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1. Introduction

There has been a good deal of study of the structure of the set of prime divisors of the terms {U, } of
second order linear recurrences. M. Ward [14] showed that there are always an infinite number of distinct
primes dividing the terms { U, }, provided we exclude certain degenerate cases such as U, = 2". In fact,
under the same circumstances it is believed that the set of primes dividing the terms U = {U,} of any
nondegenerate second order linear recurrence has a positive density d(U) depending on the recurrence.
This can be proved under the asSption that the generalized Riemann hypothesis is true by a method
analogous to Hooley’s conditional proof of Artin’s Conjecture for primitive roots. P. J. Stephens [13] has

done this for a large class of such second-order recurrences.

The point of this paper is that there are special second order linear recurrences where it is possible to
give an unconditional proof of the existence of a density. This was shown by Hasse [4] for certain special
second order recurrences having a reducible characteristic polynomial, in the process of solving a problem
of Sierpinski [12]. Sierpinski’s problem concerns the existence of a density for the set of primes p for
which ord,2 is even. This set of primes is exactly the set of primes dividing some term of the sequence
V, = 2" +1; this sequence satisfies the reducible second order linear recurrence V,, = 3V,_; — 2V, _,

with Vy = 2and V| = 3.

Theorem A. (Hasse) The set of primes Sy = {p: p is prime and p divides 2" +1 for some n > 0} has
density 2/3.

Hasse’s result [4] actually covers all the sequences {a” +1: n>0/, where a is an integer.

Here we observe that Hasse’s method with some extra complications extends to cover certain second-
order linear recurrences with irreducible characteristic polynomial. The most interesting example of this
phenomonon is the Lucas numbers L, defined by L; =2,L, =1 and the recurrence

Lyyw=L,+ L,



Theorem B. The set of primes S; = {p:p is prime and p divides some Lucas number L, } has density

2/3.

Theorem B can be alternatively derived from polynomial-splitting criteria of M. Ward [16] for

membership in S ; this is essentially the same proof.

Hasse’s method applies to any irreducible second-order recurrence {U,} whose general term can be

written
n _—n
U, =o00" + T

where o and 0 are in the quadratic field K generated by the roots of the characteristic polynomial of {U,, },

and @, O are the algebraic conjugates of o,8 in K, provided that:

=+ 0" where k = 1 or 2 for some ¢ in K.

®

ol @

= L&’ where ( is a root of unity in K and j is an integer.

(i)

Q|

The actual densities of the sets of primes obtained depend in an idiosyncratic way on o and 6, which makes
it awkward to state a general result. Some of the possible extra complications encountered are illustrated in

the proof of the following result, concerning a particular recurrence discussed in Laxton [8].
Theorem C. Let W, denote the recurrence defined by Wy = 1, W, =2 and W,, = 5W,_| — TW,_,.
Then the set Sy = {p:p divides W, for some n} has density 5/8.
The parameterized families of recurrences A, (m) and B, (m), both of which satisfy the recurrence
Uy=mU,_y = U,
with initial conditions Ay(m) = By(m) = 1 and A;(m) = m+1, B;(m) = m—1, are also recurrences

to which Hasse’s method applies. In the case that € = %(m + \/m2—4) is the fundamental unit in

K = Q(\/m2—4) the sets Ss(m) = {p:p divides A, (m) for some n} and

Sp(m) = {p:p divides B,(m) for some n} each have density 1/3. I omit the details.

I give a proof of Theorem A in Section 2 for comparison with the more involved details of the proofs of



Theorem B and C in Sections 3 and 4, respectively.

2. Proof of Theorem A
The condition that p|2" + 1 for some 7 can be rewritten as:
2" = —1 (mod p) is solvable . 2.1
Now letm = ord, 2, the least positive integer with

2" =1 (mod p) . (2.2)

Now (2.1) is solvable if and only if m is even and the smallest solution to (2.1) in that case is n = %m

Now suppose 2/ exactly divides p — 1. Then we have:

p—1
2/

2/ || p—1 and ord, 2 is odd < 2 =1 (mod p) . 2.3)

Hasse observes that the condition on the right side of (2.3) is a splitting condition for primes in a certain

algebraic number field K ;; such sets of primes have a density by the Frobernius density theorem.

Consequently we proceed by decomposing the set Sy into disjoint sets

Sy = G sS4 (2.4)
j=1

given by
SY) = {p: p=1+2/ (mod 2/*') and p € S, } .

We also define

50 = (p: p=1427 (mod 27"y and p ¢ S, .

and observe p € §(Vj) if and only if p=1+2/ (mod 2/*') and (2.3) holds. To state Hasse’s observation

precisely, let C; denote the cyclotomic field Q(zj\/lj, let K; = Q(ZJ\/ITT\/Z_) and let

J

L; = 0 N1, 2N2).

Lemma 2.1. (1) The primes p in E(VJ) are exactly the primes p that split completely in L; but not in K ;.



(2) The primes p in Ei/j) have density 2% and those in S\’ have density 27/ — 27% j.e.

#{pr:psgi/j)]~2_2ji,
Inx

#i{p<xipeSP)~ Q7 —-27%) _x_’
Inx

as x — oo,

Proof. The fields C; = Q(zk1 \/—1_), K; =C; (2,\/27 and L; = Cj, (2/\/27are all normal extensions of
the rationals. The condition that the ideal (p) split completely over a cyclotomic field Q(’"\/ 17 is well
known to be p = 1 (mod m) ([2], Lemma4), hence p = 1 (mod 2’)) holds if and only if p splits
completely in C;. The condition that a prime ideal p in C; split completely in the Kummer extension

K; = Cj(zj\/ ZTis exactly that
x¥ =2 (mod (p)) for x & O, 2.5)

be solvable over the ring of integers O; for C; ([2], Lemma 5). If p is of degree 1 then any algebraic integer

x in C; is congruent to a rational integer (mod p) so in this case equation (2.5) is solvable if and only if
x% =2 (mod p) forx e Z (2.6)

is solvable. By Euler’s criterion (2.6) is solvable if and only if

p—1

22 =1 (modp) 2.7)

is solvable. This is exactly (2.3), and we have shown (p) splits completely in K; iff p =1 (mod 2/) and

(2.7) holds. Similarly (p) splits completely in L; iff p = 1 (mod 2/*1y and (2.7) holds. This proves (1).

To prove (2) we observe that for a normal extension K/Q of degree [K: Q] the set of primes p that split
completely in K has density [K:Q]~!, which is a consequence of the prime ideal theorem (e.g. [6], p. 315
Theorem 4), a special case of both the Frobenius and Chebotarev density theorem. Now [C 0] = 2/t
[K;:Q] = 27" and [L;:Q] = 2*. The set of primes in g(vj) is the difference of a set of primes of
density 27>~ less a class of primes contained in it of density 272/, hence has density 272/, Finally the
primes in SY are the difference of the class of primes {p = 1+2/ (mod 2/*')) of density

27 = [C;: 017! - [Cjs1:01 ! and the class of primes g(\)j) of density 272 contained in it. This proves



2). m

To complete the proof of Theorem A, we observe that for any fixed m,

U S cSycP-y sy
j=1 j=1

where P denotes the set of all primes. Using (2) of Lemma 2.1, the first inclusion gives

2 oAy X |2
3 3 Inx Inx

as x — oo, since all the SY/ are disjoint. The second inclusion gives

£+i2_2m i+0i .
3 3 Inx Inx

#i{p<xipeSy}=2

#{p<x:peSy}<

as x — oo. Letting m — oo shows that

2 x

Remarks. (1) By a careful analysis of error terms in this argument using an effective version of the

Chebotanev density theorem, Odoni [11] has proved the stronger result that:

Inlnx

)

2 . ;
#ip<xipeSy}= ng(x) + O|Li(x) exP(_Clnlnlnx

d

where Li(x) = Iz T
n

(2) The sets S}/ are sets of primes determined by systems of polynomial congruences in the sense of [5,

Theorems 1.1 and 1.2].

3. Proof of Theorem B
The Lucas numbers L, satisfy

L, =¢ +¢ 3.1

where € = and € = . Hence

1+V5 1-vV5
2 2



plL, & € + ¢! =0(mod (p))

S 0" = -1 (mod (p)) (3.2)
where
e=§=—2=—3+\/5_
E 2

Vs ] of algebraic integers in Q(\/ 57. Thus §; is exactly the set

. . 1+
and the congruences are in the ring Z[

1+V5}
2

of primes p for which the exponential congruence over Z[

0* = —1 (mod (p)) 3.3)
is solvable for some integer x.

We now proceed analogously to the proof of Theorem A. We must treat several cases according to the

behavior of the ideal (p) in Z[ 15 J. If p==%1 (mod 5) then (p) = © T splits into two conjugate
o - . NN

degree 1 prime ideals, while if p = + 2 (mod 5) then (p) is a degree 2 prime ideal in Z][ ]. Let
S; =S4 U Sp where

Sa ={p:peS,and p ==l (mod 5S)}
and

Sp ={p:peS,and p==x2 (modS)} .

. . .5
Case 1. The primes in S, have density ShR
. s . o
Write (p) = ®T Tin Z[ ]. In this case (3.3) is equivalent to
Y= -1 (mod ) 34

being solvable. To see this, suppose (3.4) holds and apply the automorphism taking V5 to -5 to (3.4)to

get



0 =-1(modm,) . (3.5)
Since 80 = 1 we have 850" = 1 so (3.5) implies
Y= -1 (mod ®y) .
Combining this with (3.4) shows (3.3) holds. The reverse direction is clear.
Now we have the equivalence
ordy 0 is even < 0" = —1 (mod (p)) is solvable . 3.6)

If p = 142/ (mod 2/*') we obtain

1

r-2
2/ || p—1and ord;0 is odd < 06 > =1 (modm,) .

This leads us to split S, into the disjoint union of sets
Sy = U SY
j=1

where
S = (p: p=1+2/ (mod 27*") and ordy 0 is even) .

We set

SV = (p: p =142/ (mod 27*') and ordy  is odd} .

The associated fields are K; = 01, V5,2V0) and L = 0% V1, V5,240).

—(1 (i
Lemma 3.1. (1) Si : is empty. Forj = 2 the primes p in S;j) are exactly the primes that split completely in
K; and which do not split completely in Lf.
—(1 —(j
(2) The primes in SZ : and S have densities 0 and 1/4, respectively. For j > 2 the primes in S;ﬂ have

density 27/ and those in 8§ have density 277=1 — 272,

Proof. Similar to that of Lemma 2.1. The relation 8 = —¢? leads to K| = L| = Q(\/—l_,\/ST; this
causes Sy to be empty. For j > 2 one checks that [K;: Q] = 27! and [L;: Q] = 2%. In fact for

22 K =0;,V5, 0, V0,0,_,) where ;= -1  and 0o = ?"e,  and



L = Q(0;,, \/57¢j_1). Finally note that the set SY ( 50 = {p: p==*1 (mod5)} and

p =142/ (mod 2/*') has density 277/~ m

As in the proof of Theorem A we find the primes in S, have density % + .S2(2_/'Jr1 - 27%)
j=

—_
—_
9}

2 12 12°

Case 2. The primes in Sp have density %

The primes p = +2 (mod 5) remain inert in Z[ ], and in this case

1+vV5
2

X —

= —1 (mod (p)) is solvable < ord, 6 is even .

Now

prl ptl
0 2 =(=1) % e*"'=qa (modp)

for some a € Z because GF(p)* = {y”*': v € GF(p*)"). Applying the nontrival automorphism of

Q(\/Sjgives
pHl
0% =ua (mod p)
hence
p+1
1 =(00) 2 =d? (mod (p)) .
Thus

0’ ! =4a? =1 (mod (p)) (3.8)

Consequently ord,)0 | p+1. Now whenp = —1+2/ (mod 2/*') we have

p+1

6 2 =1 (mod(p) & ord,0 is odd . (3.9)

We now decompose



where
S ={(p:p=1(mod4) and p € S} .
and
SY) = {(p:p=—-1+2/ (mod 27*') and p € Sz} .

We complete case 2 with the following lemma.

Lemma 3.2. (1) 8% is empty.

(2) Forj>2allSy{y) ={p:p=—-1+2/ (mod 27*") and p = +2 (mod 5) } and S’ has density 27/.
J

Proof. (1) When j=1 we have

Gp;r] =1 (mod (p)) & ord,)0 is odd . (3.10)
Now © = —¢? so
ptl p+1
0 2 =(-€>) 2 =—-¢’*! (mod (p)) , 3.11)
We claim

e’*! = —1 (mod (p))

p+1
which with (3.11) shows ® * =1 (mod (p)) and so by (3.10) ord, 6 is odd and S§ is empty.

To prove the claim, set

p+1

e 2 =0 (mod (p))

SO

8p+l

0% (mod (p)) . (3.12)

p+1
By conjugation € = ¢ (mod p)and €€ = —1 so that
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p+1 p+1

—1=(-1) 2 =(e8) * =¢0 (mod (p)) . (3.13)

By (3.8) e#*! = %1 (mod (p)). We suppose €’*! = 1 (mod (p)) and get a contradiction. In that case

(3.12) gives 4)2 =1 (mod (p)), hence ¢ = £1 (mod (p)). Hence ¢ = ¢ (mod (p)) and (3.13) now gives

0> = —1 (mod (p))
the desired contradiction.

(2) We must show that in the case j > 2 for any p = —1+2/ (mod 2/*') and p = +2 (mod 5) we
claim ord 0 is even. We argue by contradiction. Suppose ord ;)6 were odd, so that by (3.8) we have

p+1

0 2 =1 (mod (p)) (3.14)

Set

p+1

e 2 =0 (mod (p))

and observe (3.14) gives

-0%> =1 (mod (p)) . (3.15)
Now
pel
e ” =9 (mod (p))
and

p+1 p+1

~1=(-1) 7 =(e8) ¥ =06 (mod (p)) . (3.16)

Now by (3.15) ¢2 = —1 (mod (p)) and since p =3 (mod 4) 65 -0 (mod (p)). Hence

00 = —¢%> = 1 (mod (p)), contradicting (3.16). m

As in the proof of Theorem A Lemma 3.2 implies the density of primes in Sy is Y 277 = l This

j=2 4

proves Theorem B. m
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4. Proof of Theorem C (Sketch)

We have
1 1 g—5<,5 | N e 1 15,5 1
Vo=(=+-V=-3) (2 + =V=-3)" 4+ (= — =V=3) (2 - ==-3)". 4.1
n= G+ V=) (G + V=3 (5 - 2V=3) (5 - 5V-3) @.1)
Letting o0 = % + %\/—ﬂndy = % + %\/—3_we have
n a
Vi, = 0(mod (p)) < ¢" = % (mod (p)) , 4.2)
where ¢ = g 11+5V-3 and — 2 = ﬂisacube root of unity. Hence (4.1) gives
¥ 14 o 2
p divides V, for some n20 < ord) ¢ =0 (mod 3) . “4.3)

We consider separately the cases in which (p) splits completely or remains inert in Q( \ —3_).

Case l. p =1 (mod 3).

V-3

Then (p) = nin Z[HT_]. Now as in Theorem B we have

ord,y 0 =0 (mod 3) & ordy ¢ =0 (mod 3), (4.4)
using the fact that 6¢ = 1. Now let 3/ ||p — 1, and observe that in this case

p—1
31

ord, ¢ # 0 (mod 3) & ¢ =1 (mod ) 4.5)

Then

-l _ _ _
0 7 =1 (mod ) & = splits completely in F; = QC'N1, ¥N0)/0CV1)

& (p) splits completely in F;/Q . 4.6)

Hence the density of primes satisfying (4.6) is [F j:Q]_1 = (2-3%"171 and the density d; of primes

with 3/||p — 1 and (4.4) holding is

d; =2(2- 31‘)—1 -2 32j—1)_|
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The total contribution of such primes has density

= 16

Case 2. p =2 (mod 3).

Then (p) is inert in Z[ —14_\2/—_3] and, as in Theorem B we have

0" =1 (mod (p))

and if 3/ || p + 1 then

p+1

ord,) ¢ # 0 (mod 3) & ¢ > =1 (mod (p)) .

Now we have

p+1

0 % =1 (mod (p)) < p=2 (mod3) and (p) splits completely in F,/Q(N-3)  (4.8)

We claim that the set of primes defined by the right side of (4.9) has density (2 - 3%~!)~!. To verify this,

one checks that F;/Q is Galois over Q with Galois group of order 2 - 32/~ that the splitting condition
L . Fi/Q .
(4.8) on primes in F;/Q corresponds exactly to the Artin symbol [ ——1 being the conjugacy class <G>,

(r)

where © is the unique element of order two in Gal (F;/Q). Then the Chebotarev density theorem implies

that the set of primes in (4.8) has density [F;: 017" = (2-3%"1H)71 as claimed.
Hence the density d; of primes with 3/ ||p + 1 and (4.4) holding is
di =2(2-3)7"' - (2-3%H!

and the total density of such primes is
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ABSTRACT
Dedicated to the memory of Ernst Straus

The Lucas numbers L, are defined by Ly, = 2, L; = 1 and the recurrence L, = L,_; + L,,_,. The
set of primes S; = {p: pdivides L, for some n} has density 2/3. Similar density results are proved for
sets of primes Sy = {p: p divides U,for some n} for certain other special second-order linear

recurrences { U, J. The proofs use a method of Hasse.



