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Abstract

The Riemann hypothesis holds if and only if Re (%f)l) > 0 when Re(s) > % , where

€(s) i= Ls(s — )77/ (£) {(s) is the Riemann &-function. This paper studies the infimum
of Re (i((;))) on vertical lines Re(s) = o. It shows that the infimum is attained on the real
axis for ¢ > 10. The Riemann hypothesis is shown to imply that the infimum is attained on
the real axis for all & > 1/2. The first result generalizes to Dedekind zeta functions of number

fields, but the second result does not hold for all Dedekind zeta functions.

>0




On a Positivity Property of the Riemann {-Function

Jeffrey C. Lagarias

AT&T Labs - Research
Florham Park, New Jersey 07932-0971
jcl@research.att.com

1. Introduction

The Riemann &-function is

£(s) = %s(s e (;) c(s) (1.1)

where ((s) is the Riemann zeta function. The function &(s) is an entire function of order one

which is real-valued on the real-axis and satisfies the functional equation

€(s) = €1 - s). (1.2)

It is well known that
1 s
€0 =510, (13)
0

in which the product is taken over all nontrivial zeros of the Riemann zeta function, and '
indicates that the product is to be taken combining products of complex conjugate pairs of

zeros. This paper starts from the observation that

£'(s)
Re <§(5)> >0 when Re(s)>1, (1.4)

and that the Riemann hypothesis is equivalent to the positivity condition

5’(8)) 1
Re< >0 when Re(s)>=. 1.5
T (5) > 5 (15)
These facts are known, and appear in Hinkkanen [4] for example. If we let

H, :={s :Re(s) > a}, (1.6)

then the observations above assert that f(s) := % satisfies f(H;) C Hp and that the Riemann

hypothesis is equivalent to f(H; ;) € Ho. Hinkkanen [4, Theorem 1] gives sufficient conditions

for the property h(H,) C Hy to hold for a general function A(s) which is of bounded type in a



half plane, which consist of an infinite set of inequalities asserting positive semi-definiteness of
an associated set of matrices, and in [4, Theorem 2] he gives necessary and sufficient conditions
for f(s) in particular !.

The positivity condition (1.4) and conditional result (1.5) follow from a simple function-
theoretic result given below, which applies to a large class of entire functions. Consider an
arbitrary discrete set € in C which represents the set of zeros of an entire function fq(z)
counted with multiplicity. We call a set 2 admissible if complex conjugate zeros p and p occur
with the same multiplicity, and the zeros satisfy the convergence condition

> LEIRel)l (1.7)

2
o 1tlel
Let n(p) denote the multiplicity of the zero at p. The admissibility condition implies that the
n(p) n(p)
fa(s) =" ] <1 - f) 11 [(1 - 5) (1 - i)] (1.8)
pEQ

e p p p

p real Im(p)>0

product

converges uniformly on compact subsets of C to an entire function fq(s). Furthermore the
Mittag-Leffler expansion
fa(s) < 1 ) < 1 1 )

= n + n + — 1.9
s = 2 ") > ulp) (1.9)

s—p) & s—p 5D
p real Im(p)>0

converges uniformly on compact subsets of C\ €. The assumptions also guarantee that fq(s)

is real on the real axis.

Theorem 1.1. Let Q be an admissible zero set in C. The following conditions are equivalent.

(i) All elements p € Q have Re(p) < 6.

(ii) The function ;88 satisfies the positivity condition

fa(s)
Re (fg(s)) >0 for Re(s)>86. (1.10)

This result has an extremely simple proof, which appears at the beginning of §2. The

assumption that the zeros are symmetric about the real axis can be relaxed, but one then needs

YA function of bounded type on a region U is a function which is expressible as the quotient of two bounded
analytic functions on U, with the denominator nonzero on U. Hinkannen [4, p.125-126] notes that ZI((—:)) is of
bounded type in the half-plane Hiys for each § > 0, and that the Riemann hypothesis is equivalent to (1.5).
His Theorem 2 shows that the property f(H;/;) C Ho can be tested for by behavior of the function on any

suitable infinite sequence of points arbitrarily far away from the boundary of the half-plane H, .



a stronger convergence condition on the zeros because they cannot be grouped in conjugate
pairs as in (1.8) and (1.9).

Theorem 1.1 applies to £(s) by (1.3), since the nontrivial zeros of the Riemann zeta function
form an admissible set in the above sense. This gives the Riemann hypothesis equivalence
(1.5), and the the positivity property (1.4) follows from the zero-free region given by the
Euler product. Theorem 1.1 also applies to analogous functions associated to zeta functions of
algebraic number fields and algebraic function fields over a finite field.

The main object of this paper is to study a quantitative version of the positivity condition

(1.10) by minimizing Re (;ég) on vertical lines, i.e. by studying the function
: folo + it)) }
h U::lnf{Re<7, T—oo<t< ooy . 1.11
a(7) fa(o +1t) (1)
If § := sup{Re(0) : ¢ € Q} then hq(o) is defined and continuous for ¢ > 4, and hq(c) > 0.
The behavior of hq(co) depends on the vertical distribution of the zeros. For example, if €2
contains finitely many zeros, then hq(o) is identically zero and the infimum in (1.11) is not
attained.
We consider the special case where € are the nontrivial zeros of ((s), where we set
: §'(o+ it)) }
h U::lnf{Re<7, oo <t< oo . 1.12
@( ) 5(0 + Zt) ( )
More generally we consider the case where 2 are the nontrivial zeros of the Dedekind zeta
function (g (s) of an algebraic number field K. The corresponding function generalizing £(s)
is
1 r r
Er(s) = 58(8 - 1)(Ar)°T(s/2)T'(s)*Cr (s) (1.13)
in which Ax = 7r_7"1/2(27r)_7"2|d1(|1/2 , where d is the discriminant of K, and
ng = [K : Q] = ry 4+ 2ry, where ry and ry are the number of real and complex conjugate fields
of K, respectively. We set
| Sl +10) |
hrU::lnf{R@(‘i, D —o00 <t <00 1.14
I\( ) 5]{(0 + 2t) ( )

In §2 we prove that for all sufficiently large o the infimum in (1.14) is attained on the real axis.
Theorem 1.2. Let K be an algebraic number field of degree ng = [K : Q]. For
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one has

€k ()
hi (o) = 22—, 1.16
I\( ) 5[{(0) ( )
This result gives
hig(c) 200 as 0 —00. (1.17)

The positivity of hx (o) for some o already implies that (x(s) has infinitely many complex
zeros. This shows that Theorem 1.2 is not a pure function-theoretic result but depends on
specific properties of Dedekind zeta functions. For the Riemann zeta function the bound
above applies for ¢ > 10. This bound can certainly be lowered. It seems likely that given any
fixed positive ¢, the result for hg(o) can be established unconditionally for ¢ > 1+ ¢, by a
finite computation.

In §3 we prove the following conditional result for the Riemann zeta function.

Theorem 1.3. If the Riemann hypothesis holds, then

€0
£0)

The proof of this result depends on the behavior of the nontrivial zeros of the zeta function

1
for 5 <o <. (1.18)

ho(o)

near the real axis; it rests on the fact that the largest gap by far between these zeros occurs
at the real axis.

Is there an analogue of Theorem 1.3 for arbitrary number fields K? The truth of such an
analogue for a given number field K depends on the locations of the nontrivial zeros of (x(s)
near the real axis. Such an analogue cannot hold for any field K whose Dedekind zeta function
has a zero at s = 1, and it is known that some algebraic number fields K do have (x(3) = 0.
This objection very likely does not apply to abelian extensions of @, because it is believed
that all Dirichlet L-functions are nonzero at s = % Various results and conjectures about the
zeros of Dirichlet L-functions with quadratic characters that lie near the real axis appear in
Katz and Sarnak [5, Section 4]. E. Bombieri has observed? that these conjectures suggest that
there exists a quadratic field whose Dedekind zeta function does not satisfy the analogue of

Theorem 1.3.

2The conjectures of Katz and Sarnak [5, Section 4] for quadratic characters seem to suggest that for a positive
proportion of primes ¢ = 1 (mod 4) that the gap between the zeros of L(s, x4) that are closest and second closest
to the real axis will be 10 times the gap between the closest zero and the real axis. Here x, is the quadratic
character associated to q.



To summarize: Theorem 1.2 holds for all algebraic number fields, while a generalization of

Theorem 1.3 fails for some algebraic number fields. Could it be the case that for all algebraic

number fields K the infimum of Re(gzgg) is attained on the real axis outside the critical strip,
i.e. for o > 17

In connection with this question, one may note that in the formulation of the Riemann
hypothesis as (1.5) the critical strip % < Re(s) < 1 appears “invisible”. Is there any behavior
of the function % that distinguishes the “critical strip” region i < Re(s) < 1 from the
absolute convergence region Re(s) > 17

One can consider analogues of these results for zeta functions of complete nonsingular
projective curves defined over a finite field [F,, or, equivalently of zeta functions attached to an
algebraic function field K in one variable over [F,. Here there seems to be no nice analogue of

either Theorem 1.2 or Theorem 1.3. We discuss this situation in §4.

Theorem 1.3 implies, assuming the Riemann hypothesis. that

1 &(o)

ho) — &'(o)

This function is real-analytic and has convexity properties reminiscent of partition functions in

lattice gas models in statistical mechanics. It raises the question whether there any statistical

mechanics model that produces % as a partition function in the real variable § = %?

Knauf [6] has formulated a sequence of one-dimensional lattice models on finite lattices which

has C(CS(;)I) arising a partition function in the thermodynamic limit (for Re(s) > 2), and Bost

and Connes [1] have formulated a C*-dynamical system which has ((s) as a ‘partition function’.
The analogy with statistical mechanics would suggest that a value ¢ at which the infimum of
Re(%) jumps off the real axis should be regarded as marking a “phase transition”, because
hi (o) will not be real-analytic at that point.

Finally, we note that the criterion (1.5) for the Riemann hypothesis is equivalent to the

assertion that the function

€(1/2 4 i)
T)im i,
0= e

is a Pick function, i.e. a function holomorphic in the upper half plane H = {z : Im(z) > 0}

(1.19)

such that Im(g(7)) > 0 for all 7 € H. Pick functions have a well-known integral representation
which characterizes them, see Donoghue [2, Chapter 2]. Such functions are associated to the

moment problem on the line. One can give an interpretation of the Riemann hypothesis in

terms of a trigonometric moment problem, after a change of variable s = 11: which maps the



half-plane H,/, into the open unit disk {z : |2] < 1}.
£'(s)

We mention one related result concerning o) Levinson and Montgomery [7] used the

nonpositivity of Re(%sf)l) on Re(s) = 0 in proving their Theorem 1 relating the number of

zeros of ((s) and ('(s) in the region Re(s) < 1

7, see their equation (2.3).

2. Positivity Conditions

In this section we prove Theorem 1.1 and Theorem 1.2. The essential observation leading
to Theorem 1.1 is that if ¢ is a positive real number, then

Re < < ) = ez - o) (2.1)

z=p) (z-0)+(y—7)

where z = 2 + yi and p = ¢ 4 17, so that

Re <z j ,0) >0 if Re(z) > Re(p) . (2.2)

The hypotheses of Theorem 1.1 ensure that ;ég has a convergent Mittag-Leffler expansion

consisting entirely of terms of the form (2.1). If f(s) were a general entire function of order
1 with f(1) # 0, then the Mittag-Leffler expansion of % would ordinarily contain an extra
additive term As+ B, and we need A = B = 0. (Actually when 6 > 0, the condition that A

and B are both nonnegative real numbers suffices.)

Proof of Theorem 1.1. (ii)=(i). This is immediate, since (1.19) implies ;ég is defined,

so has no poles in Re(s) > 6.

(i)=(ii). By hypothesis j}’((ss)) has a Mittag-Leffler expansion of the form

o(s) _ 1 RIS
-y P2 () (2.3)

preals_p Im(p)>0 5=P s=P

which converges uniformly on compact subsets of C disjoint from €. For Re(s) > 6 we can

apply (2.2) term-by-term to conclude that

fa(s) ,
Re <f2(5)) >0 if Re(s)>8, (2.4)

as desired. =

In what follows we consider the quantitative version of the positivity condition (2.4) given

by
falo+1at)

hq(o) :=inf {Re Talo i) -

—oo<t<oo}. (2.5)



Lemma 2.1. Let Q2 be an admissible set of zeros in C such that each zero p satisfies 0 <
Re(p) < 1, and set
g :=sup{Re(p) : p € Q} .

If the vertical distribution of the zeros has bounded gaps, then
ho(o) >0 forall o> 6q . (2.6)
Furthermore if all p € Q have Re(p) = 0q then

lim 0. 2.7
JAm ha(o) = (2.7)

Proof. For the first assertion, the bounded gaps condition asserts that there is a constant C'

such that for each real T the box
{s:0<Re(s) <1 and T <Im(s) <T+C} (2.8)

contains a zero in Q. Given T let pg = og+ivo be azero in the box (2.8). Then by nonnegativity

of each zero we have

folo +1iT) o — 0 o — b
- > > . 2.9
falo+1iT) = (0 —00)?+ (T —v)? ~ (6 =1)2+C? (2.9)
Thus
o — g
> .
hQ(U) e (U— 1)2—1—62 >0

For the second assertion, suppose that all p; = g +1y; € Q. Choose t that g+t ¢ 2. Define

o =0q + u with v > 0,

folo+ zt)) U 1
h 0<Re<7, =Y ——<u)y ——. 2.10
alo) < Re (3o v zj:'u2+('r—t)2 SUL T (210
The hypotheses guarantee that > #0 5 2 < 00, hence Z G= < and (2.7) follows. =

We now specialize to the case where Q is the set of nonleal zeros of a Dedekind zeta function
¢k (s) of a number field K. In this case fq(s) = 26k (s), where {x(s) is given by (1.13) and

satisfies

£k (s %H 1-= (2.11)

in which the product is taken over all nontrivial zeros of CK(S) and ’ indicates they are to be
grouped in complex conjugate pairs in the product. The zeros of (x(s) have bounded gaps as

a consequence of their asymptotics, hence Lemma 3.1 gives

hix(e) >0 for o> 6. (2.12)



Proof of Theorem 1.2. We start from the identity

) g ap g by Ly nilG) T Gl
52(3) =log Ak + -+ —+ 35T é) T C; o (2.13)
Here
- Z Axe(nn™, (2.14)

in which Ag (n) is the generalized von Mangoldt function. This function is zero except at prime
powers, and at a prime power p* takes a value mlog p, in which m is a nonnegative integer

depending on k and on how the prime ideal (p) splits in the ring of integers of K. Now

Clo+it)\ _ 3 -(n)n~7 cos(tlogn
Re (m) = _;AB( ) (tlogn) (2.15)

and since |cos(f)| < 1 the infimum of Re (CZ‘ 8) is attained at ¢ = 0. The important feature

CI\( )
Cxc(o+it)

tion on vertical lines, and in particular there are values {¢,,} with £, — oo where Re (

approaches arbitrarily closely to the value —8‘23

is an almost periodic func-

C}((a+2tn))
Cr(o+itn)

here is the nonnegativity of Ax(n). For o > 1 the function

I'(s)

Next we consider the gamma factors. Recall that ) has the Mittag-Leffler expansion

60 = =+ (2o ) (216)

cf. Erdelyi [3, p. 15]. We therefore have

Re<%¢(§)) = —%7 Re )+ Re (i (%_s—l—l?n))

1 1 o+ 2n
- 1 B 2.17
27 2+t2 (2 a+2n)2+t2> ’ (2.17)

and a similar expression holds for Re(#(s)). The real part is maximized on the real axis, since
each term in parentheses of this expression increases as [t| — co.
The two remaining terms in (2.13) are poles at s = 0 and s = 1. The pole term at s = 1

n (2.13) contributes

Re <S ! 1) - _01—)21+ 5 (2.18)

hence these values decrease to 0 as || — oco. A similar effect comes from the pole at s = 0.
The remainder of the proof shows that for large enough o these decreases are offset by the
contribution from the poles of the gamma factors at the nonpositive integers. We first observe

that each gamma factor contributes a pole at s = 0 with residue —1, and we can immediately



use one of these poles to cancel out the effect of the pole at s = 0. Offsetting the effect of the
pole at s = 1 requires more work. We define

1
s—1

go(s) := + é + g—lw (%) + a9 (s). (2.19)

Then we have

c-—1 1 1 o
_ (- 2
(0 —1)2 412 0—1)+ (r1+r2 )(O' 02—}—t2)

= 1 o+ 2n s 1 o+n
+r1;<0+2n_ (U+2n)2+t2)+7“2n2::1<0+n_ (a—|—n)2—|—t2)

2 -1 o i
- tlw—lﬂw—lv+ﬂ)*220r+%xw+am2+ﬂﬁ' (2:20)

Re(go(o + if) — go(7)) = (

To obtain the last inequality, we dropped the (nonnegative) contribution from the rq +ry — 1
poles at s = 0, and we shifted the contribution of poles at odd negative integers —2m + 1 to
the neighboring negative integer —2m, using the inequality

1 T+ 1 l T
T+1 (r+ 1246~ 17 712442

(2.21)

for 7 > 0, thus producing a contribution of ng = r1 + 2ry at each even negative integer above.

It suffices to show for ¢ > o9 : =1+ WLUS? that

nKnZ::l (0 +2n)((c + 2n)% + t2) 2 CENCEETIR (2.22)

We claim that it suffices to verify (2.22) at the value 0 = 0g and ¢ = 0. If so, then it holds at

any o > og and t = 0, because the right side of (2.22) is multiplied by a factor

(00— 1)% I
(0-1)7% \1+Z2)’

while the n-th term on the left side is multiplied by the larger factor

(o0 +2n)% 1 °
(c+2n)3  \14 2%/

Next, if ¢ is fixed and (2.22) holds for ¢ = 0, then it holds for all ¢, because for a given ¢ the

right side of (2.22) is multiplied by a factor
_
L+ (7o)
while the n-th term on the left side is multiplied by a larger factor



This proves the claim. Finally, (2.22) holds for ¢ = o and ¢t = 0 by taking the first five terms

on the left side and using o¢ < 10 to get

1 1 1 1 1 nK
- > 2.23
nh(1728 + 2744 + 4096 + 5832 + 8000) — 729’ ( )
as required. =
Remarks. (1) The proof of Theorem 1.2 gives
1i_>m hi (o) = +oo . (2.24)
Indeed, an easy calculation using (2.16) shows that
1
P(o) > iloga for ¢ > 10, (2.25)

which yields (2.24).

(2) The proof of Theorem 1.2 above implies that the infimum defining hx (o) is attained
for o > 1. For each fixed ¢ > 1 the sum in (2.20) is nonnegative for all sufficiently large t.

(3) The inverse cube-root dependence on ng in (1.15) seems to be best possible using the
gamma factor information alone. To improve this result towards ¢ > 1 it seems necessary to

make use of an extra nonnegative contribution coming from Re(gﬁ‘gzg) near the real axis. This

in turn depends on how small primes (p) split in the field K.
3. Proof of Theorem 1.3

Our object in this section is to show, under the assumption of the Riemann hypothesis,

that

lotit)y  €(o)
Re <£(U+ zt)) > 6 for all o> 1/2. (3.1)

In fact we show that equality holds only when ¢ = 0. We have

flotit) _ o-p
Re<5(0+it))_ 2 (0=pB)2+ (-7

p=B+1y

in which p = § + iy runs over all nontrivial zeros of {(s). Under the Riemann hypothesis,

p= % + ¢y, and we have

re (Goran) = (7-3) = eyt 32)

p=B+1y 2
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The proof of Theorem 1.3 requires a number of different estimates, which are presented as a
series of lemmas. The proof of Theorem 1.2 established (3.1) unconditionally when ¢ > 10,
with equality holding only if ¢ = 0. We therefore need consider the region 1/2 < ¢ < 10.

We first consider values of ¢ near the real axis, with [t| < 21.

Lemma 3.1. (Unconditional) Fort # 0, the condition

1 4 1 S 2 (3.3)
o3+ (t+7)? o+ (-7 T of+12 '
holds if and only if
372 > o +t* . (3.4)

The cases of equality coincide.

Proof. Since t # 0 the right side of (3.3) is finite, hence the inequality holds if any denomi-
nator vanishes, and (3.4) holds in this case. Otherwise we can clear denominators, to find that

(3.3) is equivalent to
(05 + £%) (200 + 2t* + 27%) > 2(05 + (¢ + 7)) (o5 + (£ = 7)*) -
Dividing by two and simplifying yields
3viE > ol 41t
Since t # 0 we can divide by ¢ to obtain (3.4). All steps are reversible. =

Lemma 3.2. (Assume RH.) For % < o < 10, the inequality

lo+at)y _ €(o)
Re<€(a+m) > Sy (3.5)

holds for 0 < |t| < 21.

Proof. Each nontrivial zero p = a + iy of ((s) has |y| > 14.134. We will apply Lemma 3.1

with conjugate complex pairs of zeros. For o9 = 0 — 1/2 and |t| < 21 we have
372> 3(14)% > (10)2 4 (21)* = 541 > of + 12
so the condition (3.4) holds with strict inequality. Assuming the RH, the formula (3.2) gives

Elo+it)\ 1 1
ke (Gorin) = C P (comrron t oo ar )

2 _&(o)
> (0_1/2)%%(0_1/2)”72 = %0’

(3.6)

11



as required. =

The next three lemmas deal with the range % <o < 4% and [t| > 21.

Lemma 3.3. (Assume RH.) For all 0 > 1,

; < 0.047 (a - %) . (3.7)

Proof. We have

&'(s) <C’(s) 1 ) 1) 101
= — =4+ ——_lognm 3.8
€s) \ls) s—1)T2T(z) s 28 (3:8)
This yields
gy 1 1
=—y—log2+1-=1 ~ (.02 .
) 57~ log + 5 logm 0.023095 , (3.9)
where v ~ .57721 is Euler’s constant. Here we used
¢'(s) 1
=—-—— -1
C(S) 5 — 1 +7+O(S ) 9
and
11(%
G 7 g,
2T(l) 2

for which see Abramowitz and Stegun, 6.3.3.

Under the Riemann hypothesis, we have

{'(o) 1 L 2(0 - 3)
£o) —E{ + }_Z—)Q+72 (3.10)

R N

where p = % + ¢y runs over all nontrivial zeros of ((s) with v > 0. This gives

&' (o) 2 1
0< £) < (E —2) <a— 5) : (3.11)

>0 7

Substituting o = 1 in (3.10) yields

2 _ &
2 T 5(1) ~ 0.046190 . (3.12)

Since the smallest v ~ 14.134 has 4v2? > 796, we obtain

3\ 197
< ——(.0461 04
Z <Y 5 ( )_796(0690)<007,

>07 >07+ 72

as desired. =

12



Lemma 3.4. (Assume RH.) If , then for a given real t the inequality

is valid if either of the following conditions hold.
(i) There is a nontrivial zero p = 1 + v of ((s) with
t—v]<2.
(ii) There are two nontrivial zeros or a double zero of ((s) with

t—v]<5.
Proof. Assuming the RH, we can use formula (3.2). Thus we have

(8 (-3 (2

peS 0—5) +(t—7)?

which the sum runs over a given subset S of the zeta zeros, since all terms discarded are

nonnegative.

In case (i) let the set S consist of the zero satisfying |t — v| < 2. It contributes

1 1 1
=—=20.05.

_ 1y2 _ 2242 22 7 9
(6 =32+ {-7) + 0

In case (ii) let the set S consist of the two zeros (or a double zero) satisfying [t —| < 5. These
contribute

1 1 2 2
+ > =—>0.048 .
R et R e e S e CE T

In either case we obtain
, )
Re (M> > 0.048 <a - 1) ,
&(o +1t) 2

and Lemma 3.3 yields the result. =

Lemma 3.5. (Unconditional) For each |t| > 21 at least one of the two following conditions

hold.
(i) There exists a nontrivial zero p = [+ iy of {(s) with

t—~]<2. (3.15)

(ii) There exist two nontrivial zeros p; = B;+1v; (7 = 1,2) or a double zero of ((s) such that

t =yl <5, for j=1,2. (3.16)

13



Remark. It is a result of Littlewood that the spacing between consecutive ordinates «; of
zeta zeros goes to zero as T — oo (Titchmarsh [10, Theorem 9.11]), so the result above holds

for |t| exceeding some bound; the lemma gives an explicit bound.

Proof. Since the zeros are symmetric around the real axis, it suffices to consider the case
t > 21. We verify the lemma directly for 21 <t < 1687 4+ 5 < 525 by inspection of a table of
zeta zeros; in fact condition (i) is needed for 21 < ¢ < 21.02 and after this there is no gap of
size 5 between any consecutive zeta zeros starting with v, ~ 21.02.

For the remaining range we use numerical estimates of Turing [11]. Let N(T') count the
number of zeros p with 0 < Im(p) < 7" and define the quantity 7.5(7") to measure the argument
of C(% +17T) obtained by analytic continuation on a horizontal line from co+47". The quantity

S(T) satisfies the equation

T
N(T) = 2k (g) +1+4S(T), (3.17)
in which
1 F(i + miT) 1
H(T) = m log (m — ZTlOgﬂ' . (318)

Turing [11, Theorem 1] observes that

k(1) = %Tlogr— %T— i—I—é(T) (3.19)
with
le(T)]| < 0.006 for 7>64. (3.20)
T
Now set
T
Sy (T) = / S(u)du . (3.21)
0
Turing [11, Theorem 4] shows that if
ty >t > 1687 (3.22)
then
t
51 (t2) — Sy ()] < 2.304 0.128 log <§) : (3.23)

If there is no zeta zero with ¢; < v < t3 then N(T') is constant for t; < T' < t5 and so S(7) must

vary like —2k (%) Assuming ¢, —t; is small compared to ¢1, (3.19) shows that S(7') decreases

2.
27

linearly with slope approximately —% log if carried on too long this will contradict (3.23).
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We first show that if there is no ordinate of a zeta zero with t3 > v > ¢; > 1687 and if S(7T)

has one sign over this interval then
to —t1 < 10/3. (3.24)

Suppose not, and consider t; = t; + 10/3. Since N (T') is constant, we obtain

t1+10/3 10/3 t+u
Si(ti +3.5) = Si(ty = / S(u)du = —/0 <25 < 5 > — C’O) du

t T

in which Cy = N (t;) — 1. Using the estimate (3.19) and the fact that S(u) has one sign yields

the estimate

10/3 4, t 0.006
t1+3.5) = Si(ty)| > —(log (=] —1)du-3.
1S1(ts +3.5) — S1(t)] > /0 27r<0g<27r) )u 35( g )
E(1 L 1) 0.0001
- 47 Og27r )
t
> 0.884log —— — .886 . (3.25)
2w

For t; > 1687 gives log 2= > 4.4 and for log - > log 2= — .01, hence (3.25) contradicts (3.23).

Thus (3.24) follows.

Now suppose that ¢ > 1687 + 5 and that (i) doesn’t hold, so that N(7') is constant on the
interval [t—2,¢+42]. Now inside this interval S(7") must have a zero-crossing in each subinterval
of length 10/3; hence it must have a zero-crossing at some point ¢ + z with |z| < 4/3. Since

S(T) varies like —k(Z)+Co, (3.19) implies that all other zero-crossings of S(T') in [t —2,t+2]

0.006
t1 log(¢1/27)

be a zeta zero with ordinate in each of the intervals [t — 5,¢] and [t,# 4 5]. If there were no

are localized within a distance ¢ = of this one. We now assert that there must
zero on [t — 5,t] then N (T') is constant there, hence S(7') varies approximately linearly on the
interval, and its zero-crossings are located within .001 of ¢ + z (if £ 4+ z falls in the interval)
and otherwise it has no zero-crossings. Since |z| < %, the quantity S(7") has constant sign
on [t —5,¢ — 54 3%], and this contradicts (3.24). Thus there is a zeta zero with ordinate in
[t — 5, — 2]. By a similar argument there is a zeta zero with ordinate in [t + 2,7+ 5], so that
(ii) holds. =

Lemma 3.6. (Unconditional) If o > 4% and |t| > 21, then

{lotit)y  £lo)
Re <€(0 n zt)) > o) - (3.26)
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Proof. The proof of Theorem 1.2 showed that (3.26) holds whenever

= 1 1

-1 (0 +2n)((0 +2n)2 +t2) > (0 —1)((o — 1) +12) ) (3.27)

n

see (2.20). Consider the ratio of a given term on the left side of (3.27) to the term on the right

side, namely
01t2 + Uf
(01 + k)2 + (o1 + k)*

in which we set 0y =0 — 1 and k=14 2n. For t > 0, we have

R(oy,t) ==

2t(o1 (o1 + k)3 — Uf’(al + k))

d
—R(01,t) = (o1 + k)2 + (01 + k)3]?

dt

>0,

hence each ratio is minimized for fixed ¢; by minimizing ¢ over the allowed range. Also

_ kt* + kPt 4 Bkoi(oy + k)2

d
doy ) = T T RE T (o) 1 R22)

>0

so each ratio is minimized for fixed ¢ > 0 by minimizing o;. To prove the lemma it therefore
suffices to verify (3.27) at 0 = 4%, t = 21, and here one finds that the sum of the ratios for the

first three terms already exceeds one. =

Proof of Theorem 1.3. Theorem 1.2 covers the range o > 10. Lemma 3.2 covers the range
% < o <10 and |t| < 21. Lemmas 3.4 and 3.5 together cover the range % <o < 4% and

|t| > 21. Lemma 3.6 covers the remaining range 41 < o < 10 and [t/ > 21. =
4. Function Fields over Finite Fields

In this section we briefly describe without proof analogous results for zeta function of an
algebraic function field K of one variable over a finite field [, i.e. the zeta function of a

nonsingular projective curve defined over IF,. We have

P (U) _
(s) = h =q° 4.1
CIX (S) (1 _ U)(l — qu)7 where u q ( )
in which
2g
Pg(u) = J](1 - 8u) € Z[u] (4.2)
7=1
is a polynomial of degree 2¢g which satisfies
1 g, —2
Pgl—)=q"%u gPK(U) .
qu
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The Riemann hypothesis for curves, proved by Weil, asserts that |6;| = ¢'/? for 1 < j < 2g.

The analogue of £(s) in the function field case is given by the function

€k (s) = Pr(q™) . (4.3)
This function is periodic with period zzgiqv and all its zeros lie on the line Re(s) = 1/2.

Theorem 1.1 applies to give

Re(%) >0 for Re(s)> % (4.4)
We set .
hi (o) := inf{w t—o0 <t < oo} .
Ex (o +1t)

One can prove that iLK(O') is identically zero if the curve has genus g = 0. For genus g > 1
one has h (3) = 0 and hg (o) is positive for ¢ > 1 and approaches the finite limiting value 2g
as 0 — 0o. (Presumably hx (o) is monotone increasing for o > 1 but T have not proved this.)

The infimum defining fNLK(U) is attained at infinitely many values, which form a periodic set

2mi
log q°

with period

There is no obvious analogue of Theorem 1.2. The proof of that result for Dedekind zeta
functions used the effects of the poles coming from gamma factors to compensate for the effect
of the pole at s = 1. In the function field case the poles at s = 0 and 1 are still present but
there is no compensating gamma factor.

One might consider that an analogue of Theorem 1.3 would be to require that for Re(s) > 3
the minimum is attained on the line Im(s) = 0. One can construct an abelian extension of
F,y (T) whose zeta function has a zero at s = %, so that this analogue of Theorem 1.3 fails. The
example is the function field of the elliptic curve Y2 +Y = T3 + a, over Fy, where a does not
lie in Ty; similar examples exist over F,2. One can likely find examples for prime p using the
reduction (mod p) of the CM elliptic curve Y% = T3 —T, choosing p so that the curve has “few”
points. A possible analogue of “abelian extension” in the function field case for Theorem 1.3
would be extension of the field of constants. If the infimum defining hx (o) is attained on the

line Im(s) = 0 then the same would hold under extension of the field of constants of K.

Acknowledgements. | am indebted to E. Bombieri, B. Conrey and 1. Duursma for help-
ful comments. E. Bombieri and I. Duursma suggested function field counterexamples to the

analogue of Theorem 1.3 using elliptic curves.
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