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Abstract

A refinable function ¢(z) : R® — R or, more generally, a refinable function vector
®(z) = [p1(z), ..., ¢-(x)]T is an L solution of a system of (vector-valued) refinement
equations involving expansion by a dilation matrix A, which is an expanding integer ma-
trix. A refinable function vector is called orthogonal if {¢;(z —a) :a € Z™, 1 < j < r}
form an orthogonal set of functions in L?(IR™). Compactly supported orthogonal re-
finable functions and function vectors can be used to construct orthonormal wavelet
and multiwavelet bases of L%(R"). In this paper we give a comprehensive set of nec-
essary and sufficient conditions for the orthogonality of compactly supported refinable
functions and refinable function vectors.

1 Introduction

Let A be an expanding matrix in M, (Z), that is, one with integer entries and all eigenvalues
IA| > 1. A refinable function ¢(z) : R™ — R is a solution to a refinement equation with
dilation matrix A,

b(x) = 3 cad(Az — a), (1)

a€Z

in which {c, : @ € Z} are complex coefficients. More generally, a vector valued func-
tion ®(z) = [¢1(2),...,¢-(z)]7 is called a refinable function vector, if it satisfies a vector
refinement equation with dilation A,

O(z) = Y Co®(Az — a), (1.2)
Q€L

where each C,, is a matrix in M, (C). We call n the dimension and r the vector-multiplicity
of the refinable function vector. We only consider the case that such functions and vector-
valued functions have all components in L'(R").
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Refinable function vectors are natural generalizations of refinable functions (r = 1). The
latter have been studied extensively due to their applications in constructing compactly
supported orthonormal wavelet bases and in approximation theory, see Daubechies [9],
[10]. General constructions are based on multiresolution analysis, for which see Mallat
[28] and Jia and Shen [21]. More recently, refinable function vectors have been used to
construct orthonormal multiwavelet bases, see for example Cohen et al [4], Donovan et al
[12], Goodman and Lee [14] and Goodman et al[15]. Multiwavelets can be made to combine
smoothness with small support, an advantage that may be important in applications.

In constructing orthonormal wavelet or multiwavelet bases one requires that all integer
translates of refinable functions or function vectors be orthogonal. A fundamental question
in constructing orthonormal wavelet or multiwavelet bases is thus: under what conditions
does a refinable function or function vector ®(z) have the property that all its integer
translates {®(z — «) : a € Z"} are orthogonal?

This paper addresses the above question by giving a collection of necessary and sufficient
conditions for orthogonality, derived in terms of the coefficients of the refinement equations
and the dilation matrix A. We treat only the case where the vector refinement equation has
finitely many nonzero coefficients. In this case, if the equation has a solution in L*(R"), then
it must be compactly supported!. Also in this case, there is in principle a finite algorithm
to determine whether a given vector refinement equation has a nonzero solution which is
orthogonal in the sense of Definition 1.1 below. The criteria of this paper typically do not
make sense in the case of infinitely many nonzero coeflicients, but some sufficient conditions
have been obtained by Conze, Herve and Raugi [7] in the infinite coefficient case.

Various results regarding the orthogonality of compactly supported refinable functions
and function vectors are known, especially for r = 1 and n = 1. Many (but not all) of these
results generalize to higher dimensions ( 7 = 1 and n > 1), and to compactly supported
refinable function vectors. However few of these generalizations have been documented,
and even in those papers which discuss higher dimensional cases, the dilation matrix A
was usually chosen to be 27,,. As we see from Theorem 3.1 and 3.2 below, orthogonality
conditions vary for different dilation matrices A. The object of this paper is to provide a
comprehensive set of orthogonality criteria for compactly supported refinable functions and
function vectors in the most general setting.

Definition 1.1 Let ®(z) be a compactly supported refinable function vector. We say that
®(x) is orthogonal if [, ®(x)dz # 0 and

/ Sz — Oz)‘l)T($ — B)dz = 6, A, a, B eZ” (1.3)

where &, g denotes the standard Kronecker symbol, and A is a diagonal matriz with positive
diagonal entries.

'The converse is false, see Strang et al [33]. Furthermore, a refinement equation with finitely many
nonzero coefficients may also have a noncompactly supported L? solution, see Malone [29].



The condition [, ®(z)dz # 0 is necessary?® for the construction of multiwavelet bases
associated to a multiresolution analysis. It is well known that for a compactly supported
refinable function vector ®(z) to be orthogonal the coefficient matrices C, of the corre-
sponding vector refinement equation (1.2) must satisfy the necessary conditions encoded in
(i) and (ii) of the following definition.

Definition 1.2 The vector refinement equation (1.2) with finitely many C,, # 0 satisfies
the orthogonal coefficients condition (with respect to A where A is a diagonal matriz with
positive diagonal entries) if the coefficients C,, satisfy the two properties

(i) 1 is an eigenvalue of the matriz | det(A)|™' Y, cpn Ca.

(ii)
Y CuACs, 45 = o3| det(A)| A. (1.4)
YL

The necessity of condition (i) for orthogonality follows from Proposition 2.1 below. A
proof of Condition (ii) can be found in Flaherty and Wang [13].

Unfortunately, the orthogonal coefficients condition is not sufficient for the orthogo-
nality of the corresponding refinable function vector ®(z), even for » = 1. The simplest
counterexample, which has r = 1 and n = 1, is the refinement equation

p(z) = ¢(22) + ¢(2z — 3).

It satisfies the orthogonal coefficients condition, but the solution ¢(z) = x[g3)(z) has non-
orthogonal integer translates. To ensure orthogonality of refinable functions and function
vectors, additional conditions are needed. In the nonvector case r = 1, n = 1, these
conditions were found by various authors, and the most prominent of these conditions is
Cohen’s Criterion, due to Cohen [3]. We shall list them in §3. It should be pointed out that
many of the criteria are given in the contrapositive form as conditions for ®(z) not being
orthogonal.

The contents of this paper are as follows: in §2 we state the orthogonality criteria for
compactly supported refinable function vectors with arbitrary vector-multiplicity r, and in
§3 we state a larger set of orthogonality criteria that are available for the special case r = 1,
i.e. for compactly supported refinable functions. These criteria are then proved in §4 for
arbitrary r and in §5 for r = 1.

We add a comment on the novelty of the results. Many of the results for compactly
supported refinable function vectors stated in §2 are new, as is the Generalized Cohen’s
Criterion stated there. In particular the criterion (d) in Theorem 3.1 is new and (c) is
stated for the first time. The proofs extend some of the ideas of the r = 1 case stated as
Theorem 3.2 (a) - (d) in §3, but there is extra complexity arising from products of matrices.

?In fact this condition is automatically fulfilled under the orthogonality condition, see Lemma 4.1 (4)
below.



The results in §3 for r = 1 and arbitrary dimension n have not all been stated before, but
we do not claim significant novelty in the proofs. The most important idea leading to the
criteria in Theorem 3.2 (e) - (f) is a result on transfer operators due to Cerveau, Conze and
Raugi [2]. Other orthogonality criteria for the case r = 1 based on this result were derived
by Conze, Herve and Raugi [7]. Further remarks on previous results appear at the end of

§3.

We are greatly indebted to K. Grochenig for introducing us this problem. The results
and techniques in his paper [16] for the case r = 1 and n = 1 inspired our results. Several
of his proofs generalize to dimension n > 1, see the discussion after Theorem 3.2. We are
also indebted to Ingrid Daubechies, Andy Haas, Chris Heil and Jianao Lian for helpful
discussions and references. Finally, we would like to thank the anonymous referee for
carefully reading the manuscript and providing valuable comments and suggestions.

2 Orthogonality Criteria for Refinable Function Vectors

Throughout this paper we will be concerned with compactly supported refinable function
vectors. Therefore we assume that the vector refinement equation

O(z)= Y Co®(Az - a) (2.1)

a€Z"

where C, € M,(C) has only finitely many nonzero coefficient matrices C,. In this section
we state orthogonality criteria; the proofs are given in §4.

Definition 2.1 For a given vector refinement equation (2.1) we define its symbol m(§) to
be
m(¢) == | det(A)[ 71 Y Cuemizmtet, (2.2)

aEZ™

The symbol m together with the expanding integer matrix A specifies the vector re-
finement equation uniquely, where we view m as a formal object containing all the co-
efficients C,. However we also view the symbol as defining a matrix-valued function
m(§) : R* — M,(C). Suppose that ®(z) is a refinable function vector satisfying (2.1),
Then the Fourier transform of ®(z) satisfies

®(&) = m(B~'EB(B'E), (2.3)

where B := AT, and the Fourier transform is applied term-by-term to the vector d(&).
Denote

LR = {@(2) = [¢1(2),, 6-(2)]T : each ¢;(z) € LV (R") |. (2.4)

The following is a necessary condition for the orthogonality of ®(z):



Proposition 2.1 Let ®(z) be a compactly supported orthogonal refinable function vector
satisfying
O(z)= ) Co®(Az - a)
aEZ™
with finitely many C, # 0. Then 1 is a simple eigenvalue of the r x r matriz m(0), and all
other eigenvalues X of m(0) satisfy |A| < 1.

Proposition 2.1 is a corollary of a stronger result of Hogan [20], in which the orthogonality
of ®(z) is replaced by the weaker condition of stability. We include an independent proof
of Proposition 2.1 in §4 for completeness.

To state the general orthogonality criteria we must introduce the transfer operator Cy,
associated to the symbol m and dilation matrix A (and hence to (2.1)). Let Q,,,(R") denote
the linear space of r xr Hermitian matrices whose entries are trigonometric polynomials with
complex coefficients, i.e. functions of the form g(e™2™¢1 ... e~2™%n) where g is a Laurent
polynomial in n variables, with & = (&1, ...,&,) € R”. Note that each I'(§) € Q,.«,(R") is
Z"-periodic, so we may view €., (R") as a subspace of the Hilbert space (L%(T"))"*". For
any trigonometric polynomial F'(§) = E’yEZ” Fq,e_"g”(“”£> of matrix coefficients we define its
support to be

supp(F) ={y € Z": F, #0}.
Definition 2.2 The transfer operator Cy, is a linear operator on Q.. (R"™) defined by

CuF(€) =) m(B™H(E+ d)F(B~ (& +d))m* (B~} (€ + d)), (2.5)

dee€

in which B = AT and £ is a complete set of coset representatives of Z"/B(Z").

It is not hard to check, using the computations in §4, that Cy(F) € Q.«,.(R") for
any I € Q.4-(R™), and it is independent of the choice of the coset representatives £.
Furthermore, if (2.1) satisfies the orthogonal coefficients condition with respect to A then
CwA = A. The linear space ,4,(R") is infinite-dimensional, but we will show that when
the vector refinement equation with symbol m has finitely many nonzero coefficients we can
restrict the action of the transfer operator to certain finite dimensional invariant subspaces
of Q,4,(R") depending on the symbol m and on A which contains the crucial information
for orthogonality.

We call a nonempty set § C Z" (m, A)-invariant if for any v € S the elements Ay + o —
g ¢S forall o, § € supp(m). An important (m, A)-invariant set is

SmoA = {'y €EZ": TmaN (Tma+y)# @} (2.6)

where Ty 4 is the attractor of the iterated function system {A~'(z +7) : v € supp(m)}.
Clearly Sy, 4 is finite if supp(m) is.

Proposition 2.2 (i) Sy 4 is (m, A)-invariant.



(ii) Let S be a finite (m, A)-invariant set. Then
Qpr(R",S) 1= { F(€) € 2 (R") : supp(F) C S}

is a C'y-invariant finite dimensional subspace of Q.. (R™).

By results of Cohen, Daubechies and Plonka [5] or Heil and Collela [19], if 1 is a simple
eigenvalue of m(0) and all other eigenvalues A of m(0) have [A| < 1 then for B = AT the
infinite (right) product

p(©) = [[m(B™¢) (2.7)
7=1
converges uniformly on any compact set of R”. This defines p(§) : R* — M, (R™). We have:

Theorem 2.3 Let () be a compactly supported refinable function vector satisfying

®(z)= Y Co®(Az - a)

a€Z"

where A € M,,(Z) is expanding and finitely many C, # 0. Suppose that the vector refinement
equation satisfies the orthogonal coefficients condition and that 1 is a simple eigenvalue of
m(0) while all other eigenvalues X of m(0) satisfy |A| < 1. Then the following statements
are equivalent:

(a) ®(z) is not orthogonal.
(b) There exists an F(£) € Q.«,(R"), F'(§) # aA for any a € C, such that Cy ' = F.

(c) Let S be a finite (m, A)-invariant set containing Sm 4. The eigenvalue 1 of Cy, re-
stricted to Q. (R™,S) is a multiple eigenvalue.

(d) There exist n € R\ Z™ and a nonzero vector ug € C" such that

uphb(n+ @) =0, all € Z". (2.8)

The equivalence of (a) and (b) in Theorem 2.3 was established by several authors in the
one dimension for the dilation 2, see Plonka [31] and Lian [27]. It was established in all
dimensions for the dilation matrix A = 21, in Shen [32], and his proof should generalize
to work for an arbitrary dilation matrix A. In addition, it was shown in [32] that under
the hypotheses of Theorem 2.3 the orthogonality of ®(z) is equivalent to the stability of
®(z) and is equivalent to the L?-convergence of the cascade algorithm. Several variations
of criterion (b) were also given in [27].

Remark. We shall see in §4 that the equivalence of (a) and (c) relies only on the orthog-
onal coefficients condition, not on the assumptions regarding the eigenvalues of m(0). The
equivalence of (a) and (c) gives rise to an algorithm for checking the orthogonality of a



refinable function vector ®(z), which is a generalization of the algorithm in Lawton [25] for
n =1 and r = 1. In fact, all we need is to find a finite (m, A)-invariant set S containing
Sm,4 and check the multiplicity of the eigenvalue 1 for Cy, restricted to Q,4,(R",S). Such
a set is quite easy to find. Since A is expanding, there exists a norm ||.|] on R™ such that
||A]| > s > 1. Let L be the diameter of supp(m). One such § is

L
= ™ < — 0. .
S {aEZ HOA”_S_l} (2.9)

The drawback with this S is that it is often much larger than Sy 4, making the dimension
of Q. (R™, 8§) much larger than necessary. Fortunately there is a simple algorithm to find
Sm, 4. Here we skip the details; they can be found in Strichartz and Wang [34].

A corollary of Theorem 2.3 is the following generalization of Cohen’s Criterion. Recall
that a set K C R"is a fundamental domain of Z" if K is congruent to [0,1)"” modulo Z".

Corollary 2.4 (Generalized Cohen’s Criterion) Under the assumptions of Theorem 2.3,
suppose that for each ug € C” there exists a fundamental domain K,, of Z" such that

ugh (&) # 0, all§ € K.

Then ®(z) is orthogonal.

This corollary differs in appearance from the original Cohen’s Criterion in the case
r = 1. This is due to the occurrence of infinite products of matrices which do not commute
in general. For the special case r = 1, u3p(&) # 0 is equivalent to p(B~7¢) # 0 for all j > 1.
In this case the condition of Corollary 2.4 is equivalent to p(B_jf) # 0 for all 7 > 1, where
B = AT, on some fundamental domain of Z™. This is precisely the original form of Cohen’s
Criterion, see Cohen [3].

3 Orthogonality Criteria for Refinable Functions

More detailed criteria are available for orthogonality in the case r = 1, i.e. of refinable
functions in R”. In this section we state such criteria; the proofs are given in §5.

The criteria of Theorem 2.3 can be strengthened for r = 1, especially when the dilation
matrix A is irreducible over Z. A matrix A € M, (Z) is irreducible over Z if its characteristic
polynomial f4(A) is irreducible over Z. In particular, if A € M,(Z) is expanding and
| det(A)| is a prime then A is irreducible over Z.

Note that if » = 1 then Q,4,.(R") = Q141(R") is the space of all real trigonometric

polynomials over R”, and we set Q(R") := Q;1(R"). Let the invariant set Sy 4 be as in
(2.6) and set Q(R™, S) := {F(£) € Q(R") : supp(F) C S}.



Theorem 3.1 Let A € M, (Z) be an expanding matriz that is irreducible over Z. Suppose
that the compactly supported nontrivial ¢(z) € L?(R™) satisfies the refinement equation

o(z) = Z cad(Az — a),
aEZ"™

which satisfies the orthogonal coefficients condition and has finitely many c, # 0. Let m(§)
be its symbol and B = AT. Then the following statements are equivalent:

(a) The refinable function ¢(z) is not orthogonal.
(b) There exists a nonconstant f(£) € Q(R") such that Cof = f.

(c) Let S be a finite (m, A)-invariant set containing S, 4. The eigenvalue 1 of Cy re-
stricted to Q(R™, S) is a multiple eigenvalue.

(d) There exists ng € R™\Z" that has the property: for each o € Z" there exists a j(a) > 1
such that m(B=/(®) (n9 4 a)) = 0.

(e) There exists & € R™\ Z" such that BN& = & (mod Z*) for some N > 0, and
m(B'&) = 1 for all j > 0.

(f) There exists & € R™\ Z" such that BN& = & (mod Z™) for some N > 0, and
m(B& + B~') =0 for all j > 0 and all | € Z™\ B(Z").

We derive Theorem 3.1 as a special case of a more general result that applies to an
arbitrary expanding integer matrix A, given below as Theorem 3.2, which requires a more
complicated generalization of (e) and (f). To state it, for each [ € Z" we denote

(&) == (AT) TN+ 1).

A rational subspace of R™ is a linear subspace W having a basis consisting of rational vectors
v € Q". A set of vectors {z; : 0 < j < N} in R™is a periodic orbit of AT (mod Z") if

ATZ]‘+1 =2z (mod Z"), 0<j <N,
where zn 1= zg. We let £ denote an arbitrarily chosen complete set of coset representatives

of Z"/AT(Z7).

Theorem 3.2 Let A € M,(Z) be an expanding matriz. Suppose that the compactly sup-
ported nontrivial ¢(z) € L*(R™) satisfies the refinement equation

o(z) = Z ca(Az — @),

Y/l

which satisfies the orthogonal coefficients condition and has finitely many c, # 0. Let m(§)
be its symbol and B = AT. Then the following statements are equivalent:



(a) The refinable function ¢(x) is not orthogonal.
(b) There exists a nonconstant f(§) € Q(R™) such that Crf = f.

(c) Let S be a finite (m, A)-invariant set containing Sm 4. The eigenvalue 1 of Cy re-
stricted to Q(R™, S) is a multiple eigenvalue.

(d) There exists ng € R™\Z"™ that has the property: for each o € Z" there exists a j(a) > 1
such that m(B~7() (ny + «)) = 0.

(e) There exists a proper B-invariant rational subspace W of R™ and a periodic orbit
{2z; :0< j < N} of B (mod Z"™) with every z; ¢ W +Z", such that

> [m(n(€))]* =1 (3.1)

leg
T (§) €251 +WHZ?
forall & € z; + W, where 0 < 7 < N with zn 1= zg and £ is a set of complete coset
representatives of Z"/B(Z").

(f) There exists a proper B-invariant rational subspace W of R™ and a periodic orbit

{2;:0< j < N} of B (mod Z") with z; ¢ W + Z", such that
m(r(§) =0 ifleZ" and (¢) € zjp1 + W + 2"

forall€ € z; + W, where 0 < j < N and zy = 2.

Remark. A transfer operator applied to wavelet bases apparantly first appears in the
appendix of Daubechies [9], and such operators were analyzed in Conze and Raugi [8]. The
orthogonality criteria in Theorem 3.2 in dimension n = 1 for the case r = 1 were found
by Cohen [3], Lawton [25], Conze and Raugi [8], and Cohen and Sun [6], and an elegant
summary can be found in Gréchenig [16]. The equivalence of (a), (b), and (d) in dimension
n > 11is proved here by generalizing the arguments of Grochenig in one dimension. In higher
dimensions, Lawton, Lee and Shen [26] gave an orthogonality criterion similar to (b), using
the wavelet-Galerkin operator defined on [?(Z") instead of the transfer operator. Criteria
(e) and (f) in Theorem 2.3 and 2.4 are much harder to prove. The proof given here uses
as a principal ingredient a recent result of Cerveau, Conze and Raugi [2] concerning the
structure of the set of zeros of eigenfunctions of transfer operators in the multidimensional
case. The paper of Conze, Hervé and Raugi [7], Section II, applies this result to give various
orthogonality criteria, some of which apply even when an infinite number of ¢, # 0in (1.2).

4 Proof of Orthogonality Criteria for Function Vectors

For a given positive definite Hermitian matrix @ € M, ,(C) we define the norm ||.||g on C
by ||z|lg := v/2*@z where 2* = zT. This norm induces a matrix norm in M,,(C), which
we also denote by ||.||g. Throughout this section A denotes a diagonal matrix with positive
diagonal entries.



Lemma 4.1 Suppose that the vector refinement equation (2.1) has finitely many C,, # 0
and satisfies the orthogonal coefficients condition with respect to the diagonal matriz A.

(1) Let € be any set of complete coset representatives of Z"/B(Z"™) where B = AT. Then
CnA =A.

2) [m*()][a < 1 for all € € R™

(3) Let v be a left A-eigenvector of m(0) with |\| = 1. Then v is a left A-eigenvector of
Ay = EﬁeZ" Cotap for all a € Z".

(4) For any 1-eigenvector ug of m(0), the vector refinement equation (2.1) has a unique
compactly supported solution ®(z) € L5(R") such that fR" ¢(z)dz = ug.

Proof. (1) Let ¢ =|det(A)| and B = AT. Then

CnA = Y m(¢+ B 'd)Am* (¢ + B7'd)
de&

_ q—2 Z Z Z CQACEG—iZW(a—ﬁ,ﬁ—}—B_ld)

d€€ a€Z™ BEL

— q—2 Z Z CaAC;+WZ€_i2W<W7£+B_1d>-

aEZ~NEL de&

It follows from

Ze_i%r(%&_i_B—ld) _ qe—i27r<%§> if v € A(Zn),
0 otherwise
de&

that

Cok = 47 3 3 CuACE 80
a€Zn BeTn

S0 aCED SERTENY
ﬁEZn OZEZTL

_ q—l Z e—iQW(Aﬁ,Qq&OﬁA
BEL™

= A.

(2) Choose & so that 0 € £. By part (1), for any v € C",
Y v'm(¢+ BT d)Am* (¢ + B~ d)v = v*Av.
dee€

Thus ||[m*(§)v||a < [Jv]|a for all £ by taking d = 0, proving (2).

(3) Let D be a complete set of coset representatives of Z"/A(Z™). Then ) _p A, = qm(0),
and one easily checks that

D T ALAAL = gA.
aeD

10



The above together with the Schwarz inequality yield
H Z vA,

a€D
and the equality holds if and only if all vA, are equaly. Now
[ va.

a€D

So vA, = vg for all @ € D, and ) .pvA, = qum(0) = ¢gAv implies that vo = Av. Finally,
for any 8 € Z™ there is an « € D such that Ag = A,. This proves (3).

2
X D llvAally = dllvll,
a€D

2
| = llevm(O)[IX = llarv[Ik = ¢*[lv]lX-

(4) Forn =1 and r = 1 this is a well known result of Mallat [28]. Mallat’s proof generalizes
easily to the general case. A proof of this part can be found in Flaherty and Wang [13]. We
remark that the solution ®(z) is given by ®(¢) = ([}, m(B7IE))uo. |

A proof of Proposition 2.1 can be found in Hogan [20]. Here we present a different proof.
Proof of Proposition 2.1. Let A be an eigenvalue of m(0) and ug be a left A-eigenvector

of m(0). By (2) of Lemma 4.1 we have |A] < 1. Suppose that |[A| = 1. Define g(z) =
> aezn(®(z + @), uf). We view g(z) as a function in L'(T"). Observe that

g0) = 3 S (Cp0(Az + Aa - ), up)

a€Zn" BETT

= D) (Caary®(Az +7),up)

Q€L yEL

= Y (AL S(Az+7),u5)
YEL™

= ) (®(Az+7), A% ug)
YEZ™

= Xg@4x%

where A, = 3" 7. Caa—ry and AZ_uf = Auf by (3) of Lemma 4.1. So [g(z)| = [A||g(Az)].
It follows from the ergodicity of A on T” that |g(z)| = ¢ for some constant ¢, so g(z) €
L*(T"). Consider the Fourier expansion of g(z) = > yn bae?™%) The equality g(z) =
Ag(Az) yields b, = 0 for all & # 0 and by = 0if A # 1, by comparing the Fourier coefficients
of g(z) and Ag(Az). If X # 1 then g(z) = 0 almost everywhere. But this is impossible
because ®(z) is orthogonal. So A = 1. In this case, the ergodicity of A on T" implies that
g(z) = c almost everywhere for some constant c.

We show that 1 is a simple eigenvalue of m(0). If not, because [|m(0)||x < 1 for some
positive definite diagonal matrix A, m(0) must have two independent left 1-eigenvectors
uq, ug € C". Therefore there exists a nonzero linear combination u of uy, uy such that

Z (P(z —a),u™) =0 ae..

aEZ"™

11



Again this contradicts the orthogonality of ®(z). |
Proof of Proposition 2.2. (i) By definition A(Ty 4) = T, 4+supp(m). For any v & Sm 4
we have
0 = ATwman (Tma+7))
= (Twma+supp(m)) 0 (Tma + Ay + supp(m))
= U (Tm,Aﬂ(Tm,A—I-A’V—FOé—ﬂ)) + 8.

a,3€supp(m)
So Ay +a— 3 ¢ Sp,a for all a, B € supp(m). Therefore Sy 4 is (m, A)-invariant.
(i) Let F(§) =2 cs FLe= 218 € Q. (R, S). Tt is straightforward to check that
(CnF)(€) = Y Guem™ 08 where Gy = Y CoFaysp-aCle
YEZL™ o,BEL™

Suppose that G, # 0. Then there exist o, 3 € Z" such that CoFaytp-aCp # 0, so
a, € supp(m) and Ay + 8 —a € S. It follows that v € S. Hence Ciy I € Q,.«,(R™, S). B

We now prove the orthogonality criteria for refinable function vectors. We first introduce
some notation to simplify our exposition. For any k > 0 we let my(€) denote the (right)

product
k

mi(§) = [ m(B*7¢) := m(B* 1 &)m(B*%¢) - - -m(B%)

i=1

where B = AT. Given a complete set of coset representatives £ of Z"/B(Z") let
gB,k =&+ BE+ -+ BF-1¢g.
Observe that

CoF(€) = Y my(B e+ d)F(B™(E+ d))mp(B7*(¢ + d)). (4.1)
d€€p i

Proof of Theorem 2.3. The standard Possion Summation Formula gives

3 (/ &(2)0*(z + a) dx)eﬂﬂa@ =Y d(E+a)d(E +a). (4.2)

a€Z"™ aEZP

(a) = (b). The proof here is a generalization of the proof in Gréchenig [16] for the case
n =1, r = 1. Suppose that ®(z) is not orthogonal. Then

F&)= 3 ( / 0(2)07(z +a) dr ) 27

aEZ"
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is in Q,x,(R") and F(£) # aA for any a € C. We show that CnI’ = F. Let £ be any
complete set of coset representatives for Z"/B(Z™"). Denote &; := B™1(£ 4 d). Then

CnF (&) = ) m(&)F(&)m™(£a)

dee€

= 33 mE) P&+ a)P* (& + a)m* (&)

de& a€Zn

= ZZ (Ea+ ) B(Eg + @)D (4 + a)m* (€4 + a)

deE a€™

- ZZ (€ +d+ Ba)®* (¢ + d + Ba)

de€ aen

= 3 ¥+ ) (¢ +a)

aEZ"

= F(Q).

(b) = (c). Since supp(®) C T 4, we see that supp(F’) C Sm 4. Therefore I’ € Q, 4, (R, S)
since § contains Sy 4. Observe that 0 € Sy 4, so G(§) == A € Q.4 (R”,S), and is also a
1-eigenvector of Cy,. So 1 is a multiple eigenvalue of Cy, restricted to Q,4,(R",S), proveing
(c)-

(c) = (b). Since 1 is a multiple eigenvalue of Cy, restricted to 2,4, (R", ), either Cy, has
two independent 1-eigenvectors in ., (R™, &), in which case we complete our proof, or C%
is unbounded in Q, 4, (R",S) as k£ — co. We show that the latter is impossible. Assume that
it did, then there exists a F(€) € Q,«,(R™, S) such that C*F is unbounded as k — co. By
adding aA to F for a sufficiently large ¢ > 0 we may without loss of generality assume that
F(§) is positive definite for all £. Let I' be the positive definite diagonal matrix [' := V/A.
Then for any £ € R” and v € C7,

(Tu) T Cm)FOT ™ (Tu) = w*(CnF)(§)u
= ) w'm(&) F(&)m™ (Ea)u

dee€

= Do wmlE)l (CTFE)T) P (o)

de&

< pr(F) ) wm(E)ITm (E)u
dee€
= pr(F)u*Au

= pr(F)('w)"(I'u),

where £; := B71(£+d) and pr(F) is the supreme over all £ of the spectral radii p(I " F(£)71).
Therefore the spectral radius of ™1 (Cyy ') (€)' is bounded by pr(F). This implies that
for all k the spectral radius of I'"1(CE F)(&)I'™! is bounded by pr(F). But this would
mean that [~1(CE F)(€)I~! is bounded for all ¢ and k because it is Hermitian. This is a
contradiction.
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(b) = (d). Since F(£) is bounded and periodic (mod Z"), there exist a4, a— € R such that

a;r = inf {a € R: aA — I is positive definite for all £ € R"},
a- = sup {a € R: F — aA is positive definite for all £ € R"}.

Let F (&) = apA — F(&) and F_(§) = F(§) —a_A. Then both Fy and F_ are nonnegative
definite but neither is positive definite for all £ € R™. To simplify our notation we let
A :=m(0). The hypotheses of the theorem implies that A® := limy_ AF exists and is a
rank one matrix whose columns are 1-eigenvectors of A.

Claim 1. Suppose that Iy (€) (resp. F_(£)) is singular for & € Z" only. Then F1(0)vg =10
(resp. F_(0)vg = 0) where vy # 0 is a 1-eigenvector of m*(0).

Proof of Claim 1. We prove the claim for I} (£), the proof is identical for F_(£). Let
v € C" such that ||v||an = 1, v*F4(0) = 0. Then it follows from C¥ Iy = F, that

v 0= Y vm(BTR) Fy (B )mi(B ), (4.3)
de€€p i

Since Cy, is independent of the choice of & we choose 0 € £. Now all Fy (B~*d) are positive
definite unless B=*d € Z", which holds only for d = 0. We thus have m}(B~*d)v = 0 for
all d € €k, d # 0. Note that the orthogonal coefficients condition gives

> lmi(B~ dp|} = [lv]} = 1.
d€€p K
Hence |[|[m}(0)v||a = [|[(A*)*v]|a = 1. It follows by letting k — oo that vy := (A%)*v £ 0.
Clearly vg is the unique (up to scalar multiples) 1-eigenvector of A*. By (4.3) vgF4 (0)vg = 0,
and hence F;(0)vg = 0 by the nonnegative definiteness of I”4 (0), proving the claim.

Claim 2. Fither G(&) = Fy(§) or G(§) = F_(&) has the property that A*G(0) # 0 and
G(n) is singular for some n € R™\ Z".

Proof of Claim 2. First we observe that I, (§)+F_(£) = (a4 —a_)A is always nonsingular,
so Claim 1 implies that at least one of Iy (£) and F_(§) is singular for some € R™\ Z™.
Assume that Claim 2 is false. Then either A*G(0) = 0 or G(n) is nonsingular for all
n € R*\ Z", where G/(§) is either Fy (&) or F_(£). Now A*(FL(0) + F_(0)) # 0 because
F1(0)+ F_(0) is nonsingular, so either A* I (0) # 0 or A®F_(0) # 0. If both are nonzero
then we have a contradiction. So without loss of generality we assume that A®F(0) =0
and thus F_(7) is nonsingular for all € R™\ Z". By Claim 1 we have F_(0)vg = 0, where
vg is a 1-eigenvector of A*. Now, vgA* = v§. So

G (P (0) + P (0)) 0 = G§A (P4 (0) + F_ (0))u = 0.
This contradicts the positive definiteness of Fy (0) + F_(0), proving Claim 2.

To finish proving (b) = (d), let G(§) be Fy (&) or F_(&) such that A®G(0) # 0 and
G(n) is singular for some n € R”\ Z". Let G(n)ug = 0 for some nonzero ug € C'. We
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show that ulp(n + «) = 0 for all @ € Z”. For a given a € Z", we write o = B'3 for some
B € Z™"\ B(Z"™). Choose & so that 0, 3 € £. Then for all k£ > [ we have a € g .. It follows
from CEG = G that

0=u;G(nuo= Y ugmp(B™*(n+d))G(B~*(n+ d)mi(B~*(n+ d))uo.
d€€p K

In particular we have
ugmi (B~ (n+ a))G(B™*(n+ a))mi(B~* (1 + a))uo = 0.
It follows by letting & — oo that
ugp(n+ ) G(0)p™(n + @)uo = 0,
and the nonnegative definiteness of G(0) yields
ugp(n + a)G(0) = 0.

Observe that p(§) = p(§)A™. So p(§)G(0) = p(§)A>G(0). Since A*®G(0) # 0 and A™ has
rank 1, there exists a nonzero column vy in A®°G(0), which is clearly a 1-eigenvector of A.
Hence all columns of p(§) are scalar multiples of p(&)vy. Thus uip(n+ «) = 0.

(d) = (a). It follows from ®(€) = p(£)®(0) that ui®(n+ @) = 0 for all o € Z". Hence by

the Poisson Summation Formula,
Z ug (/ ¢(2)0*(z — ) daj) uge'?men) = Z ug®(n + a)®*(n + a)ug = 0
a€Z" " Qa€Z"

Therefore

3 (/HCI)(JC)CI)*(:C — ) da)e e 4 &

aEZ™

for any diagonal matrix A with positive diagonal entries, and so ®(z) cannot be orthogonal.

[ |
Proof of Corollary 2.4. It follows easily from the fact that for any fundamental domain
K one of n+ ain (d) of Theorem 2.3 is in K. |

5 Proof of Orthogonality Criteria for Refinable Functions

Let T™ be the n-dimensional torus T" := R"/Z", and 7, : R® — T" be the canonical
covering map.

Lemma 5.1 Let V be a subspace of R". Then 7, (V) is closed in T™ if and only if V is a
rational subspace of R™.
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Proof. We first show that if V is a rational subspace of R” then 7, (V) is closed in T™. Let
wy, Wa, ..., w, € Z™ form a basis of V. Suppose that z* € T" is in the closure of 7, (V).
Then we may find a sequence {z;} in V such that lim;_,., m,(z;) = z*. Write

r
T; = E b; rwg.
k=1

Since all wy, € Z", we may choose all b;; € [0,1). Therefore we can find a subsequence
{jm} of {j} such that
lim b, %= b}, all 1<k <r.

m—r 00
Let z* =7, _, bfwy. Clearly, m,(2*) = z*. Hence z* € 7, (W). Therefore 7, (V) is closed
in T™.

We next prove the following fact: If v € R” then the closure of 7,(Rv) in T" is a
rational subspace. To see this, let v = [B1, ..., 3,]7. Without loss of generality we assume
that 81,..., 8, are linearly independent over Q while 8 = Zgzl ar,;3; with ay; € Q for
all 1 <k < n. The set

B
{m : (mod Z") : mEZ}

is dense in T" (see Cassels [1], Theorem I, p.64). Now let V5 = {Az : z € R"} where
A =lag;]. Then Vj is a rational subspace of R”, and m, (V) is contained in the closure of
o (Rv). But 7, (Vo) is closed and V) O Rv. Hence the closure of 7, (Rv) is 7, (Vp), proving
the fact.

Finally, let vy,...,v, be a basis of V. Suppose that W; is the closure of 7,(Rv;) in
T”. Then the closure of 7, (V) contains Wy + --- 4+ W,. But W; + --- 4+ W, is closed in
T" because it is a rational subspace, and it contains 7, (V). Hence the closure of 7, (V) is

Wi + -+ W,, proving the lemma. [ |

Corollary 5.2 Let f : R™ — C be continuous and periodic (mod Z™) and V be a subspace
of R™. Ifvg+ V is contained in the zero set of f(x) for some vy € R", then so is vg + W
where W is the smallest rational subspace of R™ containing V.

Proof. First, let {V,} be a set of rational subspaces of R”. Then 7,(, Vo) =, ™n(Va)
is closed in T”, so [, V, must be a rational subspace of R”. This implies that the minimal
rational subspace W containing V exists. Since f(z) is periodic (mod Z") we may view it
as a continuous function defined on T”. Now, 7, (vo)+m, (W) is the closure of 7, (vo) + 7, (V)
in T™. Hence 7, (vo) + 7, (W) is in the zero set of f: T" — C. Thus vo+ W C Z;. [ |

We derive the following key lemma from a result of Cerveau et al [2]. First, we define
the notion of T-invariance in R™. Let m(z) be the symbol of a given dilation equation
that satisfies the orthogonal coefficients condition. Let £ be a given complete set of coset
representatives of Z"/AT(Z"). A closed set Y C R™ is r-invariant if for any [ € &,

weY and m(nw))>0 = mnw)eY. (5.1)
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A compact 7-invariant set is minimalif it contains no smaller nonempty compact T-invariant
set.

Proposition 5.3 Let f(€ € Q(R") and Y be a minimal compact T-invariant set contained
in the zero set of f(&). Then there exist a subspace V of R" and a periodic orbit {z; : 0 <
j< N =1} of AT (mod Z") such that

Proof. This is Theorem 2.8 of Cerveau, Conze and Raugi [2]. The theorem of Cerveau et
al is actually valid in a more general setting, where f(£) and m(&) are allowed to be any
real analytic functions. [ |

Lemma 5.4 Let f(£) € QR") such that Cwf = f, and let Ey = {{ € R" : f(§) =
inf,ern f(w)}. Then there exists a rational subspace W and a periodic orbit {z; : 0 < j <
N} of AT (mod Z™) such that I := Ué\]:_ol (zj+ W) C E} and F is T-invariant.

Proof. We first observe that EJT is 7-invariant. This follows from

Cnf(€) =D Im(n(€)*f(n(&) = F(§).

le€

Since Yo Im(n(€))* =1,if £ € E7 then all f(ni(£)) > f(€) so equality can hold above
only if [m(r(£))[ > 0 implies 7(£) € E}.

We construct a nonempty minimal compact 7-invariant set Y in £ as follows. Take
any point § € £} and set Xo = {&} and recursively define the finite sets {X; : j > 0}
by letting X; consist of all points §; such that & = 7(£;-1) with {1 € X;_q and [ € &
such that [m(&;)[ > 0. Then the 7-invariance of E; gives X; C E for all j > 0. The set
U;io X; lies in a bounded region in R” because the mappings 7; are uniformly contracting
with respect to a suitable norm in R” (cf. Lagarias and Wang [23], Section 3). Thus the
closure Yy of U?’;O X is compact, and Yy C Ef_ because E]T is a closed set. We show that Y
is 7-invariant. If w € Yy and [g(m(w))| > 0 where [ € &, take a subsequence ;, € X, that
converges to w, so that 7(§;,) = m(w). Now |m(m(&;,))| > 0 for k sufficiently large, hence
7(§;,) € X, +1; so we may construct a sequence having 7(w) as a cluster point, proving
mi(w) € Yy. The existence of a nonempty minimal compact T-invariant set Y contained in
Yo follows by a Zorn’s Lemma argument.

It follows now from Proposition 5.3 that there exists an AT-invariant subspace V and a
periodic orbit {z; € Y : 0 < j < N} such that

N-1
Yo lJG+v)cEy,
7=0
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with the property that the set U?I:_Ol(zj- + V) is 7-invariant. Now let W be the smallest

rational subspace of R” containing V. Since AT (W) is also a rational subspace containing
V and it has the same dimension as W, AT(W) = W. Because EY is the zero set of

f(f) = f(&) — inf,, f(w), Corollary 5.2 applies to f to give

N-1
YCJE+w) CE;.
7=0

Finally, since ﬂn(Ué\f:—ol (z; + W)) is the closure of Fn(U;'V:_Ol(Z]‘ +V)) in T”, we conclude
that U;y:_ol(z]- + W) is 7-invariant. [ |
Proof of Theorem 3.2 Observe that for r = 1 criterion (d) of Theorem 2.2 is equivalent
to criterion (d) of Theorem 2.4. Therefore the equivalence of (a)—(d) of this theorem has

already been established in Theorem 2.2.

(b) = (e). Let the nonconstant f(§) € Q(R") satisfy Cy, f = f. Without loss of generality
we assume that f(0) # min, f(w), or else we can replace f(£) by —f(£). By Lemma 5.4
there exists an AT-invariant rational subspace W and a periodic orbit {z; :0<j < N}of
AT (mod Z™) such that U;VZ_OI(Zj + W) C E is r-invariant. We prove the following claim:
Let £ € z; + W. Suppose that |m(m(§))| > 0 for some [ € Z™. Then 7(§) € zj41 + W + Z",
where 2y := 2.

Assume that the claim is false. Then the r-invariance of Ué-\]:_ol(z]' + W) implies that

T1(€) € zpp1 + W HZ" # zj11 + W + Z™ Hence £ € AT (241 + W) +Z" = 2, + W + 2™
But this could happen only if

2+ WHZ =2+ W+ Z"
Applying the operator (AT)N_1 to both sides of the above equality yields
i + W+ (ANNHZY) = 20 + W+ (AT)VH(ZP),
and adding Z" to both sides then gives
21 W HZ" =2, + W HZ",

which is a contradiction.

It now follows from the claim that for any £ € z; + W,

1= ImmE)F= > W@l

le& leg
() €254 1 +WHZ?

Finally, z; ¢ W 4+ Z" because otherwise we would have z; + W + Z" =W + Z" C Ef_,
contradicting 0 ¢ £ .

(e) = (f). It follows from (e) that m(r(§)) = 0 for & € z; + W and [ € & such that
(&) & zj41 + W + Z", where zy := z5. Now for any [ € Z" there exists an [’ € £ such that
(&) = 11(€) (mod Z"), hence (f) follows.
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(f) = (d). Choose any n € z9 + W. Then n ¢ Z™ because zy ¢ W + Z". For any o € Z"
consider the sequence

Wy = (AT)_k(n—l— a), k=0,1,2,---.

Then limy_, o, wr = 0. Since U;y:_ol(Zj + W) +Z" is locally compact and is disjoint from Z",
éy:_(Jl(Zj+W)+Z”. Now wyg = n+a € 20+ W, so
there exists a ko > 0 such that wg,_1 € U;V:_Ol(z]‘ +W)+Z" but wy, ¢ U;y:_ol(Zj +W)+7Z"

We show that m(wg,) = 0. Assume that wp,_1 € z; + W + Z". So wr,—1 = & + [ for
some { € z; + W and [ € Z". Now

for sufficiently large & we must have wy ¢ |

Wiy = (A7) w1 = (A1) TN (& + 1) = (&)

But wy, = 71(&) & zj4+1 + W + Z", where 2z := 29. So m(wg,) = 0 by (f), proving (d). N

Proof of Theorem 3.1 A7 isirreducible because it has the same characteristic polynomial
as A does. So the only AT-invariant rational subspace W of R” with dim(W) < n is
W = {0}, see Theorem II1.12 of Newman [30]. Theorem 3.1 now follows immediately from
Theorem 3.2. |
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