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Hex is an elegant and fun game that was first popularized by Martin Gardner
[4]. The game was invented by Piet Hein in 1942 and was rediscovered by
John Nash at Princeton in 1948.

Two players alternate placing white and black stones onto the hexagons
of an N × N rhombus-shaped board. A hexagon may contain at most one
stone.

A game of 7 × 7 Hex after three moves.

White’s goal is to put white stones in a set of hexagons that connect the top
and bottom of the rhombus, and Black’s goal is to put black stones in a set
of hexagons that connect the left and right sides of the rhombus. Gardner
credits Nash with the observation that there exists a winning strategy for the
first player in a game of hex.

The proof goes as follows. First we observe that the game cannot end
in a draw, for in any Hex board filled with white and black stones there
must be either a winning path for white, or a winning path for black [1, 3].
(This fact is equivalent to a version of the Brouwer fixed point theorem,
as shown by Gale [3].) Since the game is finite, there must be a winning
strategy for either the first or the second player. Assume, for the sake of
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contradiction, that the second player has a winning strategy. The first player
can make an arbitrary first move, then follow the winning strategy (reflected)
for a second player (imagining that the hexagon containing the first move is
empty). If the strategy requires the first player to move in this non-empty
cell, the player simply chooses another empty cell in which to play, and now
imagines that this one is empty. Since the extra stone can only help the
first player, the winning strategy will work, and the first player wins. This
contradicts our assumption that the second player has a winning strategy.
Of course this proof is non-constructive, and an explicit winning strategy for
the first player is not known.

The purpose of this note is to analyze a variant of Hex that we call
Misère Hex. The difference between normal Hex and Misère Hex is that
the outcome of the game is reversed: White wins if there is a black chain
from left to right, and Black wins if there is a white chain from top to
bottom. Misère Hex has also been called Reverse Hex and Rex.

Contrary to one’s intuition, it is not the case that the second player can
always win at Misère Hex. In fact, the winner depends on the parity of
N ; on even boards the first player can win, and on odd boards the second
player can win.

This fact is mentioned in Gardner’s July 1957 column on Hex. Gardner
attributes the discovery to Robert Winder, who never published his proof.
As in the case of Hex, the proof of the existance of a winning strategy does
not shed any light on what that strategy is. A small step was made in that
direction by Ron Evans [2] who showed that for even N , the first player can
win by moving in an acute corner. An abstract theory of “Division games,”
which includes Hex and Misère Hex as special cases, was later developed
by Yamasaki [5].

Here we present an elementary proof showing who wins Misère Hex.
In addition to showing who wins, our result shows that in optimal play the
loser can force the entire board to be filled before the game ends.

Theorem: The first player has a winning strategy for Misère Hex on an
N ×N board when N is even, and the second player has a winning strategy
when N is odd. Furthermore, the losing player has a strategy that guarantees
that every cell of the board must be played before the game ends.

Proof. It suffices to prove the second assertion, because it shows that the
parity of the number of cells on the board determines which player has the
winning strategy.

Because the game cannot end in a draw, either the second player or the
first player has a winning strategy. Let P be the player who has a winning
strategy, and let Q be the other player. For any winning strategy L for P
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define m(L) to be the minimum (over all possible games of Misère Hex in
which P plays strategy L) of the number of cells left uncovered at the end
of the game. We must show that m(L) = 0.

We shall make use of the following monotonicity property of the game.
Consider a terminal position of a game that is a win for Q. By definition,
such a position contains a P -path. Suppose the position is modified by
filling in any subset of the empty cells with Q’s stones, and further modified
by changing any subset of Q’s stones into P ’s stones. The position is still a
win for Q, because none of these changes would interfere with the P -path.

We are now ready to prove the theorem. We shall argue by contra-
diction, supposing that m(L) 1. The contradiction will be to show that
under this assumption Q has a winning strategy. The basic idea resembles
Nash’s proof that the first player has a winning strategy for Hex, in that
we will describe a new strategy for Q in which (in effect) Q makes an extra
move and then plays the reflected version LR of P ’s hypothetical winning
strategy L. (Note that m(L) = m(LR).) The proof is complicated, however,
by the fact that it is not clear a priori that having an extra stone on the
board is either an advantage or a disadvantage. The proof splits into two
cases depending on whether Q is the first player or the second.

Suppose that Q is the first player. Player Q applies the following strategy.
She makes an arbitrary first move, and draws a circle around the cell con-
taining this move. From now on she applies strategy LR in what we shall
call the imaginary game. The state of this game is exactly like that of the
real game, except that in the imaginary game the encircled cell is empty,
while in the real game, that cell contains a Q-stone. This relationship will
be maintained throughout the game. When the strategy LR requires Q to
play in the encircled cell, she plays instead into another empty cell (chosen
arbitrarily), erases the circle, and draws a new circle around the move just
played. Because m(LR) 1, when it is P ’s turn to move there must be at
least two empty cells in the imaginary game, and there must be at least one
empty cell in the real game. Therefore it is possible for P to move. (We’ll
see below that P will not have won the real game.) Similarly, when it is
Q’s turn to move there must be at least three empty cells in the imaginary
game, so there are at least two empty cells in the real game. Thus the real
game can continue.

Eventually Q will win the imaginary game because LR is a winning strat-
egy. When this happens she has also won the real game, because of the
monotonicity property. This contradicts our assumption that P has a win-
ning strategy.

Now, suppose that Q is the second player. Let p0 be P ’s first move.
Player Q begins by encircling p0, playing out LR in an imaginary game. The
imaginary game and the real game differ in up to two places, as follows.
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The imaginary game is obtained from the real game by first changing p0
from P ’s stone to Q’s stone, then by erasing the stone in the encircled cell.
If the strategy LR requires a move into the encircled cell, then Q arbitrarily
chooses a different empty cell in which to move, and transfers the circle
from its current location to the new cell. The fact that m(LR) 1 ensures
that both players can continue to move. It is easy to see that the relationship
between the real game and the imaginary game is maintained.

Player Q eventually wins the imaginary game. The position in the real
game is obtained from the position in the imaginary game by putting Q’s
stone in the encircled cell, and changing the contents of p0 from a Q-stone
to a P -stone. The position in the imaginary game is a winning position for
Q, and the monotonicity property ensures that the corresponding position
in the real game is also a win for Q. This contradicts our assumption that
P has a winning strategy.
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