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Abstract

This paper gives several conditions in geometric crystallography which force a structure X
in R™ to be an ideal crystal. An ideal crystal in R™ is a finite union of translates of a full-
dimensional lattice. An (r, R)-set is a discrete set X in R” such that each open ball of radius
r contains at most one point of X and each closed ball of radius R contains at least one point
of X. A multiregular point system X is an (r, R)-set whose points are partitioned into finitely
many orbits under the symmetry group Sym(X) of isometries of R” that leave X invariant.
Every multiregular point system is an ideal crystal and vice versa. We present two different
types of geometric conditions on a set X that each imply that it is a multiregular point system.
The first is that if X “looks the same” when viewed from n + 2 points {y; : 1 < ¢ < n + 2},
such that one of these points is in the interior of the convex hull of all the others, then X is a
multiregular point system. The second is a “local rules” condition, which asserts that if X is
an (r, R)-set and all neighborhoods of X within distance p of each x € X are isometric to one
of k given point configurations, and p exceeds C' Rk for C' = 2(n? + 1) logy (22 + 2), then X is
a multiregular point system that has at most &k orbits under the action of Sym(X) on R™ In
particular, ideal crystals have perfect local rules under isometries.
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1. Introduction

One of the central problems in long-range order is to characterize the various types of
ordered discrete structures in R™ that are possible. The symmetry group Sym/(X) of a discrete
set X is the set of all Euclidean isometries of R™ that map X to itself. Crystalline materials
have the highest possible symmetry. An ideal crystal or periodic crystal is a discrete set X in
R™ which is a finite union of translates of a full-dimensional lattice L in R™. An ideal crystal is
just a discrete set X that contains a full-dimensional lattice L in its symmetry group; however,
Sym(X) need not act transitively on X. This definition of ideal crystal extends a definition of
a three-dimensional crystal composed of several species of atoms that was proposed in 1888 by
Sohncke [25, p. 433].

The recent discovery and study of quasicrystals (see [25]) raises the question: what geometric
and physical conditions force a structure to be crystalline rather than quasicrystalline? In this
paper we prove several results giving minimal geometric conditions on a discrete set X in R"
that are sufficient to imply that X is an ideal crystal. These conditions involve concepts in
geometric crystallography, and particularly the notion of multiregular point system which we
define below.

Geometric crystallography was initiated by Bravais [1] and Sohncke ([27]-[29]), see also
[9], [14, Chapter 2] and [24]. The basic structures that it studies are Delone sets, also called

Delaunay sets or (r, R)-sets, which are those sets X in R™ that satisfy the two conditions:

(i) Uniform discreteness. There is an r > 0 such that any open ball of radius r in R™ contains

at most one point of X.



(i) Relative denseness. There is an R > 0 such that any closed ball of radius R in R”™ contains

at least one point of X.

These sets are named after B. N. Delone who introduced them in 1937, see [6], [12].
Geometric crystallography is concerned with how a Delone set X looks when viewed from
each of its points. A regular point system X is a Delone set such that X “looks the same” from
every point x € X. Regular point systems X are exactly those Delone sets whose symmetry
group Sym(X) acts transitively on X, so that X is a single orbit Sym(X).x of Sym(X).
Alternatively, we define the (global) star STy (X) of a set X centered at a point y € R™ to be

the collection of line segments from y to every x € X, namely
STy(X) =A{[y,x]: x e X}.

Then X is a regular point system if for each pair x1,x9 € X there exists an isometry
9= g(X1, Xz) such that
9(STx, (X)) = ST, (X) .

We set
ST(X):={5Tx(X) :x€ X},

and let |ST(X)| denote the number of distinct isometry classes among all STx(X) for x € X.
A regular point system is just a Delone set X with the property that |ST(X)| = 1.

One of the major results of geometric crystallography is that a regular point system is an
ideal crystal. However not all ideal crystals are regular point systems.
Definition 1.1. A multireqular point system is any Delone set X such that the action of its
symmetry group Sym(X) partitions the points of X into a finite number of orbits. That is, a

is finite.

multiregular point system is any Delone set X such that |ST(X)
Every ideal crystal is a multiregular point system. In fact multiregular point systems co-
incide with ideal crystals, as was shown by Galiulin [11]. The following theorem includes this
result, and also gives another characterization of multiregular point systems, in terms of the
concept of crystallographic group, for which we give several equivalent definitions in §2.

Theorem 1.1. The following conditions on a set X in R™ are equivalent.

(i). X is a multiregular point system. That is, X is a Delone set and the set of isometry

classes among {STx(X) : x € X} is finite.



(ii). X is an ideal crystal. That is, X is a finite union of translates of an n-dimensional

lattice L, with X = UF_, (x; + L).
(iii). X is a discrete set whose symmetry group Sym(X) is a crystallographic group.

The equivalence (ii) < (iii) is a well known corollary of Bieberbach’s first theorem (see [27,
Theorem 2]). We give a proof of Theorem 1.1 at the end of §2.

The first type of geometric condition on a set X that we consider requires that suitable

finite sets of global stars STy, (X) of X are isometric. These conditions are global in the sense
that a star involves lines to every point of X; however only finitely many stars are used. One
such result is:
Theorem 1.2. Let X be a discrete set in R™ and let Y be a finite set in R™ with |Y | = n+2, such
that the convex hull of Y is a full-dimensional simplex containing one point of Y in its interior.
If the n+2 stars {STy(X) :y € Y} are all isometric, then Sym(X) is a crystallographic group,
and X is an ideal crystal.

It is easy to show that every ideal crystal contains a set Y C X having the properties above.
We derive this result in §3 as a special case of a more general criterion (Theorem 3.1).

The condition on Y in Theorem 1.2 cannot be relaxed to merely requiring that the convex
hull of Y be full-dimensional. For example, let X in R> be the 12 vertices of a regular icosahe-
dron, and take Y = X. Here Sym/(X) is the alternating group As, which is transitive on X,
and all {STx(X) :x € X} are isometric, but X is not an ideal crystal.

The second type of geometric condition that we consider consists of “local rules” that require

that the elements in X in a fixed finite neighborhood of each x € X to be isometric to one of
a finite set of point configurations.
Definition 1.2. A set of local rules of radius pg is a finite collection £ = {L;} of discrete sets
L; with 0 € L; and with each L; contained in the closed ball B(0;pg) of radius pg around 0. A
set X satisfies the local rules L under isometries if for each x € X the set (X — x) N B(0; po)
is a rotation of some set L; in L.

In 1976 Delone et al. [6] showed that if X is an (r, R)-set in R” such that all neighborhoods
of X within a distance pg = po(r, R, n) of each point x € X are isometric, then X is a regular
point system. In 1988 Dolbilin and Shtogrin [8] announced an analogous result for multiregular

point systems. We prove here such a result for multiregular point systems and give an explicit



distance bound po(r, R, n, k), where k = |ST(X)|, stated below.

Definition 1.3. Given p € R+, the p-star of X centered at y € R™ is the set of line segments
STy(X;p) = {lx,y]ix € X and [jx—y|| < p} .
The set of all p-stars of X is denoted
ST(X;p) ={5Tx(X;p) :x€ X}.

We let |ST(X;p)| denote the number of isometry classes among the STx(X;p) for x € X, and
define the function

Nx(p) = |ST(X;p)|, 0<p<oo.

In §4 we prove:
Theorem 1.3. Let X be a Delone set in R™ with constants (r, R). If for some radius po the

number k = Nx(po) of isometry classes of its po-stars satisfies

Po
N — 1.1
X(pO) < CR 3 ( )

with
2
C =2(n* 4+ 1) log, (—R+2) : (1.2)
T

then X is a multireqular point system, and the global stars {STx(X) : x € X} of X are
partitioned into exactly k orbits under the action of Sym(X). Furthermore the only Delone

sets Y all of whose p-stars are isometric to p-stars of X are sets globally isometric to X, i.e.
Y=Q(X+t) for some teR", Q€O(nR). (1.3)

The bound (1.1) in Theorem 1.3 is best possible as a function of pg up to the value of C,

for in §4 we give examples of (r, R)-sets X in R™ which are not multiregular point systems, but

have the property that Nx(p) is approximately (4)% for large p.

The interest of Theorem 1.3 to crystallography is that it asserts that the atomic structure of
any ideal crystal is completely determined by “local conditions” of a fixed radius around each
atom separately.

Definition 1.4. Two sets X and X' are locally isomorphic if for each finite neighborhood in

X an isometric copy of it can be found in X', and vice-versa.



Definition 1.5. A set of local rules £ are perfect local rules under isometries if whenever two
sets X and X' satisfy £ then X and X’ are locally isomorphic. That is, £ determines a unique
local isomorphism class of sets.

Theorem 1.3 shows that if X is a multiregular point system with parameters (r, R) and with

k orbits under the action of Sym(X), then the set £ of pp-stars of X for any
Po > C' Rk (1.4)

is a set of perfect local rules under isometries for X, for by (1.3) the local isomorphism class
of X consists only of sets isometric to X. Thus every ideal crystal satisfies perfect local rules
under isometries.

There are also various “quasicrystalline” structures that have perfect local rules under isome-
tries. For further discussions and references concerning “perfect local rules” for ideal crystals
and quasicrystals, see [15], [17], [19] and [25].

One question remaining about Theorem 1.3 is the extent to which the bound for C'in (1.3)
can be improved. The value of C'in (1.3) depends on n, R and r. It is possible that there exists
a smaller bound for C' which is a function of the dimension alone. Shtogrin [26] showed for n = 2
and k£ = 1 that p > 4R suffices for X to be a multiregular point system, and gave an example
showing that 4R is the best possible value. Dolbilin and Shtogrin [7] showed that for n = 3 and
k =1 the condition p > 10R suffices. Their proof methods do not apply in dimensions n > 4.
Engel [5, Theorem 9.9] announced a general result of this type for £ = 1, namely that (1.4) can
then be weakened to the condition p > 6R, independent of the dimension. However his proof
is incomplete, since it depends on his unproved Conjecture 9.7.

In this paper log 2 and log, 2 represent logarithms to base e and 2, respectively.
2. Crystallographic Groups

In this section we give several characterizations of crystallographic groups, most of which
are well known. First, we set some notation. The Euclidean norm on R" is denoted ||x|| =

(3, 222, For p > 0, let B(x; p) denote the closed ball of radius p around x, given by

B(x;p) ==y : |ly —x[| < p} .



Let B°(x;p) denote the corresponding open ball and dB(x;p) its boundary,
OB(x;p) :={y : ly — x[| = p} .
A subset X of R” is discrete if it is closed and for each x € X there is a radius px > 0 such that
X N B(x;px) = {x} .

Let E* denote the space R™ endowed with the Euclidean metric. The Euclidean group

&, = Sym(E") denotes the group of isometries of R”™. It is a real Lie group of dimension

n(n;l) and is a semidirect product of the orthogonal group O(n,R) = {Q : QQT = I} and the
translation group R™. We denote its elements g = (@, t) where @ is the rotational part of g and

t is the translational part of g, with multiplication
9'9=(Qt)(@Q,t) = (QQ,t'+Q't) .
A general element g € £, acts on R” by
gxX=0Qx+t. (2.1)

The following definitions concern subgroups G of the Euclidean group £".
Definition 2.1. A group G is a discrete subgroup of £, if it is a closed subgroup of &, and the
topology induced on G from the standard (Euclidean) topology on &, is discrete. That is, for
each g € G there is an open set U of £, such that GNU = {g}.

Definition 2.2. A group G acts discontinuously' on R™ if for every x € R" the orbit
Gx:={gx:9€G}

is a discrete set in R"™.

In this definition we allow the possibility that there are distinct gy, g2 € G with ¢g1.x = go.x.
Definition 2.3. A group G acts uniformly on R™ if the orbit space R"/G is compact in the
quotient topology.

This definition implies that the translational parts t of elements of G span R™ as a vector

space. Indeed, call a group G of isometries irreducible if for each invertible affine map o : R*—R"

'Schwartzenberger [23] terms this “acts discretely on R™”



the group GG/ = aGa~! has the property that the translational parts of all elements of G’ span
R™ A group G of isometries is irreducible if and only if it acts uniformly on R", see Charlap
(2, p. 3].

Definition 2.4. A group G is crystallographic if it acts uniformly and discontinuously on R™.
(This is the definition of Charlap [2, p. 4].)

Definition 2.5. A group G is a space group if the subgroup T of all pure translations in G is
an n-dimensional lattice. (See Schwarzenberger [16, p. 26].)

The following theorem gives several necessary and sufficient conditions for a group G to be
crystallographic. All of these criteria are quite well known, except for (v), which will be the
criterion we mainly use in this paper.

Theorem 2.1. The following properties of a group G contained in the Fuclidean group &, =
Sym(E") are equivalent.

(). G is a crystallographic group. That is, G acts uniformly and discontinuously on R".

(ii). G is a space group. That is, the subgroup of pure translations T’ in G is an n-dimensional

lattice, which is necessarily the mazimal abelian subgroup of G.
(iii). G is a discrete subgroup of &, and &, /G is compact.
(iv). Fvery orbit G.x = {g.x: g € G} is a Delone set in R™.
(v). There ezists one orbit G.x which is a discrete, relatively dense set in R™.

Remark. We later obtain an even weaker version of (v) in Corollary 3.1.
Proof. (i) < (ii). The direction (i) = (ii) is Bieberbach’s first theorem, see Buser [2], Charlap
[2, p. 17], Milnor [18] or Vince [31]. Besides being of finite index in G, 7" is the unique maximal,
normal, abelian subgroup of G, see [2, p. 18]. For (ii) = (i) we use [2, p. 4 bottom] to obtain
that G acts uniformly. Next 7T is of finite index in G [16, p. 26] and acts discontinuously on R”.
We complete this step by using the observation that if G contains a subgroup of finite index
that acts discontinuously on R™, then G also acts discontinuously on R"™.

(i) = (iii). This is a theorem in Schwarzenberger [16, p. 27].

(iii) = (i). This is also a theorem of Bieberbach, see Schwarzenberger [16, p. 29].



(i) = (iv). Any orbit T.x is a translate of the n-dimensional lattice 7°.0. Since [G : T is
finite and 7" is a normal subgroup of GG, the set (G.x consists of [G : T'] translates of 7.0, hence
it is a Delone set.

(iv) = (v). Trivial.

(v) = (iii). Since G.x is relatively dense, the vectors in G.x span R", because they clearly
cannot all lie in an (n—1)-dimensional affine subspace. This, together with G.x being a discrete
set, implies that any element g of G sufficiently close to the identity e must be the identity,
hence G is a discrete subgroup of &,.

To show that &, /G is compact, it suffices to show that for any ¢’ € £, with ¢'.z = Q'z + t'

we can find some element g € (G, say g.z = (Qz + t, such that the element ¢'g with
992=0Q'Qz+Qt+t
has ||@Q't + t’|| bounded, because any region O(n,R) x {t : [|t|| < R'}, for any R’, is a compact

subset of &,. Let ||@||2 denote the Frobenius norm on matrices, which is

24172 T\\1/2
QI = (32 Q)" = (Tr(@Q")"*
t,5=1
and note that orthogonal matrices @ satisfy [|Q||2 = +/n. We now view the orbit G.x as

generated by that element x in the orbit which minimizes ||x||. Then ||x|| < R since G.x is

relatively dense with constant R. By relative denseness we can also find y € G.x such that

ly - @)t <R.
Next choose a g € G with y = g.x = @x + t. Then ¢'g has translation part satisfying
Rt + 'l = [1Q'(y — @x)+t'|],

Q]2 [ly = (@) [+ 11Q"12 1@z 1] ,
< (Vr+n)R,

IN

which is the desired bound. O

;From Theorem 2.1 we easily deduce Theorem 1.1.
Proof of Theorem 1.1. (i). = (iii). Choose a radius p sufficiently large that the ball B(0;p)
contains representatives {x; : 1 < ¢ < |[ST(X)|} of each type of global star STx,(X). For



any X € X there exists some x; such that STx(X) is isometric to STy, (X) via an isometry

g =9(x,x;) € Sym(X). Then for each 1,

g™ xi = x|l =1lg™"(xi = x))[| < 20,

and ST,-1 x,(X) is isometric to STy, (X). Thus each of the sets
X;:={x € X : STx(X) is isometric to STx,(X)}
is relatively dense with constant 2p + R. Since
X; CSym(X)x; C X,

it follows that the Sym(X)-orbit of x; is discrete and relatively dense, hence Sym(X) is a
crystallographic group by property (v) of Theorem 2.1.

(iii). = (ii). X is invariant under the maximal abelian subgroup 7" contained in Sym(X),
which is an n-dimensional lattice since Sym(X) is a crystallographic group. Now X is a union
of orbits T.x, each of which is a translate of the lattice L = T.0. Since X is a discrete set, there
can only be finitely many such orbits.

(i) = (i). Immediate. O

For each crystallographic group G there exists some multiregular point system such that
G = Sym(X). This contrasts with the situation for regular point systems. For example, there
is no regular point system X with Sym(X) equal to a group G of pure translations Z”. Indeed
the orbit G.x, which is a translate of a full-rank lattice, has a strictly larger symmetry group
than G, for Sym(G.x) contains a reflection g.y := x¢ — y around any given point x¢ € G .x.
For this reason the classification of regular point systems differs from that of crystallographic
groups.

We conclude this section with the following consequence of Theorem 1.1. Call a set X in
R™ fully periodic if it is invariant under some full rank lattice L of translations. We have: If X

is a Delone set, then X is not fully periodic if and only if |ST(X)| is infinite.

3. Global Star Criterion

We show that a discrete set X is an ideal crystal provided that certain sets of global stars

{Sty(X):y € Y} are all isometric.

10



Definition 3.1. An arbitrary set Y in R” is an enclosing set if there is a point y € Y which is
contained in the interior of the convex hull of the remaining points Y\{y}. We call any such
y € Y an enclosed point.

This definition requires that the convex hull of Y in R”™ be full dimensional, i.e., the points of
Y do not all lie in some hyperplane. An enclosing set Y necessarily has cardinality |Y| > n+ 2,
and |Y| = n 4 2 occurs when Y consists of the vertices of a n-simplex plus one point in the
interior of the simplex. We prove:

Theorem 3.1. Let X be a discrete set in R™ and suppose that Y is a (finite or infinite) set
such that all the stars {STy(X) :y € Y} are isometric. If Y is an enclosing set, then Sym(X)
is a crystallographic group, and X is an ideal crystal.

In this result the set X and the star centers Y are not necessarily related, and we may have
X NY = 0. Theorem 1.2 directly follows as a special case of Theorem 3.1.

Theorem 3.1 also gives the following relaxation of property (v) in Theorem 2.2.
Corollary 3.1. If G is a group of isometries of R™ that contains an orbit G.x which is discrete
and is also an enclosing set, then G is a crystallographic group.

Proof. Apply Theorem 3.1 with Y = X =G.x. O

Before proving Theorem 3.1, we derive some equivalent conditions for a set Y to be an
enclosing set.

Definition 3.2. Given p > 0, a point y of a set Y in R™ is a p-point of Y if every ball B(x;p)
that contains y on its boundary dB(x; p) also contains a point of Y\{y}.
Definition 3.3. An oriented hyperplane H is a hyperplane

H:=H.q={x:(c,x)=d},

together with a particular labelling H*, H~ of the two open half-spaces it determines. The

data (ec,d) with x # 0 determine these open half-spaces by
HY ={x:(c,x)>d} and H™ ={x:{e,x)<d}.

We prove:

Lemma 3.1. The following conditions on a point'y in a set Y in R™ are equivalent.
(). y is an enclosed point of Y, i.e. y is in the interior of the convex hull of Y\{y}.

11



(ii). ¥ is a p-point of Y, for some finite p > 0.
(iii). Every oriented hyperplane H containingy satisfies

Ht*NY #0 and H NY #£0.

Proof. (i) = (iii). We prove the contrapositive. Suppose (iii) fails. If some hyperplane H has
Int(H*NY) = (0 then the convex hull of Y is contained in the closed half-space H = HUH ™,
and y € H is on its boundary, hence y can’t be an (n-dimensional) interior point of the convex
hull of Y, and (i) fails.

(iii) = (ii). We prove the contrapositive. Suppose (ii) fails. Then there are arbitrarily large
closed balls B(x;; p;) which have y on their boundary and contain other no point of Y. Let H;
be the tangent hyperplane to dB(x;; p;) at y, oriented so that B(x;;p;)\{y} C H*. Extract
a subsequence of H; that tend to a limit hyperplane H containing y. Along this subsequence
the sets B(x;; p;)\{y} exhaust all of H*, hence H* contains no point of Y, contradicting (iii).

(i) = (i). Let Y(y) := Y N B(y;2p), which consists of all points of ¥ contained in some
closed ball B(x;p) that contains y on its boundary. We show that Y contains y as an enclosed
point. Suppose not. Then there is an oriented hyperplane H through y which contains no
point of Y\{y} on one side HT of it. Consider the closed ball B(x;p) contained in H* which
is tangent to H at y. It contains no point of Y'\{y}, which contradicts (ii). O

We also need the following simple criterion for a set Y to be relatively dense.

Lemma 3.2. An arbitrary set Y in R" is relatively dense if and only if there is some p > 0
such that each pointy € Y is a p-point of Y.

Proof. If Y is relatively dense with parameter R, then every point y € Y is an R-point. Indeed
relative density implies that every ball B(x, R) with y € dB(x, R) contains some other point
of Y.

Conversely, if every point of Y is a p-point, for fixed p > 0, then Y is relatively dense with
parameter p. Suppose not, so that there is some empty ball B(z; p’) with p’ > p. Choose a point
y € Y that is a closest point to z, and translate the ball in the direction y —z until y € Y is on
its boundary. The resulting ball B(z’; p) contains no point of Y'\{y} by the triangle inequality,
for any other point in it would be closer to z than y. This contradicts y being a p-point of Y.

O

12



Proof of Theorem 3.1. By hypothesis, for each point y;,y; of Y there is an isometry g;; of
R™ that maps y; to y; and STy, (X) to STy (X). We do not require that any of the y; be in
X. Let GG be the group of isometries generated by all the possible g;;’s. Then ¥ C Gy for any
fixed y € Y. Since each g;; € Sym(X), we have G C Sym(X). The main part of the proof will
be to show that G is a crystallographic group.

Consider an orbit G.x for some x € X and let Aff(G.x) denote the smallest affine subspace
spanned by the elements of G.x. We show that dim(Aff(X)) = n. Assume the contrary, that
(.x spans some affine subspace P*¥ =Aff (G.x) of dimension k < n. Now G must leave P*
invariant, i.e. g(P*) = P* for all g € G. Since g(P*) = P* for all g € G, we have

dist(y, Pk) = dist(g.y, Pk) ,
where dist(y, F) := inf{||y — z|| : z € F'}. Thus the orbit G.y lies on a cylinder
Cy:={z € R": dist(z, P*) = a} .

The constant a > 0, for if &« = 0, then Y C G.y C P*, which contradicts the property that the
points of an enclosing set Y span R”. If k < n, then the cylinder C, = P* x $"* is a convex
set, hence a supporting hyperplane H to a point y € Y on the surface of the cylinder leaves
the entire cylinder C,, in one closed half-space H = H U H~, say. Then H* NY = (), which
by Lemma 3.1 (iii) shows that Y is not an enclosing set, a contradiction. Thus & = n.

We next show that Sym(X) acts discontinuously on R™. We must show that every orbit
Sym(X).zis adiscrete set. We know that Sym(X).x C X is a discrete set, and Aff(Sym(X).x) =
R™ because R™ =Aff(G.x) CAff(Sym(X).x). Now Aff(Sym(X).x) = R” implies that there exist

n+ 1 points {x; : 1 < ¢ < n+ 1} which form a full-dimensional simplex in R", so we can write

n+1 n+1
zZ = Zaixi , with Zai: 1.
Here (a,aq, ..., a,4+1) are barycentric coordinates of z and
n+1
Iz —xil| < co:= ) (lail +1) [|xil|, 1<i<n+1.
=1

We now argue by contradiction. Suppose that Sym(X).z is not discrete. Then there exists a

sequence of distinct points {z; = ¢;.z : j > 1} tending to a limit point z.,. However

n+1

gz =) aigix) (3.1)

=1
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and all g;.x; € Sym(X).x. Now we have
|1zeo = g5-%il| < [|200 — 251+ 11952 — g5 %] < [|200 — 25l + <o -

Whenever ||z, —2;|| < 1, the point ¢;.x; lies in the fixed ball B(z; co+1). Since X is discrete,
there are only finitely points of Sym(X).x in this ball, hence by (3.1) there are only finitely
many possible choices for ¢;.z having ||z, — ¢;.z|| < 1, which contradicts the distinctness of all
z;. Thus Sym(X) acts discontinuously on R”. In particular Sym(X).y is a discrete set, hence
Gy is a discrete set.

Now choose y to be an enclosed point of Y, so it is a p-point for some p > 0 by Lemma 3.1.
Now for any isometry g € &, the point g.y is a p-point of g(Y), because property (iii) of
Lemma 3.1 is invariant under isometries. Since Y C G.y we have ¢(Y) C G.y, hence g.y
is a p-point of Y. Thus every point of G.y is a p-point, so G.y is a relatively dense set by
Lemma 3.2.

It follows that G is a crystallographic group by property (v) of Theorem 2.1. Thus R"”/G is
compact, hence R"/Sym(X) is also compact, so Sym/(X) acts uniformly on R”. We conclude
that Sym(X) is a crystallographic group. Finally, Theorem 2.2 shows that X is an ideal crystal.

O

For later use we show that for any finite partition X = UleXz' of a relatively dense set, at
least one set X; is an enclosing set. The following lemma shows that this conclusion holds more
generally for finite sets X that are relatively dense on any sufficiently large finite region. We
say that a set X is R-relatively dense in the ball B(y;p) if every closed ball B(z; ) contained
in B(y;p) contains a point of X.

Lemma 3.3. Let X be a set in R™ which is partitioned into k subsets,

k
X=JXi, with X;nX;=0if i#j.
=1
If X is R-relatively dense in some ball B(y;p) with p > 3*R, then at least one subset X; is an
enclosing set.
Proof. We proceed by induction on k. For the base case k = 1, if X = X is R-relatively dense
in B(y;3R), then there exists some x € X with ||x — y|| < R. The set X (x) = X N B(x;2R)

of all points of X within distance 2R of x contains x as an enclosed point, as in the proof of
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Lemma 3.1 (ii) = (i), because it includes each point of X in any B(z; R) that contains x on its
boundary, and all such B(z; R) C B(y;3R).

Now suppose that the lemma is true for all partitions of X into & — 1 subsets. Consider
a partition of X into k subsets, and suppose that there is a ball B(y;SkR) on which X is
R-relatively dense. If the set X}, is 3*~! R-relatively dense on B = B(y;3*R), then the set
X} is an enclosing set, by applying the base case k£ = 1. If it is not, then there is some ball
B' = B(y’;3*7'R) inside B(y;3*R) that contains no point of Xj. Now set X’ = X N B’ and
X/=X,NB' 1<i<k—1. Then since X; = X; N B’ =0, we have a partition

k-1
X'={JX/,
=1

and X' inherits the R-relatively dense property on B(y’; 3k_1R) from that of X on B. By the
induction hypothesis one of the X! is an enclosing set, and since X/ C X; the enclosing set

property holds for the corresponding X;. This completes the induction step. O

4. Local Star Criterion

We deduce results on the multiregularity of a point set X from conditions on a set of its
local stars (p-stars) centered at a Delone subset of points Y of X. In Corollary 4.1 below we
recover the main result stated in Dolbilin and Shtogrin [8], which generalizes that of Delone et
al. [6].

Recall the definition

STy(X;p) =A{ly,x]:x€ X and ||x—y| <p}.

This implies that
STy(X;p) CSTy(X;p) if p<p'. (4.1)

Definition 4.1. The local stabilizer of the p-star centered at y, denoted Lsymy(X;p), is
the group of isometries ¢ that fix y and leave STy (X;p) invariant. That is, it consists of all
g € Sym(E") such that g.y =y and

9(STy(X;p)) = STy(X;p) .

15



Lsymy(X;p) is a subgroup of the group of rotations centered at y. The relation (4.1)
implies that
Lsymy(X;p) D Lsymy(X;p') if p<p'. (4.2)

Definition 4.2. The (global) stabilizer Lsym, (X) centered at y is the subgroup of elements
of Sym(X) that fix y.
We clearly have
Lsymy(X) C Lsymy(X;p), foranyp.

Any group Lsymy (X;p) or Lsymy (X) is conjugate in Sym(E*) to a subgroup of the orthogonal
group O(n,R) by applying the conjugacy that translates y to the origin, i.e. t_ygty € O(n,R),
where ty x =x+y.

We generalize these definitions to apply to a partition X = Y U Z of a set X. We define the

partitioned p-star
STw(Y,Z;p) = STw(Y;p)USTw(Z;p) = STw(X5p) ,

and we consider two such partitioned p-stars isometric if there is an isometry g € Sym(E")

with g.w = w’ which satisfies
9(STw(Y;p)) = STw(Y;p) , and g(STw(Z;p)) = STw(Z;p) -
We call any such isometry g a (Y, Z; p)-isometry. We set
STw(Y,Z;p) == A{STw(Y, Z;p) : w € W},

and let |STw (Y, Z; p)| denote the number of (Y, Z; p)-isometry classes among the members of
STw(Y, Z;p).

Finally, we define the local stabilizer Lsymw (Y, Z; p) of the partitioned p-star by
Lsymw (Y, Z; p) = Lsymw (Y; p) N Lsymw (Z; p)
and the stabilizer Lsymw (Y, Z) by

Lsymy (Y, Z) = Lsymw(Y) N Lsymw (Z) .
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We obtain the following criterion:
Theorem 4.1. Let X be a discrete set which has a partition X =Y UZ in which'Y is a Delone
set. Suppose that p > 4R is such that

(). |STy (Y, Z;p)| = |STy (Y, Z;p - 2R)| = k .

(b). Lsymy (Y, Z;p) = Lsymy (Y, Z;p— 2R) forally €Y.
Then Sym(Y)NSym(Z) C Sym(X) is a crystallographic group. Furthermore each of X and'Y
is a multiregular point system, and the points of X fall into at most k orbits under the action
of Sym(X).

In hypothesis (b) the groups Lsymy (Y, Z;p) for y € Y are not all necessarily isomorphic.
The proof implies that they fall in at most k£ isomorphism classes. Lemma 4.2 below shows

that, for any value of p that satisfies (a), (b), we have
Lsymy(Y,Z) = Lsymy (Y, Z;p), allyeY . (4.3)

Theorem 4.1 says nothing about the group Sym(Z), but the proof implies that Sym(2)
acts uniformly on R”. The theorem includes the special case Z = {}, in which case we make the
convention that Sym(Z) = Sym(E") = &,. This special case is:

Corollary 4.1. Let X be an (r, R) set for which there exists some p > 4R such that:

(a). |STx(X;p)|=|STx(X;p—2R)| =k .

(b). Lsymx(X;p) = Lsymx(X;p—2R) forallx € X.

Then X is a multireqgular point system whose points fall in exactly k orbits under the action of

Sym(X). Furthermore
Lsymx(X) = Lsymx(X;p) forallxe X . (4.4)

We have exactly k orbits because condition (a) shows that there are at least £ distinct orbits
under the action of Sym/(X).

An important part of the proof of Theorem 4.1 is to show that the set X possesses global
symmetries. We establish this in two preliminary lemmas, in which we assume all hypotheses
of Theorem 4.1 are in force.

Lemma 4.1. Lety,y’ € Y and suppose p > 4R and that there exists g € Sym(E") which
is a (Y, Z; p — 2R)-isometry that maps STy (X;p —2R) to STy(X;p—2R). Then g is also a
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(Y, Z; p)-isometry that maps STy(X; p) to STy/(X;p).

Proof. The hypothesis (a) in Theorem 4.1 implies that the isometry class of a star

STy(Y,Z; p— 2R) uniquely determines the isometry class of the star STy (Y, Z; p). Thus the
(Y, Z; p — 2R)-isometry hypothesis implies that STy (X;p) is (Y, Z; p)-isometric to STy (X p),

and we let ¢’ € Sym(E") be such an isometry between them. Now
97 0 g (STy(X;5p—2R)) = g7 (STy/ (X3 p - 2R)) = STy(X;p— 2R) .

Thus g~ o ¢’ € Lsymy(X;p— 2R). Now hypothesis (b) of Theorem 4.1 gives

"

g' =g tog € Lsymy(X;p) .

Thus g = ¢’ o (¢")"tis a (Y, Z; p)-isometry. O

Next we show that any such local symmetry is a global symmetry of both Y and Z.
Lemma 4.2. Lety,y' € Y and suppose p > 4R and that there is a (Y, Z,p — 2R)-isometry
g € Sym(E") fromy toy’', so that

g(STy(X;p - 2R)) = STy (X;p - 2R) .
Then g € Sym(Y) N Sym(Z). In particular,
Lsymy(Y,Z) = Lsymy (Y, Z;p) .

Proof. Since Y is an (r, R)-set, we can connect y to any y € Y by a finite chain yo,y1,...,¥m

with yo =y and y,, = ¥, such that
llyi — yic1l| <2R for 1<i<m. (4.5)

This is proved in [6, Section 2], as follows. If ||y — y|| = R’ then the closed ball B = B(y; R')

contains only finitely many points of Y, and y lies its boundary. The closed ball

_ R _
By = B(y+ﬁ(y—Y);R) CB

contains yo = y on its boundary, and by relative denseness it must contain another point

y1 € Y. Then ||y1 — yo|| < 2R and

lly1 =¥l < llyo— ¥l ,
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since y is the furthest point in By from y. Now y; € B, so we can repeat the same argument

to find y; € Y N B with ||y, — yi|| < 2R and

lly2 =¥l < lly1 — ¥l -

Continue this process to produce ys,y4, ..., and since there are only finitely many points of Y
in B, this process terminates with some y,, = y, which gives (4.5).

By hypothesis p > 4R, hence
y1 € B(yo;2R) C B(yo; p — 2R) .

Thus
y1 € X N B(yo;p = 2R) € X N B(yo; p) ,

so Lemma 4.1 applies to give

g.y1 € STy/(X;p) .

Now g is a (Y, Z; p)-isometry that takes STy (X;p) to STy/(X;p), hence it is a (Y, Z;p — 2R)-
isometry of STy, (X; p—2R) to some STy, (X;p—2R) with yj € Y. Lemma 4.1 then implies that
g is a (Y, Z; p)-isometry of STy, (X;p) to STy/(X;p). Since STy, (X;p—2R) C STy, (X;p) by
Lemma 4.1 we get that g is a (Y, Z; p—2R) isometry of STy, (X; p—2R) to some STy, (X; p—2R).
Continuing in this fashion, we eventually obtain that ¢ is a (Y, Z; p) isometry of STy(X;p) to
some STy/(X;p). In particular
gy=y €Y.

By a similar argument g~'.y € Y, for all y € Y, hence g € Sym(Y).

Next consider an arbitrary z € Z. Since Y is an (r, R)-set, the closed ball B(z; R) contains
some point y € Y. By the argument above g is a (Y, Z; p)-isometry of STy(X;p) to some
STy/(X;p). Thus the point z is mapped to a point z’' € Z in STy(X;p), le. gz =12" € Z.
Similarly ¢g7'.z € Z, s0 g € Sym(Z). O
Proof of Theorem 4.1. Partition the Delone set

k
Y:=]Y;,
7=1

in which the Y; comprise the (Y, Z; p)-isometry classes of STy (Y, Z;p) and k = |STy (Y, Z; p)|.

For each y,y’ € Y; there is some g = gy, € Sym(E*) which is a (Y, Z; p)-isometry from

19



STy(Y, Z;p) to STy(Y, Z; p). By Lemma 4.2 each gy, € Sym(Y) N Sym(Z). Let G denote

the subgroup of Sym(E") generated by all such gy y» for 1 < j < k. Then
G C Sym(Y)n Sym(Z) C Sym(X) .

Since Y is a Delone set and G C Sym(Y'), it follows that G acts discontinuously on R™.
Next, Lemma 3.3 implies that some Y} is an enclosing set. Choose any y € Y;, and since all

gyy € G fory’ €Y;, we have
Y; C Gy C (Sym(Y) N Sym(Z)).y C Sym(Y)y CY .

Then Sym(Y) N Sym(Z) and Sym(Y) are both crystallographic groups by Corollary 3.1, and
Y is a multiregular point system by Theorem 1.1.

Finally, since

Y; C Gy CSym(X).yC X,

it follows that Sym(X) is a crystallographic group by Corollary 3.1, and X is a multiregular
point system by Theorem 1.1. The number of isomorphism classes of {STx(X) : x € X} is
at most k, because the action of Sym(Y) N Sym(Z) on X gives k isomorphism classes by
Lemma 4.2, and Sym(Y) N Sym(Z) C Sym(X). O

In the remainder of this section we consider the special case Y = X and Z = (, and prove
Theorem 1.3 using Corollary 4.1. We begin with the following bound.
Lemma 4.3. If X is an (r, R)-set in R" and x € X then

2

2R \"
| Lsyma(X;:2R)| < (T + 1) . (4.6)

Proof. The point x € X is an R-point by the proof of Lemma 3.2. In particular the finite set
X:=Xn B(x;2R) contains x as an enclosed point, by the proof of Lemma 3.1. We can find
n + 1 points xg = X, X1,X2,...,X, € X which form a full-dimensional simplex. (See the proof
of Caratheodory’s theorem in [28, (2.2.12)].) Each element g of Lsymx(X;2R) fixes x, and is

completely determined by specifying the images g.x; of x; for 1 <7 < n. Now
[lg-xi = xol| = [lg-xi = g-xol| = |[xi = x0l| < 2R,
hence each image g.x; lies in X. To prove (4.6) it therefore suffices to show that

|X]| < <¥+ 1)n : (4.7)
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for there are then at most (2 + 1)™ choices for {g.x; : 1 < i < n}. To prove (4.6), note
that since X is an (r, R)-set, the open balls B°(x’;r) are pairwise disjoint. For if two balls had
a common point w, the open ball B°(w;r) would contain two points of X, contradicting the
r-uniformly discrete property. All these balls lie inside the ball B(x;2R + r). Comparing the
volumes that these balls cover gives

Vol( U B°(x;7)) < kit X| < 6 (2R 4 1)" = Vol (B(x;2R+ 1)) ,

x'eX

in which &, denotes the volume of an n-dimensional unit ball, and this yields (4.7). O
Proof of Theorem 1.3. We suppose that X is an (r, R)-set having the property that all
po-stars {STx(X;po) : x € X} fall in k = Nx(po) isometry classes, and that

Po > 2f(”7 r R)Rk 3
with

log(2£ + 2)

fn,r R) = (n® 4 1) og 2

We deduce Theorem 1.3 from Corollary 4.1, by showing that the two hypotheses
(a). Nx(pj) = Nx(pj —2R) =k <k ,
(b). Lsymx(X;p;) = Lsymx(X;p; — 2R) for all x € X,

must simultaneously hold for some
p; =2jR with 2<j<kf(n,rR).

Note that all p; > 4R.

First, we observe that Nx (p) is a nondecreasing function of p, hence

Nx(pj) < Nx(po) =k .

Thus Nx(p;) can assume at most k different values. Second, the function |Lsymx(X;p)|is a

nonincreasing function of p by (4.2). If

| Lsymx (X5 p;)| # | Lsymx (X5 p5-1)]

then
log | Lsymx (X pj)| < log|Lsymx(X;pj-1)| —log 2, (4.8)
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since a strict subgroup of a finite group GG has index at least 2 in G.
We now argue by contradiction. So suppose that for each j with 2 < j < f(n,r, R), at least
one of (a) or (b) does not hold for p;. If condition (a) does not hold for p;, and j > 3, then

Nx(p;j) > Nx(pj-1) ,

so this can happen for at most k£ — 1 different values of j. To deal with condition (b), we select
representatives {x; : 1 < ¢ < k} of each of the &k isometry classes of {STx(X;po) : x € X} and
define the quantity
k
I; = Zlog|Lsymxi (Xs5p; —2R)|, for 2<j<kf(n,nrR).
=1
Lemma 3.3 gives

2
log | Lsymx(X;2R)| < n?log (—R + 1) ,
r
hence
I < kn210g <§ + 1> .
r
If (b) does not hold for a given p; with j > 3, then (4.8) applies to at least one of the

representative classes x;, hence

I]‘ S I]‘_l —log 2.
Since all 1; > 0, this can occur for at most kn? logQ(% + 1) values of 7. Thus
. 2R
#{7} <k + kn? logy(—=+1) .
We obtain a contradiction since
. 9 2R
#{j} > kf(n,r,R)—1>k+kn 10g2(7 +1),

in which we used

2
klogQ(TR +2) > klogy(4) > k+1,

since R/r > 1 for n > 2.
Now suppose that Y is a Delone set all of whose pg-stars are isometric to one of {STx(X; po) :

x € X}. We reduce to the case that 0 € Y by translating Y to Y — y, if necessary. The proof
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above produced p; with 4R < p; < p such that (a) and (b) above hold, and these conditions
imply that any (p; — 2R)-star of Y extends in a unique way to a p;-star of Y.

By hypothesis

STo(Y355) = QST (X3 p7) — o) (49)
for some ) € O(n,R) and xg € X. Now each y € Y N B(0;p; — 2R) has STy(Y;p; — 2R) C
STo(Y,p;), and this (p; — 2R)-star extends uniquely to STy (Y;p;). The extensions cover all
points of Y in the ball B(0;p; + R) because STy(Y; p;) inherits the (r, R)-property of X to
within distance R of its boundary. Since the uniqueness of these extensions holds for both X
and Y, we obtain
STo(Y;pj) = Q(STx (X505 + ) — Xo)

Repeating the same argument, by induction on k& > 1, we obtain

STo(Y;p;+ kR) = Q(STx, (X;pj+ kR) —x0) , allk>1.

Thus Y —y = Q(x — x¢), which gives (1.3). O

The following examples show that some hypothesis like (1.1) is needed in Theorem 1.3 to
conclude that X is a multiregular point system.
Definition 4.3. A Delone set X is has the locally finite atlas property under isometries, or is
a Delone set of finite type under isometries, if |ST (X p)|is finite for each finite p > 0.

In this case the function
Nx(p) = [ST(X;p)[, 0<p<oo,

is a non-decreasing integer-valued function. Theorem 1.3 states that if

Nx(p) < é :
for C' = 2(n? + 1) logy (22 + 2), then Nx(p) is necessarily a bounded function. The examples
below exhibit Delone sets X with Nx(p)—o00 as p—oo, in one case with Nx(p) growing linearly
in p.

Many studies of quasicrystalline structures have considered equivalence of neighborhoods

under translations rather than under isometries. Let N% (p) denote the number of translation-

equivalence classes of p-stars of X. We clearly have

Nx(p) < Nx(p) , for p>0. (4.10)
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Definition 4.4. A Delone set X has the locally finite atlas property under translations, or is a
Delone set of finite type under translations, if N (p), is finite for all p > 0.

This property obviously implies the locally finite atlas property under isometries. It is
studied in [16].
Example 4.1. (Crystal with “defects”) Consider the set X in R? given by

X ={(m,n)€Z*:n#0}U{(m+0,0):mec 7}

V2

where 6 is a constant with 0 < 6 < ;. It is a Delone set with r = } and R = ¥%. It is not a
multiregular set, since the row of “defects” along the z-axis makes |ST(X)| = co. However X

has the locally finite atlas property under translations, with

lp] < Nx(p) = Nx(p) < lp] +2,

with a complete set of isometry classes of p-stars having centers contained in the set xo = (6, 0)

and {x; = (0,7) : 1 <7 < |p| +1}. Its local stabilizers are

Z/2Z if x=(m+86,0),
Lsymx(X;p) = {1} if x=(m,n), with 1 < |n|<p,
Ds if x=(m,n), with |n| > p,

in which Dg is the symmetry group of the square. For any k > 3, if p = k — 3/2 then
|ST(X;k—3/2)| = k. The scaled set X’ = /2RX is thus an (r, R)-set in R? with
p=2R(k — 3/2) which has |ST(X";p)| = k.

There are similar examples in R™. Consider the set X in R” given by
X ={(my,...,m,) €Z": |my| > 13U{(my +6,...,mp_1+0,0): (my,...,m,_1) € Z" '},

with 0 < 0 < %, which is an (r, R)-set with r = %, R = %\/ﬁ It is not a multiregular

point system, but its group of symmetries Sym(X) includes an (n — 1)-dimensional lattice of

translations. The set X' = Z=RX is an (r, R)-set that has [ST(X"; p)| = k for p = %R(k -3,
Example 4.2. (Penrose tilings) Many constructions proposed in connection with quasicrystals
give aperiodic Delone sets X which have the locally finite atlas property under translations.
Penrose tilings provide examples. Penrose tilings are tilings of R? by two types of polygonal tiles

called “kites” and “darts,” respectively, see [4], [5], [11, p. 539], and [25]. We associate to any
Penrose tiling 7 a Delone set X = X (7) by choosing a fixed point in each “kite” and “dart.”
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Such tilings have a repetitivity property (under translations), which is that there is a function
Lx (p) such that a translate of each finite configuration (“patch”) of tiles of diameter p occurs
inside any ball of diameter Lx (p). For Penrose tilings one can take Lx (p) = (7°+2)p = 13.09p,

where 7 = 1+2_\/§7 see Griinbaum and Shephard [11, p. 563]. We show that

N (p) < 270p* for p>3. (4.11)

This holds since all “kites” and “darts” that touch a ball of radius 6.55p are completely contained
in a ball of radius 6.55p+ (7+1) < 8p, for p > 3, and each “kite” and “dart” has area at least %.
Thus 270p? is an upper bound for the number of points of X that lie in any ball of radius 6.55p,
and these points include among them representatives of all translation-equivalence classes of
p-stars.

We can choose the Penrose tiling 7 to have no global symmetry, in which case X = X (7)
has Sym/(X) = {1}. If we choose p so that Nx(p) = k, then (4.11) implies that p grows at least
proportionally to vk as k—o0.

For other properties of Penrose tilings, see [4], [5], [13], [21], [22] and [25].

Example 4.3. (Pinwheel Tilings) The pinwheel tilings of the plane studied in Radin [20]
have the locally finite atlas property under isometries, but do not have the locally finite atlas
property under translations. We obtain a Delone set X from the Conway tesselation of the plane
described in §2 of [20] and [23, Sect. 7.4] by choosing a fixed point in each prototile. It can be
proved that Nx(p) is finite, with Nx(p) = O(p?). Radin’s results imply that N%(p) = +oo for
p>4R.

Acknowledgments. We are grateful to the Fields Institute of the University of Toronto for
its hospitality during the special semester on Long Range Aperiodic Order. The second author
thanks P. Shor for a helpful remark.

25



References

[1] A. Bravais, Mémoire sur les systémes formes par des points distribués regulierement sur
un plan au dans l'espace, J. Ecole Polytechique 19 (1850), 1-128. (Translation: On the
systems of points reqularly distributed on a plane or in space, Monograph. No. 4, American

Crystallographic Association 1949.)

[2] P. Buser, A geometric proof of Bieberbach’s theorems on crystallographic groups,

[’Enseignement Math. 31 (1985), 137-145.
[3] L. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag: New York 1986.

[4] N. G. deBruijn, Algebraic theory of Penrose’s non-periodic tilings of the plane I & I1., Kon.
Nederl. Akad. Wetensch, A84 (1981) 36-66. [Indag. Math. 43 (1981) 38-66]

[5] N. G. deBruijn, Updown generation of Penrose patterns, Indag. Math., N.S. 1 (1990),
201-220.

[6] B. N. Delone [B. N. Delaunay], N. P. Dolbilin, M. I. Shtogrin, R. V. Galiulin, A local
criterion for regularity of a system of points, Sov. Math. Dokl., 17, No. 2 (1976), 319-322.

[7] N. P. Dolbilin and M. I. Shtogrin, unpublished result 1976.

[8] N. P. Dolbilin, M. I. Shtogrin, A local criterion for a crystal structure, Abstracts of the
IX™" All-Union Geometrical Conference, Kishinev, 1988, p. 99 (in Russian).

[9] P. Engel, Geometric Crystallography, D. Reidel Publ. Co.: Dordrecht 1986.

[10] P. Engel, Geometric Crystallography, in: Handbook of Convex Geometry, Volume B
(P. Gruber and J. M. Wills, Ed.), North-Holland: Amsterdam 1993, pp. 989-1041.

[11] R. V. Galiulin, Axiomatic construction of the geometrical principles of crystallography,

Sov. Phys. Crystallogr. 24, No. 4 (1979) 381-383.
[12] R. V. Galiulin, Delaunay systems, Sov. Phys. Crystallogr. 25, No. 5 (1980) 517-520.

[13] B. Griinbaum and G. C. Shephard, Tilings and Patterns, Freeman: New York 1987.

26



[14] D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie, Wiss. Buchgelleshaft: Darmstadt
1931. [English Translation: Geometry and the Imagination, Chelsea: New York 1952.]

[15] J. C. Lagarias, Meyer’s concept of quasicrystal and quasiregular sets, Comm. Math. Phys.
179 (1996), 365-376.

[16] J. C. Lagarias, Geometric Models for Quasicrystals I. Delone Sets of Finite Type, Disc. &

Comp. Geom., submitted.

[17] J. C. Lagarias, Geometric Models for Quasicrystals 1I. Local Rules Under Isometries,

preprint.

[18] J. Milnor, Hilbert’s problem 18: on crystallographic groups, fundamental domains, and on
sphere packing, in : Mathematical Developments Arising ;From Hilbert Problems, Proc.

Symp. Proc. Math. Vol. 28, American Math. Soc.: Providence 1976, pp. 491-506.

[19] C. Radin, Global order from local sources, Bull. Amer. Math. Soc. (N.S.) 25 (1991) 335-
364.

[20] C. Radin, The pinwheel tilings of the plane, Ann. Math. 139 (1994), 661-702.

[21] E. A. Robinson, Jr., The dynamical theory of tilings and quasicrystallography, in: Ergodic
Theory of Z%-Actions (M. Pollicott and K. Schmidt, Eds.), London Math. Soc. Lecture
Notes No. 228, Cambridge U. Press 1996.

[22] E. A. Robinson, Jr., The dynamical properties of Penrose tilings, Trans. Amer. Math. Soc.,

to appear.

[23] R. L. E. Schwarzenberger, N-dimensional crystallography, Pitman Publishing Ltd.: London
1980.

[24] M. Senechal, Brief history of geometric crystallography, in: Historical Atlas of Crystallog-
raphy (ed. J. Lima-de Ferin), Kluwer Academic Publ: Dordrecht 1990.

[25] M. Senechal, Quasicrystals and Geometry, Cambridge University Press: Cambridge 1995.

[26] M. I. Shtogrin, unpublished result 1977.

27



[27] L. Sohncke, Die regelméssigen ebenen Punktsysteme von unbregrentzer Ausdehnung, J.

Reine angew. Math. 77 (1874), 47-101.
[28] L. Sohncke, Entwicklung einer Theorie der Krystallstructur, B. G. Teubner: Leipzig 1879.
[29] L. Sohncke, Erweiterung der Theory der Krystallstructur, Z. Krist. 14 (1888), 426-446.

[30] J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions I, Springer-
Verlag: Berlin 1970.

[31] A. Vince, Periodicity, Quasiperiodicity and Bieberbach’s Theorem on Crystallographic
Groups, Amer. Math. Monthly 104 (1997) 27-35.

email: nikolai@dolbilin.mian.su
jcl@research.att.com
senechal@minkowski.smith.edu

addresses: Professor N. P. Dolbilin
Steklov Mathematical Institute
Russian Academy of Sciences
42 Vavilov St.
117466 Moscow, RUSSIA

Dr. J. C. Lagarias

Room 2C-373

AT&T Labs -- Research

600 Mountain Avenue

Murray Hill, NJ 07974-0636

Professor M. Senechal
Department of Mathematics
Smith College
Northampton, MA 01056

28



