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ABSTRACT. Let 6 be a real number with continued fraction expansion

0 = [ao,a1,02,...],

and let
a b
M =
o
be a matrix with integer entries and nonzero determinant. If  has bounded partial
quotients, then ‘C’gis = [ag,a},a3,...] also has bounded partial quotients. More

precisely, if a; < K for all sufficiently large j, then a} < [det(M)|(K + 2) for
all sufficiently large j. We also give a weaker bound valid for all a}f with 7 > 1.
The proofs use the homogeneous Diophantine approximation constant Leo(0) =
limsup,_, ., (q||g8|])~*. We show that

L
| det(M)]

af +b
cf+d

Loo(6) < Loo ( ) < |det(M)|Loo (6).

1. INTRODUCTION.

Let 8 be a real number whose expansion as a simple continued fraction is
0= [ao,al,aQ,.. ] 3
and set

(1.1) K(0) :=sup a; ,
i>1
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where we adopt the convention that K(6) = +oo if € is rational. We say that 6
has bounded partial quotients if K () is finite. We also set

(1.2) K (8) :=limsup a; ,
i>1

with the convention that K (0) = +oo if 8 is rational. Certainly K () < K(0),
and K (0) is finite if and only if K(8) is finite.

A survey of results about real numbers with bounded partial quotients is given
in [17]. The property of having bounded partial quotients is equivalent to € being
a badly approximable number, which is a number 6 such that

liminf ¢||gf|| >0,
q—o0

in which ||z|| = min(z — |z], [x] — 2) denotes the distance from z to the nearest
integer and ¢ runs through integers.

This note proves two quantitative versions of the theorem that if # has bounded

partial quotients and M = [z Z] is an integer matrix with det(M) # 0, then

¢ = 24 also has bounded partial quotients.

The first result bounds Koo(zgis) in terms of K, (f) and depends only on
| det(M)):

Theorem 1.1. Let § have a bounded partial quotients. If M = [Z Z] s an
integer matriz with det(M) # 0, then

1
| det M|

ab +b

(1.3) cd+d

Koo(6) -2 < Kuo ( ) < det M|(K(8) +2) .

The second result upper bounds K (%) in terms of K(6), and depends on the
entries of M:

Theorem 1.2. Let 0 have bounded partial quotients. If M = [z Z] s an integer
matriz with det(M) # 0, then

(1.4) <a0+b

c0+d> < | det(M)|(K(0) + 2) + |c(cf + d)| .

The last term in (1.4) can be bounded in terms of the partial quotient ag of 6,
since
|cb + d| < |c|(Jao| + 1) + |d| < |cao| + |¢| + |d] .

Theorem 1.2 gives no bound for the partial quotient af := | 255 | of 22,
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Chowla [3] proved in 1931 that K (
than Theorem 1.2.

20) < 2ad(K () +1)%, a result rather weaker

We obtain Theorem 1.1 and Theorem 1.2 from stronger bounds that relate
Diophantine approximation constants of § and ggis, which appear below as The-
orem 3.2 and Theorem 4.1, respectively. Theorem 3.2 is a simple consequence of
a result of Cusick and Mendés France [5] concerning the Lagrange constant of 4

(defined in Section 2).
af+b

The continued fraction of & +a can be directly computed from that for 6, as was
observed in 1894 by Hurwitz [9], who gave an explicit formula for the continued
fraction of 26 in terms of that of §. In 1912 Chételet [2] gave an algorithm for
computing the continued fraction of ?313 from that of #, and in 1947 Hall [7] also
gave a method. Let M(n,Z) denote the set of n x n integer matrices. Raney

[15] gave for each M = [ccl 2] € M(2,7Z) with det(M) # 0 an explicit finite
automaton to compute the additive continued fraction of :gjr'g from the additive

continued fraction of 6.

In connection with the bound of Theorem 1.1, Davenport [6] observed that
for each irrational # and prime p there exists some integer 0 < a < p such that
0 =6+ % has infinitely many partial quotients a, (') > p. Mendeés France [13]
then showed that there exists some §' = 6 + % having the property that a positive
proportion of the partial quotients of 8’ have a,,(8") > p.

Some other related results appear in Mendeés France [11,12]. Basic facts on
continued fractions appear in [1,8,10,18].

2. BADLY APPROXIMABLE NUMBERS

Recall that the continued fraction expansion of an irrational real number 6 =
[ao, a1, - ..] is determined by

0:a0+00, 0<00<1,

and for n > 1 by the recursion

=ap+0,, 0<0,<1.
0n71

The n-th complete quotient oy, of 0 is
Qp = 9. = [an;an-{—l;an-{—% .- ] .
n

The n-th convergent 5_: of 8 is

Dn
q_ = [a07a17"' :an] )
n
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whose denominator is given by the recursion ¢ 1 =0,q0 = 1, and gn4+1 = Gn+1qn+
Gn—1. It is well known (see [8, §10.7]) that

1

21 gf|| = [gnb —pn| = ————F— .
( ) || || | | dnOn+1 + qn—1

Since apt1 < apg1 < ap1 + 1 and g, 1 < gy, this implies that

1
< gnllgnf|| £ ,

(2.2) -
Ap41 + 2 Ap41

for n > 0.

We consider the following Diophantine approximation constants. For an irra-
tional number 6 define its type L(6) by

L(8) = sup (ql|gf||)~",
q21

and define the homogeneous Diophantine approximation constant or Lagrange con-
stant Lo (0) of 6 by

Loo(8) = limsup (ql|g8])™" .
q>1

We use the convention that if  is rational, then L(f) = Lo () = +00. (N.B.:
some authors study the reciprocal of what we have called the Lagrange constant.)

The best approximation properties of continued fraction convergents give

(2.3) L(0) = sup (gnl|gn0|)~"
n>0

and

(2.4) Loo() = lim sup (gnllgn]) "

The set of values taken by Ly (8) over all 6 is called the Lagrange spectrum [4].
It is well known that Le,(6) > +/5 for all 8. If = [ag,a1,as,...], then another
formula for L, (0) is

(2'5) LOO(H) = hm sup([aj, Aj+1,-- ] + [07 Aj—1,a5-2;--- 70‘1]);
j—oo
see [4, p. 1].

There are simple relations between these quantities and the partial quotient
bounds K (6) and K (6), cf. [16, pp. 22-23].
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Lemma 2.1. For any irrational 6 with bounded partial quotients, we have

(2.6) K(0) < L(§) < K(©6)+2 .

Proof. This is immediate from (2.2) and (2.3). O

Lemma 2.2. For any irrational 6 with bounded partial quotients

(2.7) Koo6) < Loo(8) < Koa(0) +2 .

Proof. This is immediate from (2.2) and (2.4). O

5

Although we do not use it in the sequel, we note that both inequalities in (2.7)

can be slightly improved. Since g, < (an + 1)gn—1, (2.1) yields

1 1

dnl|lgnb]] <

Since an, < K (#) from some point on, this and (2.4) yield

1
2.8 Lo(0) > Ko0)+ —— .
(25) w(6) > Kecl6) + ]
Next, from (2.1) we have
dn
n n0 -
¢ ||q || On41qn +Qn—1
_ 1
Anp41 + an1+2 qnq—:l '
Hence
_ qn—1
o)t = .
(@ullgnbl) ™ = ans + — + 2=
Let K = K (0). Then for all n sufficiently large we have
iy L _K+2
Ani2 2 K+1_K+1,
o)
K+1
IV T<K+——+1
(QnHQn ||) S K+ K +2 +
1
=K+2— ——.
T K2
We conclude that
1

(2'9) Loo(e) < Koo(e) +2-

Qpg1 + qz—;l T Qp41 +1/(an+1) )
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3. LAGRANGE CONSTANTS AND PROOF OF THEOREM 1.1.
a b
d

transformation on a real number 6 by

An integer matrix M = with det(M) # 0, acts as a linear fractional

_af+b

(3.1) M(6) =
Note that Ml(M2(0)) = M1M2(0)

Lemma 3.1. If M is an integer matriz with det(M) = =£1, then the Lagrange
constants of 0 and M (0) are related by

Proof. This is well-known, cf. [14] and [5, Lemma 1], and is deducible from (2.5).
O

The main result of Cusick and Mendeés France [5] yields:
Theorem 3.2. For any integer m > 1, let
G ={M e M(2,Z): |det(M)| =m} .

Then for any irrational number 0,

(3.2) 5D (Loo(M(6)) = mLoo(®)
and
(3.3) Lt (Loo(M(0)) > L)

Proof. Theorem 1 of [5] states that

(3.4) max (Lm (“6; b)) — mLo(6) .

Let GL(2,Z) denote the group of 2 x 2 integer matrices with determinant +1. We
need only observe that for any M in G,, there exists some M € GL(2,Z) such

~ ! /
that MM = [% cbi'] with a’'d’ = m and 0 < b’ < d'. For if so, and ¢ = Zgig’
then Lemma 3.1 gives
7 ~ a0+
Loa(¥) = Lon(81(8) = Lou(B1MO) = Lo (252
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whence (3.4) implies (3.2). To construct M = [é g], we must have
Ca+Dc=0.
Take C = % and D = —M. Then ged(C,D) = 1, so we may com-

plete this row to a matrix M e GL(2,Z). Multiplying this by a suitable matrix

1 ¢ | . . .
[ 0 il] yields the desired M.

The lower bound (3.3) follows from the upper bound (3.2). We use the adjoint
matrix

P |l d —c
w =agion = | 4 7]
which has M'M = det(M)I = mI and det(M') = det(M). If ' = M(6), then
M'(6")=M'"(M(@®))=M'M(O) =6 .

We prove by contradiction. Suppose (3.3) were false, so that for some M € G,
and some 6 we have

This states that
mLeo(0") < Loo(M'(0")) ,
which contradicts (3.2) for ', since det(M') = det(M) =m. O

Remark. The lower bound (3.3) holds with equality for some values of § and not
for other values. If for given 6 we choose an M € G,, which gives equality in (3.2),
s0 that Loo(M(#)) = mL(0), then equality holds in (3.3) for ' = adj(M)(6).
However, if Lo, (8) = v/5, as occurs for § = %, then Loo(M(0)) > Loo(0) for all
M; hence (3.3) does not hold with equality when m > 2.

Proof of Theorem 1.1. Theorem 3.2 gives Loo (M (0)) < det(M )L (8). Now apply
Lemma 2.2 twice to get

Koo(M(0)) < Loo(M(8))
Loo(6)

< |det(M)| Lo
(3.5) < | det(M)|(Ko(0) +2)
To obtain the lower bound, we use the adjoint M’ = adj(M) = [_db —ac] , and

apply (3.5) with M’ and §' = M(0) to obtain
Koo(0) = Koo(M'(M(6))) < | det(M")|(Koo(M(6))) +2) -
Since | det(M)| = | det(M")|, this yields

Koo(M(6)) Kou(6) =2

= Tdet(3)
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4. NUMBERS OF BOUNDED TYPE AND PROOF OF THEOREM 1.2

Recall that the type L(8) of € is the smallest real number such that g||¢8|| > ﬁ
for all ¢ > 1.

Theorem 4.1. Let 0 have bounded partial quotients. If M = [z Z] s an integer
matriz with det(M) # 0, then

(4.1)

(a0+b

c0+d> < | det(M)|L(B) + |c(ch + d)| .

Proof. Set ¢ = 2+ Suppose first that ¢ = 0 so that | det(M)| = |ad| > 0. Then

cO+d*
L(y) > L, where
ab +b ab +b
(4.2) z = q|lg|| = qllq Il =dqlg -pl.
d d
We have

lad|z = |aq| |agf + (bg — dp)|

1
. > > —.
(4.3) 2 |ag] [lagfl| = 70)
For any € > 0 we may choose ¢ in (4.2) so that L > L(¢)) —e. Then
1
(1.4) et (M)IL(6) = lad L(6) > © > 1) —e

Letting € — 0 yields (4.1) when ¢ = 0.
Suppose now that ¢ # 0. Again L(¢) > % where

ab +b
x:=q||q¢||=q|q( )—pl-

cd+d
We have
(4.5) |cf + d|z = q|(ga — pc)6 — (pd — qb)] ,
so that

|cf + d| z = |ga — pc| |(ga — pc)d — (pd — gb)|

qa — pc
q

(4.6) > |ga — pcl ||(ga — pc)d||
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We first treat the case ga — pc = 0. Now
a —c qg| _|ga—pc + 0
-b d p|  |pd—qb 0f”’

since det [_a —c] = det(M) # 0. Thus if ga — pc = 0 then |pd — gb| > 1, hence

b d
(4.5) gives
(4.7) |c0 + d|x = q|pd — ¢b] > 1.

This yields
1
(4.8) L) —€e< o < e +d| < |e(ct + d)|.

since ¢ # 0. If we can let € — 0 or else € = 0 for values with ga — pc = 0, then
(4.1) follows from (4.8).

Now suppose that ¢ # 0 and ga — pc # 0. From the definition of L(f) we have
1

(4.9) lga — pe| ||(ga — pe)f|| > 70

Given € > 0, we may choose ¢ so that £ > L(1)) — ¢, and we obtain from (4.6) and
(4.9) that

(4.10) |cd +d| |L2—FC

LO)> - > L) ¢

Using the bound

o(5) sl <lo(ga) ~o (D)o (GFa) -]

and noting that first term on the right side is equal to ¢|det(M )|m

while

the second term is ||g¢|| = £, we obtain

1 x

qa — pc
- 4=,
||c(c€—|—d)| q

< q|det(M)

Multiplying this by ¢ and applying it to the left side of (4.10) yields

zL(6)

q2

(4.11) L (ZZIS) — € < | det(M)|L(8) + |c(c + d)|
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We now claim that

(4.12)

L<a0+b

0+ d) < | det(M)[L(6) + |e(cf + d)| -

always holds. This is immediate if L(6) > L(v). Now suppose L(0) < L(v).
Suppose we can let € — 0 or else € = 0 through values with ga — pc # 0. Now the
ratio L&E;})_e becomes < 1 in the limit, and since ¢ > 1, (4.12) follows from (4.11).

This completes the case ¢ #0. [O.

Proof of Theorem 1.2. Applying Theorem 4.1 and Lemma 2.1 gives

ad +b ab +b
K<c9+d) SL<00+d>
< |det(M)|L(0) + |c(ch + d)|
< |det(M)|(K(8) +2) + |c(cf + d)| ,

which is the desired bound. O

Remarks. (1). The proof method of Theorem 4.1 can also be used to directly
prove the bounds

1

(4.14) 7| det(A)]

Loo(0) < Loo(M(8)) < |det(M)|Loo(6) ,

of Theorem 3.2, from which Theorem 1.1 can be easily deduced. The lower bound
in (4.14) follows from the upper bound as in the proof of Theorem 3.2. We sketch
a proof of the upper bound in (4.14) for the case ¢ = % with ¢ # 0. For any
€* > 0 and all sufficiently large ¢* > ¢*(¢*), we have

1
4.15 *11¢g*0]| > ———— .
(4.15) o> e
We choose g = g, () for sufficiently large n, and note that

q" = |gn(¥)a — pn()e| = oo

as m — 0o, since 9 is irrational. We can then replace (4.9) by (4.15), and then
deduce (4.11) with L(8) replaced by Loo(0)+€*. Letting ¢ — 00, € = 0 and €* — 0
in that order yields the upper bound in (4.14).

(2). For a given matrix M consider the set of attainable ratios

Loo(M0)

I.(6) : 0 has bounded partial quotients} .

(4.16) V(M) := {

By Lemma 3.1 the set V(M) depends only on its SL(2,Z)-double coset

[M] = {NlMNQ : Nl,NQ S SL(Z,Z)} .
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Theorem 3.2 shows that

(4.17) V(M) | det(M)|

1
cl—
~ Ll det(M)]

It is an interesting open problem to determine the set V(M). Both | det(M)| and

m lie in V(M), as follows from Theorem 3.2 and the remark following it.

Acknowledgment. We are indebted to the referee for helpful comments and
references, and in particular for raising the open problem about V(M).
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