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Abstract. A pinwheel schedule for a vector v = (v1,vs,...,v,) of positive integers 2 < vy <
vy < -+ < wy is an infinite symbol sequence {S; : j € Z} with each symbol drawn from
[n] = {1,2,...,n} such that each i € [n] occurs at least once in every v; consecutive terms

(Sj+1,5j+2,- -+ Sj4+v;)- The density of v is d(v) = 111_1 + % + -+ % If v has a pinwheel
schedule, it is schedulable. It is known that v(2,3,m) with m > 6 and density d(v) = 2 + L

is unschedulable, and Chan and Chin [2] conjecture that every v with d(v) < 2 is schedulable.

They prove also that every v with d(v) < 5 is schedulable.

We show that every v with d(v) < 2 is schedulable, and that every v with v; = 2 and d(v) <

% is schedulable. The paper also considers the m-pinwheel scheduling problem for v, where each

i € [n] is to occur at least m times in every mu; consecutive terms (Sji1,...,Sjtmey;), and

1

m—l—eforanye>0.

shows that there are unschedulable vectors with d(v) =1 —
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1. Introduction. Pinwheel scheduling originated with the problem of scheduling a ground
station to receive information from a number of satellites without data loss [5]. A pinwheel
schedule provides a window of time for receipt of each satellite’s information that depends
on its orbital characteristics. Like many other scheduling problems that require more-or-less
periodic processing of items by one or more service facilities [1, 4, 7, 8, 10, 12], contributions
to pinwheel scheduling [2, 3, 6, 9, 11] have focused on algorithms which schedule significant
numbers of cases that have feasible schedules. This paper provides guarantees for the existence
of pinwheel schedules for an increased range of cases, measured in terms of their densities, and
implicitly gives a method to construct such schedules.

The pinwheel scheduling problem is usually formulated for a multiset {v1, ..., v} of positive

integers. (A multiset is a set in which elements occur with multiplicities.) We will represent

such a multiset as a vector v = (v1,v9,...,v,). The density d(v) of vector v is
1 1 1
dv)=—+—+---+—.
U1 ()] Un

A pinwheel schedule for v is a doubly-infinite symbol sequence {S; : j € Z} of symbols drawn

from the alphabet [n] = {1,2,...,n} with the property that each i € [n] occurs at least once

in every block (Sj41,---,S5j44;) of v; consecutive terms of the sequence. When a pinwheel
schedule exists for v, we say that v = (v1,v2,...,v,) is schedulable. Thus, (v1,v2) = (2,3) is
schedulable with sequence - --1212---. However, it turns out that every (vy,vq,v3) = (2,3, v3)

is unschedulable.

By permuting symbols we can always reduce to the case in which v’s components are
ordered as v1 < w9 < --- < v,. Moreover, a trivial necessary condition for schedulability
is d(v) < 1. Thus, aside from v = (1), we require v; > 2 and will assume henceforth that
2<v Swvp < Sy

Although constructing a pinwheel schedule is ostensibly an infinite problem, Theorem 2.1 in
[5] notes that if a vector v is schedulable, then there exists a periodic schedule whose period is
no greater than v{vy - - - v,. Consequently, one can decide if V' is schedulable by an exponential-
time algorithm that checks whether some sequence of vivs - - - v, terms from [n] satisfies the
pinwheel conditions. Such a decision algorithm is impractical, and considerable effort has been
devoted to finding classes of problems for which simple schedules can be devised.

We note results of this effort in terms of subsets of the set

V={v=(v,v9,...,0p) :n>1, 2<v; <--- <y, dv) <1}.



We say that b is a density guarantee for a nonempty subset U of V if every v € U with d(v) < b
is schedulable. Holte et al. [6] proves that 1 is a density guarantee for {(vi,...,v,) € V : |{v; :
i € [n]}| < 2}, the set of all v with no more than two distinct v; values, and Lin and Lin [9]
prove that 2 is the maximum density guarantee for {(vy,...,v,) € V : [{v; : i € [n]}| < 3}. Of
greater relevance for the present paper, Chan and Chin [2] proves that % is a density guarantee
for V. This paper and Chan and Chin [3] present an array of pinwheel scheduling algorithms
with varying density guarantees, including 0.65 and %, but % is the maximum guarantee for
their algorithms. Table I in [2] also notes the following density guarantees for all v € V' with

smallest member vy:

v1 guarantee v] guarantee
2 0.75000 7 0.73807
3 0.70000 8  0.74470
4  0.70833 9 0.75188
5 0.72196 10 0.76134
6 0.73359 11 0.76438

A few of these values, and the observation in [2] that every v € V with v; > 9 and d(v) < % is

schedulable, are relied on in the proof of our main result.

THEOREM 1. % is a density guarantee for V.

Because all (2,3,v3) € V are unschedulable, no b > % + % = % is a density guarantee for

V. Chan and Chin [2, 3] conjecture that 2 is the maximum density guarantee for V. This is
supported by all evidence to date, including the three-values theorem of Lin and Lin [9], and
it leaves ample room to increase the % bound of Theorem 1. The next theorem verifies the %

conjecture for one important special case.

THEOREM 2. % is the mazimum density guarantee for {v € V : vy = 2}.

Theorem 2 is proved in section 3 under the presumption that Theorem 1 is true. Theorem
1 is proved in section 4.

A natural step beyond Theorem 2 is to show that {v € V : v; = 3} has density guarantee %,
which would be maximum in view of (3,4,4). This seems hard to prove and we leave it open. A
type of difficulty encountered is illustrated by v = (3,4, 7, 10, 140) with d(v) = %. It is easy to
schedule (3,4, 7,10), and even a greedy algorithm does this with schedule ... 132142132142....

But it is not at all obvious how one schedules v. One solution is

...]1231421312413215|1231421312413215| ... ,



which in fact is a schedule for (3,4, 6, 10, 15). However, this is a custom-designed schedule, and
many other cases of v1 = 3 and d(v) < % may require similar treatment.

We include another result motivated by the % conjecture for a relaxed version of the pin-
wheel scheduling problem. Define (v1,vs,...,v,) in V to be m-schedulable if there is a doubly-
infinite sequence of members of [n] in which every muv; contiguous terms contain at least m
i’s, for 1 = 1,2,...,n. When every v € V with d(v) < b is m-schedulable, we say that b is a

density m-guarantee for V.
THEOREM 3. For everym > 2, nob>1—1/[(m+1)(m+2)] is a density m-guarantee for V.

When m =1, 1 —1/[(m + 1)(m + 2)] = 2. We conjecture that 1 — 1/[(m + 1)(m + 2)] is

the maximum density m-guarantee for V for every m > 2. Theorem 3 is proved in section 5.

2. Formulation and Lemmas. This section presents a slightly modified formulation for
pinwheel scheduling in preparation for the proofs of Theorems 1 and 2. We assume throughout
that v with density d(v) is in V. We include some illustrative material not required for later
proofs to facilitate understanding.
A packing of v = (v1,v2,...,vy) is amap f : Z — {0} U [n] such that, for all 7 € [n] and all
k €Z,
ie{fk),f(k+1),....,f(k+v;—1)}.

When this holds, we say that f packs v and that v is packable. If v has no packing, it is
unpackable.

The definition of a packing modifies our prior definition of a pinwheel schedule by allowing
zeros in the sequence. We refer to k € Z for which f(k) = 0 as a hole in f. A packing
with no holes is tight. All packings of v = (2,3), such as ...1212... and ...1211212112...,
are necessarily tight, but the packing ...12101210... of v = (2,4) has a hole in every fourth
position. Every nontight packing can be made tight by deleting 0’s and closing up. A schedule
is a tight packing, so v is schedulable if and only if it is packable.

An extension of v = (v1,...,vg) is any (v1,...,Vk,...,0n) in V with n > k. A packable
v is extendable if it has a packable extension, and noneztendable otherwise. Nonextendable

packable v’s include (2, 3), (2,5,7) and (3,3, 5).

LEMMA 1. A packable v is extendable if and only if it has a packing with denumerably many

holes.



PrOOF. If f is a packing of the extension (v1,...,vn,vp+1) of v = (v1,...,vp), set f(k) =0
for all £ that have f(k) =n + 1 to get a packing of v with denumerably many holes.

Suppose f is a packing of v = (vy,...,v,) that has a denumerable number of holes. As-
sume without loss of generality that denumerably many k > 0 are holes. Then some v,-term
sequence in {0,1,...,n}"", say S, must occur infinitely often as a contiguous subsequence of
fO)f(1)f(2).... A denumerable number of occurrences of S will be mutually nonoverlapping,
and when any two of these with intermediate subsequence T is used to form the sequence
...8TSTST..., this sequence gives another packing of v. If S itself has no hole, we can
always choose T with a hole, so we get a packing of v that has a hole in every j*" position
for some j > v,. When the 0 in each such position is changed to j, we obtain a packing of
(viy...,Vpn,J). =

The following example illustrates preceding ideas in ways that are used repeatedly in sub-

sequent analyses.

ExXAMPLE 1. To show that v = (3,3,5) is nonextendable, we suppose otherwise and obtain a

contradiction by trying to construct a packing outward from a hole:

...101... 2 won’t pack

...21021... 3 won’t pack

...103... 2 won’t pack
..303... 1 and 2 won’t pack.

The same procedure often verifies extendability. The pattern
.. |12314210[12314210) . ..

shows that (3,4,8,8), with packing ...S050S0..., where S = 1231421, can be extended to
v =(3,4,8,8,8) with d(v) = 0.95833. The two-hole pattern

...|314256130241653213451260|314256 . . .
shows that (5,6,7,8,9,10) can be extended to (5,6,7,8,9,10,15) with density 0.9123015. =

Let
P = {v : v is packable}

and for every v € P let

P(v) = {v' € P: v' is an extension of v} .



Every member of P(v) is a packable extension of v. If every packing of v is tight then P(v) is
empty and v has no packable extensions.

As in the introduction, we refer to b € (0,1] as a density guarantee for V- when {v : d(v) <
b} C P. A similar definition applies to subsets of V. Given v € P and d(v) < b < 1, we also
say that b is a guarantee for v if every extension v’ of v for which d(v') < b is in P(v). We
noted in the introduction that 2 is a guarantee for v = (2), 0.70 is a guarantee for v = (3),...,
and 0.76438 is a guarantee for v = (11). A guarantee b < 1 for v is mazimum if for every ' > b
there is an unpackable extension v’ of v with d(v') < ¥'. In these terms, Theorem 2 says that
2 is the maximum guarantee for v = (2).

We now describe a method for increasing guarantees and establishing new guarantees. A

packing f of v will be said to be porous if every ¢ consecutive positions of f have a hole for

some positive integer c. When f is porous, let
p(f) =1+ (maximum number of positions between adjacent holes in f).

The two-hole pattern at the end of Example 1 has p(f) =1+ 14 = 15.

For notational clarity, we often identify a v under consideration for extensions by v* =
(v],...,v;). When f is a porous packing of v* with p(f) as just defined, every one-term exten-
sion (v}, ...,v5,vk41) of v* for which vy > max{v;,p(f)} is packable, i.e., in P(v*). The fol-

lowing lemma generalizes this observation. Given f for v* and an extension (v7,...,v},...,v,)

of v*, for each i € {k +1,...,n} let
h; = minimum number of holes in v; consecutive positions of f .

LEMMA 2. Suppose f is a porous packing of v* = (v},...,v{), n > k, and max{v},p(f)} <
V41 < o+ < vy, Let b be either a density guarantee for V, or a guarantee for some
(hk41s- - hp) with k+1 <m <n. Then (vf,...,v5, Vkt1,...,v,) € P(v*) if

n

> <b.
. hi
i=k+1
PROOF. The lemma’s hypotheses and inequality for b imply that (hgi1,...,hy,) in V is pack-
able, say with packing g: Z — {0} U{k + 1,...,n} with an obvious notational extension. Let

B be an order-preserving map from the set of holes of f onto Z. Let f’ = f except for the
holes of f where f'(k) = g(8(k)). Then f’ is a packing of (v{,...,v},Vk41,---,05). =



Our next lemma considers a number ¢ as a guarantee for v*. It may be helpful to think of

t as a “target” for a proposed guarantee.

LEMMA 3. Suppose the hypotheses in the first two sentences of Lemma 2 hold, and t satisfies

d(v*) <t <1 along with

Then (vi,..., V5, Vk41s---,0pn) € P(v*) if

b

< B
v < b [t — i)

] for i=k+1,...,n.

PROOF. The final inequalities give

n

1 1 b
2 = (_Z 'u_i>t—d(v*) =b

. h;
1=k+1

so, when they hold, Lemma, 2 implies that (v},..., v}, Vk41,...,v,) is packable. =

Applications of Lemmas 2 and 3 put a premium on porous packings of v* that have high
densities of holes that are approximately evenly spaced. This occurs automatically with f
packing ...010101... for v* = (2), but some other cases require effort to uncover porously
efficacious packings.

The utility of Lemma 3 is demonstrated in the next section by the proof that ¢t = % is a
guarantee for v = (2), given that b = % is a density guarantee for V. Lemma 3 can also be
used for a straightforward proof of Theorem 1, but we will give a shorter proof of our main
theorem by using an extended version of the lemma that effectively replaces b in Lemma 3 by

t itself.

LEMMA 4. Fiz t with 0.7 <t < %. Suppose t is a density guarantee for a proper subset U of
V. Let V(U,t) ={v € V\U : d(v) < t}, let V* be a finite set of v*’s in V(U,t) such that every
v € V(U,t)\ V* is an extension of some v* € V*, and let F be a finite set of periodic packings
of the members of V* such that every v* € V* is packed by at least one f € F. Suppose also
that there is a finite set T of triples (v*,u, f) € V* x Z X F such that

(i) uw > max{vy,p(f)} when v* = (vi,...,v}),

(ii) (v*,u) € V(U,t),

(iii) f packs v*,



(iv) with h(v;) the minimum number of holes in v; consecutive positions of f,
b*

vi < h(vi) [m

] for all vi>wu,
where b* is the larger of t and a known guarantee for (h(u)),

and for every extension v = (vi,..., V5, Vk41,.--,0n) in V(U,t) \ V* of a v* = (v],...,v}) in

V* there is a triple (v*,u, f) € T for which vgy1 > u. Then t is a density guarantee for V.

PrROOF. Fix t with 0.7 < ¢t < %, and assume that all other hypotheses of Lemma 4 hold.
Because t is a density guarantee for U and some f € F packs v* for each v* € V*, the only
members of V' that require further consideration to assure ¢ as a density guarantee for V are
the extensions in V' (U,t) \ V* of members of V*. By the penultimate sentence of the lemma,
every such extension is related to a triple (v*,u, f) in V* x Z x F that satisfies (i) through (iv).

Consider one such (v*,u, f) € T which satisfies (i)—(iv) and necessarily has h(u) > 0. Let
B =b*/[t—d(v*)] in (iv), so that (iv) is v; < h(v;)B for all v; > u. Also let p be the number of
terms in f’s period, and for 1 < j < p let ; be the minimum number of holes in j consecutive
terms of f. Thus every p consecutive terms of f has exactly «, holes. Moreover, pa; < apj
for all 1 < j < p, for if pa; > apj then we conclude that some block of jp consecutive terms
has more than jay, holes. It follows that if v; = Kp+j with 0 < j < p, then h(v;) = Koy + a;,
and with h(v;) > 0 that

vitp _ (K+lp+j _ Kpt+j _ v

h(vi+p) (K+Dap+a; =~ Koy +aj  h(v)’

where the inequality is tantamount to pa; < apj. As a consequence, we see that the maximum
value of v;/h(v;) must occur in the first p v; > u. Because the inequality of (iv) is strict, i.e.,
vi/h(v;) < B, it follows that we can decrease B slightly by subtracting some € > 0 from its
numerator without violating (iv). To be specific, let ¢ > 0 be such that

b* — €

v; < h(v;) [m

] for all v; >wu .

It now follows from Lemmas 2 and 3 that if ¢t — € is a density guarantee for V' and if v is an
extension of v* as described just after (iv) in Lemma 4, then v is a packable extension of v*.
A similar analysis for every (v*,u, f) € T yields a finite collection E of positive €’s that
give the same packability conclusion for each triple in T'. Therefore, if 0 < ¢y < min{e: € € E},
uniform replacement of b* by b* — ¢ in (iv) implies that if ¢ — ¢ is a density guarantee for V'

then ¢ also is a density guarantee for V.



Assume without loss of generality that Mey =t — 0.7 for a positive integer M. The proof
of Lemma, 4 is completed by observing that, beginning with 0.7 as a known density guarantee
for V, the hypotheses of the lemma imply inductively that 0.7 + ¢g is a density guarantee for
V, 0.7 4+ 2¢p is a density guarantee for V,..., and 0.7 + Mey = t is a density guarantee for V.
The final step, from 0.7 + (M — 1)eg =t — € to 0.7 + Mey = t, is validated in the preceding
paragraphs. The earlier steps are covered by the preceding analysis because we can assume
that their U’s include the U of the final step, their V*’s are included in the V* of the final
step, and so long as t — Keg — d(v*) > 0, the ratio

b* — (K + 1)60
t—KEO —d(’U*)

increases as K increases, thus assuring that (iv) holds for earlier steps when it holds for the
final step. =

It seems obvious that as t increases toward %, verification of ¢ as a density guarantee for V
increases in difficulty. This is reflected by the statement and proof of Lemma 4. Although our
proof in section 4 for ¢ = % that is based on Lemma 4 is rather long, it is certainly possible to
use Lemma 4 to verify larger density guarantees for V. However, proof length and complexity
strongly encourage the development of other ideas to determine the validity of Chan and Chin’s

conjecture [2, 3] that % is the maximum density guarantee for V.

3. Proof of Theorem 2, Assuming Theorem 1. We prove that % is a guarantee for
v = (2), hence a maximum guarantee for (2) in view of v = (2,3), given that 2 is a density
guarantee for V.

Assume with no loss of generality that v = (2,v9,...,v,) € V with n > 2, v, > 4 and

"1
+ — <
i Vi

N —
| Ot

If v is packable then any packing with adjacent 1’s can be converted to a packing with no
adjacent 1’s by removing some 1’s and closing up. We therefore assume that all 1’s in a
potential packing of v are separated by other terms. Then, because every even v; > 4 can not
be packed more closely than odd v; + 1, and 1/(v; + 1) < 1/v;, we assume also that all v; for
1 > 2 are odd. We apply Lemma 3 with ¢t = %.

1

Suppose v* = (2) with d(v*) = 5. Then, by the definition of h; prior to Lemma 2,

hi = |v;/2] for all i > 2. In addition, ¢t — d(v*) = 1 and, with b = 2 as a density guarantee for



V', the final inequalities of Lemma 3 are
Vi .
v; < (2.25) [5J for i=2,...,n.

This holds for all v; > 9. Hence, by Lemma, 3, v is packable if vo > 9. In other words, every
extension of v* with vy > 9 and % + > 5 1/v; < % is packable, so % is a guarantee for (2,9),
(2,11),.... Only v9 =5 and ve = 7 require further consideration.

Suppose vo = 5. Take v* = (2,5) with ¢t — d(v*) = 5/6 — (1/2 + 1/5) = 2/15. With
v=(2,5,v3,...,0p), y_1 1/v; > 5/6 requires vs > 15/2, hence vs > 9. For the packing

...121012101210... of o*

we have h; = 2 for v; € {9,11}, h; = 3 for v; € {13,15}, and so forth. Again using b = % in
Lemma 3, its final inequalities are

3/4 ,
v < (2/#15) hi = (5.625)h; for i=3,...,n.

This holds for all v; > 9 and it follows that  is a guarantee for (2,5).
Suppose v = 7. Take v* = (2,7) with ¢ — d(v*) = 4/21 = 0.1904761. The v* packing

...121010121010121010. ..

gives the following values of h; and h;b/[t — d(v*)] = (63/16)h;:

v; hi  (63/16)h;
7.9 2 7.88
11 3 11.82
13,15 4 15.75
17 5 19.69
19,21 6 23.63

and so forth. Hence the final inequality of Lemma 3 holds whenever v; > 11, so every (2,7, v3)
with v3 > 11 has guarantee 2. It remains only to consider (2,7) with vz € {7,9}.
For v* = (2,7,7) and v* = (2,7,9), with
b B 3/4
t—d(v*) 5/6—(1/24+1/7+1/9)

the packing ...121310121310... of (2,7,7) and also of (2,7,9) gives

=945 for v*=(2,7,9),

(o hz' 9.45hz'
13 — 17 2 18.90
19 — 23 3 28.35
25 —-29 4 37.80

10



Because v* = (2,7,9) requires vy > 13 to satisfy Y7 1/v; < 5/6, we conclude that all extensions
of (2,7,9) with > 1/v; < 5/6 are packable. Because v* = (2,7,7) has a larger coefficient than
9.45 in the preceding table (and requires v4 > 21), all extensions of (2,7,7) with > 1/v; <5/6

are packable. It follows that (2,7) has guarantee %, and the proof is complete.

4. Proof of Theorem 1. We use Lemma 4 with ¢ = % to prove Theorem 1. Because all
v € V with d(v) < 2 and v; € {2,9,10,11,...} are packable, U is the set of all v with v; = 2
or v1 > 9. Then

3

V(U,t)z{vEV:3§v1§8 and d(v)gz}.

The finite sets V* C V(U,t), F and T will emerge during the course of the proof. Other
notations and assumptions follow.

1. The strict inequality in (iv) of Lemma 4 is the key inequality. When it holds for a
particular v* = (v7,...,v;) and u, we say that v* packs to 3/4 when vy11 > u. A collection of
such statement which imply that all extensions of v* in V (U, %) pack to 3/4 is abbreviated by
v* packs to 3/4.

2. Exactly five values of b* are used in the key inequality:

(a) b* = 2 unless noted otherwise;

(b) when h(u) = 2, we sometimes take b* = 0.78. This is justified by Lemma 3 because its
final inequality is v; < (0.7/[0.78 — 3])[vi/2] = 2.5[v;/2] when v* = (2), t = 0.78 and
b=10.7, and v; < 2.5[v;/2] holds for all v; > 4;

(c) when h(u)is9, 10, or 11, we sometimes use b* = 0.75188, 0.76134, or 0.76438, respectively
[2].

3. B = b*/[3/4 — d(v*)] for the key inequality. Tabular arrays similar to those for
(v, hi, hib/[t — d(v*)]) in the proof of Theorem 2 will be headed (u, h, Bh) with h(v;) = h(u)
when v; = u. They are truncated when it is evident that the key inequality holds for larger
values of u or v;.

4. The arrow notation, such as (5,6,6) — (3,5), signifies that (5,6,6) can be packed like
(3,5) and, because (3,5) has already been shown in the proof to pack to 3/4, (5,6,6) does
likewise and requires no further consideration.

5. Each packing f € F' is identified by its periodic repeating pattern. Thus 120130 stands
for ...120130120130....

11



The following lemma completes a first step in the application of Lemma 4 by noting the
one-term extensions of (3) through (8) which require further processing to show that they pack

to 3/4. We then branch on each (v;) for 3 < wv; < 8 to complete its proof.

LEMMA 5. All (vi,v2) pack to 3/4 with the possible exception of (3,4), (4,5) to (4,9), (5,5)
to (5,11), (6,6) to (6,11), (7,7) to (7,11), and (8,8) to (8,11).

PrROOF. We omit (4,4) from the exceptions list because (4,4) — (2). We retain (6,6) and
(8,8) because (3) and (4) have not yet been shown to pack to 3/4.

We use the f packings 100, 1000, ..., 10000000 for v* equal to (3), (4), ..., (8), respectively.
When v* = (z), h(v;) = |vi(x — 1)/z]. The computations for the key inequality for v* = (3),
with B = (3/4)/(3/4 —1/3) = 9/5 are

~u_ h (9/5)h

3.4 2 36
5 3 5.4
6,7 4 7.2
8 5 9.0
9,10 6  10.8

If v; = 4 is not used in an extension of (3), then the extension packs to 3/4, and because
d(3,3,4) > 3, we conclude that (3,3) packs to 3/4. (This is a slight extension of Lemma 4
that follows from the analysis of Lemma 3.) It follows that the only one-term extension of (3)
that requires further consideration is (3, 4).

The proof of Lemma 5 for v; € {4,...,8} amounts to observing that

we [N e

where (b(4),c(4)) = (0.75,10), (b(5),¢(5)) = (0.75188,12), (b(6),c(6)) = (b(7),c(7)) =
(b(8),¢(8)) = (0.76134,12). In each case, c(v1) is the smallest value of u for which the key in-

for all v; > c(v1) ,

equality holds for all v; > u, and b*(v1) is either 2 or the corresponding guarantee for h(c(v1)),
whichever is larger. For example, when v1 = 6, the smallest u for which the key inequality
holds for all v; > u is u = 12. The value of h(12) for v1 = 6 is |12(5/6)| = 10, and the
guarantee from [2] for (10) is 0.76134. It is routine to check that the displayed inequality holds
for the cited values, so all of (4,10), (4,11),...,(5,12), (5,13),...,(8,12),(8,13),... pack to
3/4. =

The proof of Theorem 1 will be completed by showing that each excepted pair of Lemma
5 packs to 3/4. The repeating patterns of all porous packings used for this are shown in Table
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1. Each row gives the packing number, the v*’s to which it applies, the packing pattern and
its period length. We process each excepted pair in turn and complete its branching analysis

before going on to the next pair.

Table 1 about here

(3,4). t—d(3,4) = 3/4— (1/3+1/4) = 1/6, so B = (3/4)/(1/6) = 4.5. Packing (3.1) of
Table 1 has h(v;) = |v;/3], so the key inequality is v; < (4.5)[v;/3]. This holds for all v; > 6.
Because d(3,4,v3,...) < % = v3g > 6, it follows that (3,4) packs to 3/4.

This completes the proof that v* = (3) packs to 3/4.

(4,5). t —d(4,5) = 0.3, so B = (3/4)/(0.3) = 2.5. Packing (4.1) has h(v;) = [v;/2], so the
key inequality is v; < (2.5)|v;/2]. This holds for all v; > 5, except that equality holds when
v; = 5. However, when v3 = 5, h(vz) = 2, so we can use b* = 0.78 to get strict inequality for
this case. It follows that (4,5) packs to 3/4.

(4,6). The key inequality for v* = (4,6) and b* = 3 is v; < (2.25)h(v;). This holds for
all v; > 10 with packing (4.2), where h(10) = 5, h(11) = 6, h(12) = h(13) = h(14) =T,
and so forth. Hence (4,6) packs to 3/4 if v3 > 10. When v3 = 6, (4,6,6) — (3,4). When
v* = (4,6,7), packing (4.3) has h(v;) = |v;/3]|. Then, when vy < 8 with h(vs) = 2, we use
b* = 0.78 for the key inequality v; < (4.095)|v;/3], which holds for all v; > 7. And when
vs > 9, the key inequality with b* = 2 is v; < (3.9375) [v;/3], which holds for all v; > 9. Hence
(4,6,7) packs to 3/4. Finally, suppose vz € {8,9} with v* either (4,6,8) or (4,6,9). With
B = (3/4)/[3/4 — d(4,6,9)], the key inequality is v; < (3.375)h(v;). This holds for all v; > 8
for packing (4.4), which has h(v;) = 3 for v; € {8,9}, h(v;) = 4 for v; € {10,11},.... It follows
that (4,6,9) packs to 3/4, and likewise for (4,6, 8) because B for the key inequality in this case
exceeds 3.375.

(4,7). t—d(4,7) = 0.35714 and B = 2.1, so the key inequality is v; < (2.1)h(v;). This holds
for all v; > 10 for packing (4.5):

U h (2.1)h

10 5 105
11 6 12.6
12,13 7 14.7
14,15 8 16.8

Thus (4,7) packs to 3/4 if v3 > 10. When packing (4.6) is used for v* € {(4,7,7),(4,7,8)}

and (4.7) is used for v* = (4,7,9), their key inequalities using d(4,7,8) for the first case are
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v; < (3.2304)h(v;) and v; < (3.0482)h(v;), respectively:

packing (4.6) packing (4.7)
u ho (3.2304)h u ho (3.0482)h
-9 3 9.69 9 3 9.14
10 — 12 4 12.92 10—-12 4 12.19
13 5 16.15 13—-14 5 15.24
14 — 16 6 19.38

We conclude that (4,7) packs to 3/4.

(4,8). t—d(4,8) = 3/8, so the key inequality is v; < 2h(v;). It is easily seen that this holds
for all v; > 8 with packing (4.8), so (4,8) packs to 3/4.

(4,9). Packing (4.9) with ¢ — d(4,9) = 0.3888 and B = 1.9286 gives

u h  (1.9286)h
9,10 5 9.64

11 6 11.57
12,13 7 13.50

14 8 15.42
15,16 9 17.35

so (4,9) packs to 3/4 when v3 > 11. When v* is (4,9,9) or (4,9,10), packing (4.10) with h(v;) =
[vi/2], t — d(4,9,10) = 0.2888 and B = 2.596 yields the key inequality v; < (2.596)|v;/2],
which holds for all v; > 9. Hence (4,9) packs to 3/4.

This completes the proof that (4) packs to 3/4.

(5,5). The key inequality for v* = (5,5) is v; < (2.143)h(v;). This holds for all v; > 5 with
packing (5.1).

(5,6). Packing (5.1) for v* = (5,6) with key inequality v; < (1.956)h(v;) shows that (5,6)
packs to 3/4 if v3 > 9. When v3 = 6, (5,6,6) — (3,5). When v3 = 7, packing (5.2) for
v* = (5,6,7) with h(v;) = |2v;/5] has key inequality v; < (3.1188)|2v;/5], which holds for
v; > 8, s0 (5,6,7) packs to 3/4 when v4 > 8. And when v* = (5,6,7,7), t — d(v*) = 0.097619,
so Y 1/v; < 2 requires vs > 11 with key inequality v; < (7.6829)|v; /5] for packing (5.3), so
(5,6,7,7) and also (5,6,7) packs to 3/4. Finally, when v3 = 8, packing (5.4) for v* = (5,6,8)
and key inequality v; < (2.9032)h(v;) shows that v* packs to 3/4:

u h o (2.9032)h

8 3 8.71
9—-11 4 11.61
12,13 5 14.52

14 6 17.42

Hence (5,6) packs to 3/4.
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(5,7). With v* = (5,7), t —d(v*) = 0.40714 and key inequality v; < (1.842)h(v;), packing
(5.5) shows that v* packs to 3/4 if v3 > 0:

u h o (1.892)h

9 5 9.21
10,11 6 11.05

12 7 12.89
13,14 8 14.74
15,16 9 16.57

When v* = (5,7,7) with t—d(v*) = 0.26428, packing (5.6) with key inequality v; < (2.8379)h(v;)
shows that v* packs to 3/4:

u h  (2.8379)h
7.8 3 8.51
9 4 11.35
10—-12 5 14.19
13,14 6 17.03

The same packing for v* = (5,7,8) shows that v* packs to 3/4 unless v4 = 8, but because
(5,7,8,8) — (4,5,7), (5,7,8) and therefore (5,7) packs to 3/4.

(5,8). With v* = (5,8) and t — d(v*) = 0.425, packing (5.7) with key inequality v; <
(1.7646)h(v;) gives

u h o (1.7646)h
12 7 12.35
13 8 14.12
14 9 15.88
15—17 10 17.65
18 11 19.41
19 12 21.18

Hence (5,8) packs to 3/4 unless 8 < vy < 11. If v3 = 8 then (5,8,8) — (4,5). When v* is
(5,8,9) or (5,8,10), the key inequality for ¢ — d(5,8,10) = 0.325 is v; < (2.3076)|v; /2] with
packing (5.8), and this holds for all v; > 9. When v* = (5,8,11), the key inequality for the
same packing is v; < (2.2449)|v; /2|, which holds for v; > 11. It follows that (5,8) packs to
3/4.

(5,9). Packing (5.9) for v* = (5,9), t — d(v*) = 0.43888 and B = 1.7088 shows that v*

packs to 3/4 unless vz < 12:

u h (1.7088)h
13 8 13.67
14 9 15.38
15,16 10 17.08
17 11 18.80
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When 9 < vz < 12 with ¢ — d(5,9,12) = 0.3555 and B = 2.1088, we have the following for
packing (5.10):

u h  (2.1088)h
9,10 5 10.54
11,12 6 12.65
13,14 7 14.76
15,16 8 16.87

17 9 18.97

Hence (5,9,9) through (5,9,12) pack to 3/4, so (5,9) packs to 3/4.
(5,10) and (5,11). With v* equal to (5,10) or (5,11), the key inequality for ¢ — d(5,11) =
0.4591 is v; < (1.6336)h(v;). Packing (5.11) gives

u ho (1.6336)h
10,11 7 11.43
12,13 8 13.07

14 9 14.70
15,16 10 16.34

17 11 17.97

so (5,10) and (5,11) pack to 3/4.

This completes the proof that (5) packs to 3/4.

(6,6). (6,6) — (3).

(6,7). With v* = (6,7) and t — d(v*) = 0.44047, packing (6.1) gives key inequality v; <
(1.7027)|2v;/3]. This holds for v; > 8, so (6,7) packs to 3/4 unless v3 = 7. Packing (6.2) for
v* = (6,7,7) gives key inequality v; < (2.52)|v;/2], and this holds for v; > 7. Hence (6,7)
packs to 3/4.

(6,8). With v* = (6,8) and t — d(v*) = 0.45833, packing (6.1) with key inequality v; <
(1.636) | 2v; /3] shows that (6,8) packs to 3/4 unless 8 < vz < 10. When v3 = 8, (6,8,8) —
(4,6). When v3 € {9,10}, we have the following data for the key inequalities under packing

(6.3):
v* =(6,8,9) v*=(6,8,10)

u h (2.16)h (2.093)R

9 4 8.64

10 5 10.80 10.46

11 6 12.96 12.56
12-14 7 15.12 14.65

15 8 17.28 16.74

Hence (6,8,9) and (6, 8,10) pack to 3/4 except when vy = 9 for (6,8,9). When v* = (6,8,9,9),
with ¢ — d(v*) = 0.23611 and B = 3.176, packing (6.4) with h(9) = 3, h(10) = h(11) = 4,
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h(12) = h(13) = h(14) = 5, h(15) = 6,..., shows that v* packs to 3/4. Hence (6,8) packs to
3/4.

(6.9). With v* = (6,9) and t — d(v*) = 0.47222, packing (6.5) with b* = 0.75188 [for
h(u) = 9] shows that (6,9) packs to 3/4 if v3 > 14: for u = 14, h = 9 and Bh = 14.3;...; for
u =20, h =13 and Bh = 20.7. When 9 < v3 < 13, packing (6.6) shows that (6,9,9) through
(6,9,13) pack to 3/4:

U3 € {9, 10} vy =11 vy = 12 vy = 13

u h (2.015)h (1.967)h  (1.928)h  (1.897)h
9,10 5 10.07

11 6 12.09 11.80
12,13 7 14.11 13.77 13.50 13.28
14,15 8 16.12 15.73 15.42 15.18

20 11 22.16 21.63 21.21 20.87

We conclude that (6,9) packs to 3/4.

(6,10). With v* = (6,10) and t—d(v*) = 0.48333, packing (6.7) with h(14) = 9, h(15) = 10,
h(16) = 11, ... and b* = 0.75188 satisfies the key inequality v; < (1.5556)h; for v; > 14, so
(6,10) packs to 3/4 unless 10 < v3 < 13. For vs = 10, (6,10,10) — (5,6). With v* = (6,10, 11)
and t — d(v*) = 0.39242, packing (6.8) with B = 1.9112 shows that v* packs to 3/4:

vy = 11 v3 € {12, 13}

u ho (1.9112)h (1.8454)h
11 6 11.46
12,13 7 13.37 12.92
14 8 15.29 14.76
15,16 9 17.20 16.61
17 10 19.11 18.45
18,19 11 21.02 20.30
20 12 22.93 22.15

When v* is (6,10,12) or (6,10,13) with ¢ — d(6,10,13) = 0.40641, the same packing with
B = 1.8454 shows that these v* pack to 3/4 unless v; = 13 for some i > 4. Then packing
(6.9) with ¢ — d(6,10,13,13) = 0.32949, B = 2.276, and h(12) = 6, h(13) = h(14) = 7,
h(15) = 8,... shows that the key inequality v; < (2.276)h(v;) holds for v; > 12. Hence
(6,10,12,12) (6,10,12,13) and (6,10,13,13) pack to 3/4, so (6,10) packs to 3/4.

(6,11). With v* = (6,11) and t — d(v*) = 0.49242, packing (6.10) shows that (6,11) packs
to 3/4 if v3 > 15. The key inequality here with b* = 0.76134 for h = 10 is v; < (1.546)h(v;)
with h(15) = 10, h(16) = 11, h(17) = 12, h(18) = h(19) = 13,.... When 11 < v3 < 14
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with ¢ — d(6,11,14) = 0.420996 and B = 1.7814, packing (6.11) shows that (6,11,11) through
(6,11,14) pack to 3/4:

u ho (1.7814)h
11,12 7 12.47
13,14 8 14.25

15 9 16.03
16,17 10 17.81

18 11 19.60
19,20 12 21.37

Thus (6,11) packs to 3/4.
This completes the proof that (6) packs to 3/4.
(7,7). With v* = (7,7) and t — d(v*) = 0.46428, packing (7.1) shows that (7,7) packs to

3/4:
v = (7,7 v*=(7,8) or (7,9)

u ho (1.6154)h (1.512)h
7,8 5 8.07
9 6 9.69
10,11 7 11.31
12 8 12.93 12.10
13 9 14.53 13.61
14,15 10 16.15 15.12
16 11 17.77 16.62
17,18 12 19.38 18.14

The right column, where ¢t — d(7,9) = 0.49603, shows that (7,8) and (7,9) pack to 3/4 when
vg > 12. Hence only 8 < v3 < 11 needs further consideration for these cases.

(7,8). Consider 8 < v3 < 11. For v3 = 8, (7,8,8) — (4,7). When v* = (7,8,9) with
t — d(v*) = 0.37103 and B = 2.0214, packing (7.2) shows that v* packs to 3/4:

u h (2.0214)h
9,10 5 10.11
11,12 6 12.13

13 7 14.15
14,15 8 16.17
16,17 9 18.19

When v* = (7,8,10) with ¢t — d(v*) = 0.3824, we have (7,8,10,10)—(5,7,8), and packing (7.3)
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with B = (3/4)/(0.38214) = 1.9626 shows that (7,8,10) packs to 3/4 when vq > 11:
v3 = 10 v3 = 11

u ho (1.9626)h  (1.917)h
i1 6 11.76 11.50
12,13 7 13.74 13.42
14,15 8 15.70 15.34
16,17 9 17.66 17.25
18 10 19.63 19.17
19 11 21.59 21.09
20-22 12 23.55 23.00

When v* = (7,8,11) with ¢ — d(v*) = 0.39123 and B = 1.917, the right column shows that v*
packs to 3/4.
(7,9). Consider 9 < vz < 11. Because (7,9,9,9) — (3,7), we omit a row for v = 9 in the
following key inequality data for v* € {(7,9,9),(7,9,10),(7,9,11)} with packing (7.4):
v*=(7,9,9) v*=(7,9,10) v*=(7,9,11)

u h (1.948)h (1.8938)h (1.856)
10 5 9.74
11 6 11.69 11.36
12 7 13.64 13.26

13-15 8 15.59 15.15
16 9 17.53 17.04 16.70
17 10 19.48 18.93 18.56

18,19 11 21.43 20.83 20.42

The column for v* = (7,9,9) shows that v* packs to 3/4 unless v4 = 10 and, when v* =
(7,9,9,10) with ¢t — d(v*) = 0.28492, the following data for packing (7.5) show that (7,9,9, 10)
packs to 3/4:

v* = (7,9,9,10)  v* = (7,9,11,11)

u h (2.6323)h (2.3869)h
10 4 10.53
11 5 13.16 11.93
12—14 6 15.79 14.32
15,16 7 18.42 16.71
17 8 21.05 19.09
18—20 9 27.69 21.48

Therefore (7,9,9) packs to 3/4. For v* = (7,9,10), (7,9,10,10) — (5,7,9), so assume that
vg > 11. The next to last display shows that (7,9,10) packs to 3/4. The right column of
the next to last display with b* = 0.75188 for h = 9 shows that (7,9,11) packs to 3/4 unless
11 < wy < 15, and the right column in the preceding array shows that (7,9,11,11) packs to 3/4.

The unresolved v*’s for (7,9) at this point are (7,9,11,12), (7,9,11,13), (7,9,11,14) and
(7,9,11,15). With v* = (7,9,11,12) and ¢ — d(v*) = 0.32179, packing (7.6) with B = 2.3307
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shows that v* packs to 3/4 if vs > 15:

u h  (2.3307)h
15,16 7 16.06

17 8 18.35
18,19 9 20.64

Because (7,9,11,12,12) — (6,7,9,11), this leaves v5 € {13, 14} for further consideration with
(7,9,11,12). With v* as (7,9,11,12,13) or (7,9,11,12,14) and t — d(7,9,11,12,14) = 0.25036,
packing (7.7) with B = 2.9957 shows that these v*’s pack to 3/4:

u h (2.9957)h
13,14 5 14.98
15—-17 6 17.97
18 7 20.97
19-21 8 29.96

The following data for v* = (7,9,11,13) with ¢ — d(v*) = 0.3282, and v* = (7,9,11, 15) with
t — d(v*) = 0.33846, pertain to packing (7.8):

Vg4 = 13 Vg4 = 15
U h (2.2851)h (2.2159)h
13 6 13.71
14,15 7 15.99 15.51
16,17 8 18.28 17.72
18,19 9 20.57 19.95

It follows that (7,9,11,13) through (7,9,11,15) pack to 3/4. This completes the proof for (7,9).
(7,10). (7,10,10) — (5,7), so we assume v3 > 11. With v* = (7,10) and t—d(v*) = 0.50714,
packing (7.9) with b* = 0.76134 for h = 10 shows that (7,10) packs to 3/4 if v > 14:

u ho (1.5012)h
14,15 10 15.01
16 11 16.51
17 12 18.01
18 13 19.51

With vg € {11,12,13}, we begin with packing (7.10) with B = (3/4)/(0.41625) = 1.802 for
v* = (7,10,11) and B = (3/4)/(0.42381) = 1.77 for v* = (7,10, 12):

v* = (7,10,11)  »* =(7,10,12)

u h (1.802)h (1.77)h
12 7 12.61
13,14 8 14.41 14.16
15 9 16.22 15.93
16,17 10 18.02 17.70
18 11 19.82 19.47
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Hence (7,10,11) packs to 3/4 when vy > 12 and, when vg = 11 with v* = (7,10,11,11) and
t — d(v*) = 0.32532, packing (7.11) shows that v* packs to 3/4:

u h  (2.3054)h

11 5 11.53
12,13 6 13.83
14,15 7 16.14
16,17 8 18.44

The final column of the next to last array along with (7,10,12,12) — (6,7,10) shows that
(7,10, 12) packs to 3/4. The same column shows that (7,10,13) packs to 3/4 if v4 > 15 because
B there is 0.75188/(0.43022) = 1.7477 with 9h = 15.73,.... Then the only remaining v*’s for
(7,10) are (7,10,13,13) and (7,10,13,14). With ¢ — d(7,10,13,14) = 0.35879, packing (7.12)
with B = 2.090 yields

u ho (2.090)h
13,14 7 14.63

15 8 16.72
16,17 9 18.81

18 10 20.90
so (7,10,13,13) and (7,10,13,14) pack to 3/4.
(7,11). With v* = (7,11) and ¢t — d(v*) = 0.51623, packing (7.13) with b* = 0.76438 for
h = 11 shows that v* packs to 3/4 if v3 > 16: (1.4807)h(v;) equals 16.29, 17.77, 19.25 and
20.73 for v; = 16, 17, 18, 19, respectively. Packing (7.14) gives the following data for v* from
(7,11,11) through (7,11,15):

v3 = 14 v3 = 15
vy =11 vy = 12 v3 =13 b* = 0.76134 b* = 0.76438

u ho (1L.7634)h  (1.7325)h  (1.7072)h (1.7116)A (1.7002)A
11,12 7 12.34 12.12

13 8 14.11 13.86 13.65
14,15 9 15.87 15.59 15.36
16,17 10 17.63 17.32 17.07 17.12

18 11 19.40 19.06 18.78 18.83 18.70

19 12 21.16 20.79 20.49 20.54 20.40

Because (7,11,12,12) — (6,7,11) and (7,11,14,14) — (7,7,11), all extensions of (7,11) pack
to 3/4 except perhaps (7,11,14,15), (7,11,15,15), (7,11,15,16), (7,11,15,17). The worst-case
t — d(v*) for these is t — d(7,11,15,17) = 0.39074, and with B = 1.9194 packing (7.15) shows
that all pack to 3/4.

u o (1.9194)h
15 8 15.36
16 9 17.27
17,18 10 19.19
19 11 21.11
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This completes the proof that (7) packs to 3/4.

(8,8). (8,8) — (4).

(8,9). With v* = (8,9), packing (8.1) with h(v;) = [3v;/4] is easily seen to satisfy the
key inequality v; < (1.459)|3v; /4] when v; > 10, so (8,9) packs to 3/4 when v3 > 10. With
v* = (8,9,9) and 9t — d(v*) = 0.40278, packing (8.2) gives

u ho (1.862)h
9 5 9.31
10,11 6 11.17
12,13 7 13.03
14 8 14.90
15 9 16.76

16 10 18.62
so (8,9,9) packs to 3/4.
(8,10). Because (8,10,10) — (5,8), assume that vg > 11. With v* = (8,10) and t—d(v*) =
0.525, packing (8.3) with b =0.76134 for h = 10 shows that v* packs to 3/4 unless v3 < 13:

u h o (1.4502)h
14 10 14.50
15 11 15.95
16,17 12 17.40
18 13 18.85

19 14 20.30

Assume 11 < v3 < 13 henceforth. With (v*,t—d(v*)) as ((8, 10, 11), 0.43409), ((8, 10,12),0.44167),
or ((8,10,13),0.44807), packing (8.4) gives the following;:

vt =(8,10,11)  o* = (8,10,12)  v* = (8,10,13)

u h (1.7277)h (1.6981)h (1.674)h

11 6 10.37

12 7 12.09 11.89

13 8 13.82 13.58 13.39
14,15 9 15.55 15.28 15.06

16 10 17.28 16.98 16.78
17,18 11 19.01 18.68 18.41

19 12 20.73 20.38 20.09
20,21 13 22.96 22.08 21.76

Thus (8,10,11) packs to 3/4 unless v4 = 11, (8,10, 12) packs to 3/4 because (8,10,12,12) —
(6,8,10), and (8,10,13) packs to 3/4. With ¢ — d(8,10,11,11) = 0.34318, packing (8.5) with
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B = 2.1854 shows that (8,10,11,11) packs to 3/4 with the exception of (8,10,11,11,11):

u h  (2.1854)h

11 5 10.93

12 6 13.11
13,14 7 15.30
15,16 8 17.35

17 9 19.53

Finally, packing (8.6) with v* = (8,10,11,11,11), and ¢ — d(v*) = 0.25227 and B = 2.973,
shows that v* packs to 3/4:

u h  (2.973)h
11 4 11.89
12,13 5 14.87
14 6 17.84
15—-18 7 20.81

(8,11). With v* = (8,11) and t — d(v*) = 0.53409, packing (8.7) with b = 0.76134 for
h = 10 shows that v* packs to 3/4 if vz > 14:
u b (1.4255)h

14 10 14.25
15 11 15.68
16 12 17.11

This leaves (8,11,11), (8,11,12) and (8,11,13). Witht—d(8,11,12) = 0.44318 and t—d(8, 11,13) =
0.45717, packing (8.8) gives the following:
vt = (8,11,11), (8,11,12)  »* = (8,11,13)

u h (1.6923)h (1.6405)
13 8 13.53 13.12
14 9 15.23 14.76
15 10 16.92 16.41
16—18 11 18.62 18.05
19 12 20.31 19.69
20 13 22.00 21.32

Hence, with (8,11,12,12) — (6,8,11), (8,11,12) packs to 3/4, (8,11,11) packs to 3/4 unless
vs € {11,12}, and (8,11,13) packs to 3/4. With ¢ — d(8,11,11,12) = 0.35985, packing (8.9)
with B = 2.0842 shows that (8,11,11,11) and (8,11,11,12) pack to 3/4:

u ho (2.0842)h
11,12 6 12.51
13,14 7 14.59

15 8 16.67

16—18 9 18.76

19 10 20.84

This completes the proof that (8) packs to 3/4, so the proof of Theorem 1 is complete.
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5. Proof of Theorem 3. The theorem says that, for every m > 2, if b is a density m-
guarantee for V' then b < 1 — 1/[(m + 1)(m + 2)]. We prove this by showing that for every
N > (m+ 1)(m + 2) the (m + 2)-term vector

o™ = (vy,... mi2) = (m+1,m+1,...,m+1,m+2N),

with
1 1 1 1
d(pmy = ™ i —
R b, Rl mt)m+2) N

is not m-schedulable. We show this for m = 2 and then consider m > 3. Throughout, a

contiguous subsequence of K terms in a sequence is referred to as a K-block.

EXAMPLE 2. Let m = 2, so v® = (3,3,4,N) with N > 12 for d(v¥) < 1. Contrary to
Theorem 3, suppose that v(?) is 2-schedulable as verified by a sequence S from Z into {1,2,3,4}.
Define the sequence T' over {«, 3,7} from S by replacing all instances of 1,2,3 and 4 in S by
a,a, B and v, respectively. Then, by 2-schedulability,

every 6-block of T" has at least 4 a’s,
every 8-block of T' has at least 2 §’s ,
every 2N-block of T" has at least 2 v’s

Let x1x2--- 11 be an 11-block of T' with g = . Then each of z;--- x5 and x7---z11 has at
least 4 a’s, hence at most one B. Because each of z1---zg and z4---2x11 has at least 2 §’s,
we have § € {z7,z3} and B € {z4,z5}. But then the 6-block z4---z9 has at most 3 a’s, a
contradiction. We conclude that v(?) is not 2-schedulable and, because N can be arbitrarily

large, that no density 2-guarantee for V exceeds 1 — 1/12. =

Suppose m > 3. Contrary to Theorem 3, suppose sequence S from Z into {1,2,...,m + 2}
shows that v(™) is m-schedulable. Define T from $ by replacing all instances of 1,2,...,m, m+
1,m+2in S by o, ...,a, 3,7, respectively. Then

every m(m + 1)-block of T has at least m? a’s,
every m(m + 2)-block of T has at least m (s

and some terms of T" are y’s. Let 7 denote a -y in a fixed position. Let A be any m(m+1)-block
that includes -y, let C' be the m-block next to A on its right, and let B = AC with m(m + 2)
terms. Because A has vy and at least m? «’s, it has at most m — 1 #’s. The m(m + 2)-block
B has at least m ’s, so C has at least one S.

Let C; be the m-block covering positions (j —1)m +1 to jm to the right of vy, so C; abuts
Y0, C2 abuts C1, and so forth. By the result just proved, every one of Cy,Co,...,Cy, has at
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least one (3. Define C1,C%,...,C}, similarly to the left of g, so C] is the m-block next to o
on its left, CY abuts C] on its left, and so forth. By symmetry, every one of C{,C),...,Cy,
has at least one S.

Suppose m is odd. Let D be the [m(m + 1) + 1]-block that includes 7y, the first (m +1)/2
Cj to its right and the first (m +1)/2 C} to its left. Then D has at least (m + 1) +1=m +2
B’s and v’s and therefore has no more than m? — 1 a’s, a contradiction.

Suppose m is even. Let D be the m(m + 1)-block that includes v, m/2 C; to its right,
m/2 C;- to its left, and m — 1 other terms to the right of C,, /5. Then D has at least m +1 s
and v’s and therefore has no more than m? — 1 o’s, a contradiction.

It follows that »("™ is not m-schedulable and, because N can be arbitrarily large, that no

density m-guarantee for V exceeds 1 — 1/[(m + 1)(m + 2)].
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Table 1

Packing Patterns

): 120 [3]

) 1020 [4]

): 120010 021000 [12]

,6,7): 120130 [6]

,8),(4,6,9) : 3210 0012 3010 0210 3012 0010 [24]
47): 12001 00210 00102 01000 [20]

J7,7),(4,7,8) + 1300120 [7]

,7,9) + 23100 01201 30012 00130 12001 01320 10010 [35]
4,8): 1020 1000 [8]

4,9) : 210001001 200100010 201000100 [27]

4 9,9),(4,9,10) : 1020 1030 [8]

5),(5,6) : 10200 [5]

,7): 10230 [5]

J7,7) 0 12340 [5]

8): 1320 0100 2310 0021 0301 2000 [24]

bl
?

bl

): 21000 01200 01002 01000 [20]
,7),(5,7,8) : 31002 01300 21003 01200 [20]
): 21000 01020 01000 [15]

,9) to (5,8,11): 1020 1030 [8]

) :

0

bl
bl
7

bl

12000 10002 10000 10020 10000 10200 10000 [35]
to (5,9,12) : 300 102 010 [9]

,9,9
),(5,11) : 10020 10000 [10]
),(6,8) : 100200 [6]
J7) 102030  [6]
,9),(6,8,10) : 210030 012000 310020 013000 [24]
9,9): 312040 013020 410030 214000 [24]
210000 010200 010000  [18]
9) to (6,9,13): 210003 010200 013000 [18]
): 100200 100000 120000 100002 100000 [30]
1) to (6,10,13): 100200 103000 120003 100002 100300 [30]
12,12),(6,10,12,13), (6,10,13,13) : 210030 010240 010030 210040 010230 010040 [36]
,11) : 1204 1042 105 10320 105 100200 105 10205 105  [54]
,11,11) to (6,11,14) : 10200100300 [11]
7) to (7,9): 1002000 [7]
,9): 1002030 [7]
8.10),(7,8,11) : 21003 00120 00301 02000 [20]
7,9,9) to (7,9,11): 120003010 020013000 021003000 [27]
7,9,9,10),(7,9,11,11) : 210300 410200 310400 [18]
7,9,11,12) : 103020 100403 120000 103420 100003 120400 [36]
7,9,11,12,13), (7,9,11,12,14) : 3210500 0412305 0010024 0310052 0014030 0210500 3412000
0510324 0010002 5314000 0210035 0412000 0310524 0010032 0510400 [105]

56
5,6
5,6
5,7
5,7
5,8
5,8
5,9
5,9,9)
5,10),
6,7), (
6,7
6,8
6,8
6,9
6,9
6,1
6,1
6,1
6,11
6,1
7,
7,8
7,

)
0
0,1
0,

?
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Table 1 continued

(7,9,11,13) to (7,9,11,15): 3400210030012 0403010020010 [26]
(7,10) : 1205 103200 1052 105 10204 104,20 105 [49]

(7,10,11) to (7,10,13) : 12000 30100 02001 03000 [20]

(7,10,11,11) : 12040 30100 02041 03000 [20]

(7,10,13,13), (7,10,13,14) : 4020100300102 4000100302100 4000102300100 [39]
(7,11) : 2100000 0100200 0100000 [21]

(7,11,11) to (7,11,15): 1020030 1000020 1030000 [21]
(7,11,14,15),(7,11,15,15) to (7,11,15,17) : 1023000 1004002 1003000 [21]
(8,9): 1000 2000 [8]

(8,9,9) : 1030 2000 [8]

(8,10): 21071 205100 204104 20010 [40]

(8,10,11) to (8,10,13): 2100300001 2000300100 2000310000 2001300000 [40]
(8,10,11,11) : 1200300410 0200301400 0201300400 [30]

(8,10,11,11,11) : 21300 40501 20300 41500 20301 40500 [30]

(8,11) : 21000000 01020000 01000020 01000000 [32]

(8,11,11) to (8,11,13): 21000030 01020000 31000020 01030000 [32]
(8,11,11,11),(8,11,11,12) : 21000040 31020000 41030020 01040030 [32]
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