0H

o = =g Bi— Aj— (5 )b — 7 (2) (24)
) O0H ) . _ _ .
Py = _a_y+AT:r—Cy—(Ty L)y — 97 ()] (25)
+2r(v+ ATz — Cy —py) (26)
where the Hamiltonian is defined by
H(p:va T, Py, y) = I{x(pary l) + I(y(pya y) + TS(Qf7 y) (27)

On the invariant manifold, the Hamiltonian is identical to the Lyapunov function
(7) defined previously. The rate of energy dissipation is given by

H = i"Bi— (7' + )il [p. — f1(2)] (28)
—y Cy—(ry =) Ipy — 97 ()] (29)
+2ry" (v + ATz — Cy — py) (30)

The last term vanishes on the invariant manifold, leaving a result identical to (8). Of
course, it is also possible that the velocity-dependent terms may pump energy into
the system, rather than dissipate it in which case oscillations or chaotic behavior
may arise.

6 Conclusion

The dynamics of an excitatory-inhibitory network is closely related to a saddle point
dynamics. Unlike a gradient dynamics, a saddle point dynamics can converge to
a fixed point or to a limit cycle. This analogy gives some insight into the origins
of oscillatory behavior in excitatory-inhibitory networks. Furthermore, it aids in
the construction of Lyapunov stability arguments. The dynamics of an excitatory-
inhibitory network also has a Hamiltonian structure.
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would hold. Let us assume that this is the case. The equations of motion (1) are
then saddle point dynamics: They are gradient descent in z and gradient ascent in
y. Under certain circumstances, such a dynamics converges to a saddle point

minmax S(z, y) (17)
¢y

Sufficient conditions for convergence can be found by Lyapunov methods. The time
derivative of the kinetic energy 7' = 7|2|> + 17, |y|? is given by —27(625/0z?)z +
yl (025/0y*)y. If 92S/0=? is positive definite and 925/dy? is negative definite, then
T is nonincreasing and is a Lyapunov function, since it is always bounded below.

If the kinetic energy is not a Lyapunov function, it can sometimes be fixed by
adding a multiple of the saddle function. The time derivative of the saddle function
is S = —7,2? + 1,y?. By taking the linear combination L = T + rS, the terms
that depend on z and y can be traded off against each other, so as to produce a
nonincreasing L. When generalized to the case of nonlinear f and g, this Lyapunov
function turns into (7).

The resemblance of an excitatory-inhibitory network to a saddle point dynamics
should be contrasted with the resemblance of a symmetric network to a gradient
descent dynamics. Since gradient descent is a sure way of finding a local minimum of
a potential function, fixed points of symmetric networks are almost always globally
stable. A saddle point dynamics is clearly an unreliable way of finding a saddle
point. In particular, it is easy to construct situations where a saddle point dynamics
leads to a limit cycle about a saddle point. Furthermore, even when the dynamics
does converge to the saddle point, damped oscillations are a clear possibility. Thus
this viewpoint gives some insight into why excitatory-inhibitory networks often show
oscillatory behavior.

5 Hamiltonian dynamics

The Lyapunov function (7) can also be derived from a dissipative Hamiltonian
dynamics. To do this, we double the dimension of the state space (z,y) by adding
canonically conjugate momenta (pg, py), and consider the phase space dynamics

wEt+zr = [f(ps) (18)
y+y = g(py) (19)
(r+ ) (= Ay Bampn) = 0 (20)
<r+%)(v+ATm—C'y—py) =0 (21)

Clearly the linear space defined by p, = v — Ay + Bz and p, = v + ATz — Cy
is an attractive invariant manifold of this dynamics, provided that » > 0. On
this invariant manifold, the phase space dynamics is equivalent to the state space
dynamics (1).

The advantage of the phase space formulation is that the equations of motion can
be written in canonical form with velocity-dependent terms,

OH
r = 22
x e (22)
. OH
y = (23)

apy



under the constraint z; > 0. With the help of the Lyapunov function we can prove
convergence to minima when 3 < 2. For convenience we assume uj > ug > ... > Uy,.
Let Ion denote the subset of indices such that i € Iop if and only if u; —y+ fx; > 0.
Note that Iop is time varying.

When 8 < 1 the network converges to the unique global minimum of E which is
characterized as follows. There is (generically) NOT TRUE a unique k& € 1,...,n

such that u; > m Zle u; > up41. The equations

v = [ui—y+Pu]t,

1 k
y = 7k+1—ﬂ;1”

define a fixed point of (13). This fixed point is a global attractor and minimizer of
E. Note that Ion = {1, ..., k} at the fixed point.

When 1 < 8 < 2 the local minima of E are of the “winner take all” type. There is
(generically) a unique k € 1,...,n such that uy > (2 — B)u; > upy1. With the help
of the Lyapunov function we can prove that (13) generically converges to one of k
fixed points characterized by: Ion = {j} where j < k; z; = Qu_—jﬁ; z; =0,i# .

For this example it is convenient to choose r = 1 — 3 in which case the Lyapunov
function reduces to

L=3"+ 1=y +> (y—w) = > (y—u — fa;)’,
i=1 i¢Ton

and its derivative is given by

L==22-p)0" -8 Y (y—u; — Bui)a; .
i€lon
Thus, for § < 2 it follows that (z,y) converges to the positive invariant portion of

the set {y = 0} N {x; = 0,7 & Ion}. iFrom this one can conclude the convergence
results described above.

This example has illustrated how the Lyapunov function (7) can be used to prove
global stability of fixed points in excitatory-inhibitory networks. However, the origin
of the Lyapunov function remains mysterious. It turns out that there are two
“methods” by which the Lyapunov function can be derived, which give a deeper
understanding of the mathematics of excitatory-inhibitory networks.

In the case § > 2 the fixed points of (13) are unstable. In this regime oscillations
may arise as can be easily demonstrated for the case n = 1. For n > 1 oscillatory
or chaotic behavior may arise.

4 Saddle dynamics

To see why the saddle function (6) deserves its name, consider the following,

as

0o _ s

% = u— Ay+ Bx — [~ (2) (15)
oS

N = v+ ATz —Cy—g '(y) (16)

The right hand sides of these equations have the same sign as z and y respectively
by the monotonicity of f and ¢. If f and g were the identity function, exact equality



function K,(p,z) attains its minimal value on the manifold f(p) = z. Similar
statements apply to K.

The functions K, and K,, along with the saddle function
1 1 _ _
S i=—ule— §ITB$ + 0Ty — EyTC'y +17F(x) +y" AT2 —17G(y) (6)
are the three pieces used to construct the Lyapunov function. The reason for the

name “saddle function” will be explained later. A straightforward computation
shows that the time derivative of

L = Kx(u—Ay—i—Bm,m)—}—Ky(v—l—AT:L‘—Cy,y)—i—T'S (7)
is given by
L = &"Bz—yTCy (8)
—(r7 '+ )i fu— Ay + B — f71(2)] 9
—(ry =)y o+ ATz = Cy— g7} (y)] (10)

Tt will be seen that the functional L can be of considerable utility in analyzing (1).
Under various conditions on the parameters, the function L serves as a Lyapunov
function and it can therefore be used to prove global convergence of the network.

Note that u — Ay + Bz = f~ (72 + z). Since f~' is monotonically increasing,
f~1(a)— f~1(b) has the same sign as a —b. Similar statements apply to g. It follows
that if —771 <r < Ty_l, then last two terms of (8) are nonpositive.

Without further constraints, the first two terms of L may be of arbitrary sign. In
many cases the value of r can be adjusted so that the first two terms of (8) are
dominated by the second two.

For example, if r can be chosen so that
(@a=bTBla—=b) < (7' +r)(a=b)T[f (a) = f71(B)] (11)
(a=b)"Cla=b) > (r—7,")(a—b)"[g" (a) g7 (b)] (12)
for all a and b then we can conclude I < 0. Assuming L is bounded below, it then
serves as a Lyapunov function of the dynamics.

To see the construction in action we turn to a simple example.

3 An Example: Global Inhibition

As an illustration of the use of the Lyapunov function, we consider a network with
a single inhibitory neuron connected to a population of excitatory neurons. Each
excitatory neuron feeds back to itself with strength 3.

Zit+r = [ui—y+ Pzt (13)

Zx . (14)

Here we have introduced the notation [z]* = max(z,0). This is a special case of
(1). The network is intended to minimize, at least locally, the functional

2
E::—Zuimi—}—%(in) —|—¥ng
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additional constraint that the entries of matrices A, B, and C' are nonnegative, in
which case the meaning becomes clear. However, although this assumption makes
sense in a neurobiological context the mathematics in no way depends on it. The
antisymmetry of interaction between z and y i1s manifest in the equations. The
symmetry of interaction within each population is imposed by the constraints B =
BT and C = CT. The constant vectors u and v represent tonic input from external
sources (or alternatively bias intrinsic to the neurons). The time constants 7, and 7,
determine the speed of excitatory and inhibitory synapses, respectively. The ratio
between these time constants greatly affects the global behavior of the network. In
particular, when inhibition is much slower than excitation, 7, > 7., oscillations
may result.

The potential for oscillatory behavior in excitatory-inhibitory networks like (1) has
long been known[8, 9]. The origin of oscillations can be understood from a simple
two neuron model. Suppose that neuron 1 excites neuron 2, and receives inhibition
back from neuron 2. Then the effect is that neuron 1 suppresses its own activity
with an effective delay that depends on the time constant of inhibition. If this delay
is long enough, oscillations result. However, these oscillations will die down to a
fixed point, as the inhibition tends to dampen activity in the circuit. Only if neuron
1 also excites itself can the oscillations become sustained.

Therefore, whether oscillations are damped or sustained depends on the choice of
parameters. In this paper we establish sufficient conditions for the global stability
of fixed points in (1). The sufficient conditions indicate regimes in which it may be
possible to prove other types of dynamical behavior, such as oscillations.

2 Lyapunov function

In this section we formally introduce our Lyapunov function and indicate conditions
under which it can be used to prove global convergence to fixed points. A more
detailed development will appear in a full paper.

As a preliminary, we establish some notational conventions. We define the an-
tiderivatives F' and F' componentwise,

F'(z) = f(z)  F'(z)=f"(=) (3)
The antiderivatives G and G are defined similarly.

For the purposes of this section it is convenient to assume that f and g are smooth.
Furthermore we assume that all arguments are within the range of functions applied
to them. In particular, f may be defined on all of R but may be bounded above
and/or below so that f=1 will be defined on some sub-interval of R. Note that the
set (z,y) lying in the range of (f,g) is a positive invariant set under (1) and that
its closure is a global attractor for the system.

The column vector of all ones is denoted by 1. Its dimensionality should be clear
from context. It is useful to define the following functions

Kep.2) = = (1TF(p)~2Tp+17F()) (4)
Ky(q,y) = Ti( TGlq)—y"q+17G(y)) - (5)

Note that both functions are convex in either of their arguments but they are
not convex in both arguments in general. If p = u — Ay + Bz then K,(p,z)
is formally analogous to the kinetic energy associated with the z variables. The



citatory and inhibitory populations of neurons. In particular, we consider networks
with two distinguished populations of neurons which interact via antisymmetrical
connections, while within each population interactions are symmetric. Thus the
class of networks considered here includes perhaps the most basic asymmetry of
interaction in the brain, the asymmetry of excitation and inhibition. The networks
we consider offer a rich repertoire of dynamical behaviors including oscillations[§]
and traveling waves[5].

The mathematical content of the paper is the following. We define a general class of
excitatory-inhibitory networks and introduce a Lyapunov function that establishes
sufficient conditions for the global stability of fixed points. It is straightforward
to verify the validity of the construction by a simple calculation. We apply the
construction to a simple example network consisting of an excitatory population
of neurons with recurrent inhibition from a single neuron[6, 7]. Because of space
constraints we will concentrate on the formal aspects of our results. Moreover, we
will make simplifying assumptions which will be relaxed in the full version of the

paper.

What makes the Lyapunov function particularly interesting, over and above the
convergence results it yields, is that it can be interpreted within a broad framework
which borrows concepts from classical mechanics. We present two such complemen-
tary interpretations.

The first interpretation exploits the similarity of the excitatory-inhibitory network
to saddle point dynamics. According to this viewpoint, the dynamical equations for
the excitatory and inhibitory neurons are similar to gradient descent and ascent on a
saddle function. The fixed points of the dynamics are saddle points of this function.
The second method interprets the dynamics within a Hamiltonian framework and
the Lyapunov function then arises as the energy of the dissipative Hamiltonian
system.

We can apply the general constructions to yield sufficient conditions for convergence
to fixed points excitatory-inhibitory networks. Equivalently, we obtain necessary
conditions for oscillatory behavior. The more difficult task of finding sufficient
conditions for oscillatory or chaotic behavior remains largely open. However, we
hope that the analogies with saddle point and Hamiltonian dynamics will help in
this task which will the subject of further work.

1 Excitatory-inhibitory network

Figure 1 depicts a network of two populations of neurons. The state of the network
is described by two vectors z € R™ and y € R" which represent the activities of
the excitatory and inhibitory neurons respectively. The connections between the
two populations are antisymmetric, while the connections within each population
are symmetric. The dynamics of the network is given by

wE+zr = f(u— Ay+ Bz), (1)
ny+y = glv+ATe—Cy). (2)
Here we use f to denote a vector of scalar functions which are applied component
wise to the arguments, i.e., f(z) = (fi(21),..., fm(Zm)). The scalar functions

fi are generally assumed to monotonic non-decreasing. In order to simplify the
notation we will assume that all of f; are the same, and we use f to denote both
the vector and scalar versions. Similarly, g represents a vector of non-increasing
scalar functions which, for convenience, we will assume are identical. To clarify the
interpretation of the “excitatory and inhibitory” populations we should impose the
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Abstract

Because the dynamics of a neural network with symmetric inter-
actions is similar to a gradient descent dynamics, convergence to a
fixed point is the general behavior. In this paper, we analyze the
global behavior of networks with distinct excitatory and inhibitory
populations of neurons, under the assumption that the interactions
between the populations are antisymmetric. Our analysis exploits
the similarity of such a dynamics to a saddle point dynamics. This
analogy gives some intuition as to why such a dynamics can either
converge to a fixed point or a limit cycle, depending on parame-
ters. We also show that the network dynamics can be written in a
dissipative Hamiltonian form.

Dynamic neural networks with symmetric interactions provably converge to fixed
points under quite general hypotheses [1, 2]. The convergence theory helped to
establish the paradigm of dynamic neural computation with attractors[3, 4]. Lit-
tle is known about the dynamics of networks whose connections are not symmetric.
Expanding the convergence theory to include asymmetrical networks is nevertheless
well motivated. First, the networks in real brains are asymmetric. Second, oscilla-
tions and complex nonperiodic behavior are observed in real brains, and these types
of dynamical behavior cannot be realized in a symmetric network. Third, asym-
metric networks admit dynamic behavior which offer a wider range of possibilities
for neural computation.

In this paper, we consider a special class of asymmetric networks that consist of ex-



