3,1 — g) lies in the “bubble” Ry i, and the
renormalization map (8, a) — (8, a) is (8,1 — g) — (82,1 — %2) This gives the formula

142
Ly, (2) = :Lfﬂz(ZQ)a (6.5)
which was stated in the introduction. For v/2 < B < 2 we have

1
1—2)(1—2)2s(2) ’

Ly,(2) = (

which appears as [12, formula (2.24)]. Tterating (6.5) k times for 2277 < g < 227" and
applying (6.1) and (6.6) we obtain formula (1.12) of Theorem 1.1.

Finally for 227" < 8 < 227" set 8* = 82", so that v/2 < 8* < 2. The point (6%, 1—%) lies
outside all the “bubbles” Ry k, hence, by Theorem 1.1 of Flatto and Lagarias [14], ®g-(z) # 0
for all |z| < 1/8*. Thus ®g.(22") # 0 for all |2| < 1/6. =
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