Linear Fractional Transformations of Continued Fractions with Bounded Partial Quotients

J. C. Lagarias and J. O. Shallit*

 $\begin{array}{c} {\rm AT~\&~T~Labs-Research} \\ {\rm and} \\ {\rm University~of~Waterloo} \end{array}$

Abstract. Let θ be a real number with continued fraction expansion

$$\theta = [a_0, a_1, a_2, \dots],$$

and let

$$M = \left[egin{array}{cc} a & b \ c & d \end{array}
ight]$$

be a matrix with integer entries and nonzero determinant. If θ has bounded partial quotients, then $\frac{a\theta+b}{c\theta+d}=[a_0^*,a_1^*,a_2^*,\dots]$ also has bounded partial quotients. More precisely, if $a_j\leq K$ for all sufficiently large j, then $a_j^*\leq |\det(M)|(K+2)$ for all sufficiently large j. We also give a weaker bound valid for all a_j^* with $j\geq 1$. The proofs use the homogeneous Diophantine approximation constant $L_\infty(\theta)=\limsup_{g\to\infty}(q||q\theta||)^{-1}$. We show that

$$\frac{1}{|\det(M)|}L_{\infty}(\theta) \leq L_{\infty}\left(\frac{a\theta+b}{c\theta+d}\right) \leq |\det(M)|L_{\infty}(\theta).$$

1. Introduction.

Let θ be a real number whose expansion as a simple continued fraction is

$$\theta = [a_0, a_1, a_2, \dots]$$
,

and set

$$(1.1) \hspace{3.1em} K(\theta) := \sup_{i \geq 1} \ a_i \ ,$$

¹⁹⁹¹ Mathematics Subject Classification. 11J70; Secondary 11A55 11J06.

Key words and phrases. bounded partial quotients, continued fraction, Lagrange spectrum, Markoff spectrum, badly approximable number.

^{*} Corrected version 6 May 2001; Research supported in part by NSERC.

where we adopt the convention that $K(\theta) = +\infty$ if θ is rational. We say that θ has bounded partial quotients if $K(\theta)$ is finite. We also set

$$(1.2) \hspace{3cm} K_{\infty}(\theta) := \limsup_{i \geq 1} \ a_i \ ,$$

with the convention that $K_{\infty}(\theta) = +\infty$ if θ is rational. Certainly $K_{\infty}(\theta) \leq K(\theta)$, and $K_{\infty}(\theta)$ is finite if and only if $K(\theta)$ is finite.

A survey of results about real numbers with bounded partial quotients is given in [17]. The property of having bounded partial quotients is equivalent to θ being a badly approximable number, which is a number θ such that

$$\liminf_{q \to \infty} |q||q\theta|| > 0 ,$$

in which $||x|| = \min(x - \lfloor x \rfloor, \lceil x \rceil - x)$ denotes the distance from x to the nearest integer and q runs through integers.

This note proves two quantitative versions of the theorem that if θ has bounded partial quotients and $M=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer matrix with $\det(M)\neq 0$, then $\psi=\frac{a\theta+b}{c\theta+d}$ also has bounded partial quotients.

The first result bounds $K_{\infty}(\frac{a\theta+b}{c\theta+d})$ in terms of $K_{\infty}(\theta)$ and depends only on $|\det(M)|$:

Theorem 1.1. Let θ have a bounded partial quotients. If $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer matrix with $\det(M) \neq 0$, then

$$(1.3) \qquad \frac{1}{|\det M|} K_{\infty}(\theta) - 2 \le K_{\infty} \left(\frac{a\theta + b}{c\theta + d} \right) \le |\det M| (K_{\infty}(\theta) + 2) .$$

The second result upper bounds $K(\frac{a\theta+b}{c\theta+d})$ in terms of $K(\theta)$, and depends on the entries of M:

Theorem 1.2. Let θ have bounded partial quotients. If $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer matrix with $\det(M) \neq 0$, then

(1.4)
$$K\left(\frac{a\theta+b}{c\theta+d}\right) \le |\det(M)|(K(\theta)+2)+|c(c\theta+d)|.$$

The last term in (1.4) can be bounded in terms of the partial quotient a_0 of θ , since

$$|c\theta + d| < |c|(|a_0| + 1) + |d| < |ca_0| + |c| + |d|$$
.

Theorem 1.2 gives no bound for the partial quotient $a_0^* := \lfloor \frac{a\theta+b}{c\theta+d} \rfloor$ of $\frac{a\theta+b}{c\theta+d}$.

Chowla [3] proved in 1931 that $K(\frac{a}{d}\theta) < 2ad(K(\theta)+1)^3$, a result rather weaker than Theorem 1.2.

We obtain Theorem 1.1 and Theorem 1.2 from stronger bounds that relate Diophantine approximation constants of θ and $\frac{a\theta+b}{c\theta+d}$, which appear below as Theorem 3.2 and Theorem 4.1, respectively. Theorem 3.2 is a simple consequence of a result of Cusick and Mendès France [5] concerning the Lagrange constant of θ (defined in Section 2).

The continued fraction of $\frac{a\theta+b}{c\theta+d}$ can be directly computed from that for θ , as was observed in 1894 by Hurwitz [9], who gave an explicit formula for the continued fraction of 2θ in terms of that of θ . In 1912 Châtelet [2] gave an algorithm for computing the continued fraction of $\frac{a\theta+b}{c\theta+d}$ from that of θ , and in 1947 Hall [7] also gave a method. Let $\mathcal{M}(n,\mathbb{Z})$ denote the set of $n\times n$ integer matrices. Raney [15] gave for each $M=\begin{bmatrix} a & b \\ c & d \end{bmatrix}\in\mathcal{M}(2,\mathbb{Z})$ with $\det(M)\neq 0$ an explicit finite automaton to compute the additive continued fraction of $\frac{a\theta+b}{c\theta+d}$ from the additive continued fraction of θ .

In connection with the bound of Theorem 1.1, Davenport [6] observed that for each irrational θ and prime p there exists some integer $0 \le a < p$ such that $\theta' = \theta + \frac{a}{p}$ has infinitely many partial quotients $a_n(\theta') \ge p$. Mendès France [13] then showed that there exists some $\theta' = \theta + \frac{a}{p}$ having the property that a positive proportion of the partial quotients of θ' have $a_n(\theta') \ge p$.

Some other related results appear in Mendès France [11,12]. Basic facts on continued fractions appear in [1,8,10,18].

2. Badly Approximable Numbers

Recall that the continued fraction expansion of an irrational real number $\theta = [a_0, a_1, \ldots]$ is determined by

$$\theta = a_0 + \theta_0$$
 , $0 < \theta_0 < 1$,

and for $n \geq 1$ by the recursion

$$\frac{1}{\theta_{n-1}} = a_n + \theta_n , \quad 0 < \theta_n < 1 .$$

The *n*-th complete quotient α_n of θ is

$$\alpha_n := \frac{1}{\theta_n} = [a_n, a_{n+1}, a_{n+2}, \dots].$$

The *n*-th convergent $\frac{p_n}{q_n}$ of θ is

$$\frac{p_n}{q_n} = [a_0, a_1, \dots, a_n] ,$$

whose denominator is given by the recursion $q_{-1} = 0$, $q_0 = 1$, and $q_{n+1} = a_{n+1}q_n + q_{n-1}$. It is well known (see [8, §10.7]) that

$$||q_n\theta|| = |q_n\theta - p_n| = \frac{1}{q_n\alpha_{n+1} + q_{n-1}} \ .$$

Since $a_{n+1} \le \alpha_{n+1} < a_{n+1} + 1$ and $q_{n-1} \le q_n$, this implies that

(2.2)
$$\frac{1}{a_{n+1}+2} < q_n ||q_n \theta|| \le \frac{1}{a_{n+1}} ,$$

for $n \geq 0$.

We consider the following Diophantine approximation constants. For an irrational number θ define its $type\ L(\theta)$ by

$$L(\theta) = \sup_{q>1} (q||q\theta||)^{-1}$$
,

and define the homogeneous Diophantine approximation constant or Lagrange constant $L_{\infty}(\theta)$ of θ by

$$L_{\infty}(\theta) = \limsup_{q \ge 1} \ (q||q\theta||)^{-1} \ .$$

We use the convention that if θ is rational, then $L(\theta) = L_{\infty}(\theta) = +\infty$. (N.B.: some authors study the reciprocal of what we have called the Lagrange constant.)

The best approximation properties of continued fraction convergents give

(2.3)
$$L(\theta) = \sup_{n>0} |(q_n||q_n\theta||)^{-1}$$

and

(2.4)
$$L_{\infty}(\theta) = \limsup_{n>0} (q_n ||q_n \theta||)^{-1}.$$

The set of values taken by $L_{\infty}(\theta)$ over all θ is called the Lagrange spectrum [4]. It is well known that $L_{\infty}(\theta) \geq \sqrt{5}$ for all θ . If $\theta = [a_0, a_1, a_2, \ldots]$, then another formula for $L_{\infty}(\theta)$ is

(2.5)
$$L_{\infty}(\theta) = \limsup_{j \to \infty} ([a_j, a_{j+1}, \dots] + [0, a_{j-1}, a_{j-2}, \dots, a_1]);$$

see [4, p. 1].

There are simple relations between these quantities and the partial quotient bounds $K(\theta)$ and $K_{\infty}(\theta)$, cf. [16, pp. 22–23].

Lemma 2.1. For any irrational θ with bounded partial quotients, we have

(2.6)
$$K(\theta) \le L(\theta) \le K(\theta) + 2.$$

Proof. This is immediate from (2.2) and (2.3).

Lemma 2.2. For any irrational θ with bounded partial quotients

(2.7)
$$K_{\infty}(\theta) \le L_{\infty}(\theta) \le K_{\infty}(\theta) + 2.$$

Proof. This is immediate from (2.2) and (2.4). \square

Although we do not use it in the sequel, we note that both inequalities in (2.7) can be slightly improved. Since $q_n \leq (a_n + 1)q_{n-1}$, (2.1) yields

$$|q_n||q_n\theta|| \le \frac{1}{\alpha_{n+1} + \frac{q_{n-1}}{q_n}} \le \frac{1}{a_{n+1} + 1/(a_n + 1)}$$
.

Since $a_n \leq K_{\infty}(\theta)$ from some point on, this and (2.4) yield

(2.8)
$$L_{\infty}(\theta) \ge K_{\infty}(\theta) + \frac{1}{K_{\infty}(\theta) + 1} .$$

Next, from (2.1) we have

$$\begin{aligned} q_n||q_n\theta|| &= \frac{q_n}{\alpha_{n+1}q_n + q_{n-1}} \\ &= \frac{1}{a_{n+1} + \frac{1}{\alpha_{n+2}} + \frac{q_{n-1}}{q_n}}. \end{aligned}$$

Hence

$$(q_n||q_n\theta||)^{-1} = a_{n+1} + \frac{1}{\alpha_{n+2}} + \frac{q_{n-1}}{q_n}.$$

Let $K = K_{\infty}(\theta)$. Then for all n sufficiently large we have

$$\alpha_{n+2} \ge 1 + \frac{1}{K+1} = \frac{K+2}{K+1},$$

so

$$(q_n||q_n\theta||)^{-1} \le K + \frac{K+1}{K+2} + 1$$
$$= K + 2 - \frac{1}{K+2}.$$

We conclude that

$$(2.9) L_{\infty}(\theta) \le K_{\infty}(\theta) + 2 - \frac{1}{K_{\infty}(\theta) + 2}.$$

3. Lagrange Constants and Proof of Theorem 1.1.

An integer matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $\det(M) \neq 0$, acts as a linear fractional transformation on a real number θ by

(3.1)
$$M(\theta) := \frac{a\theta + b}{c\theta + d} .$$

Note that $M_1(M_2(\theta)) = M_1 M_2(\theta)$.

Lemma 3.1. If M is an integer matrix with $det(M) = \pm 1$, then the Lagrange constants of θ and $M(\theta)$ are related by

$$L_{\infty}(M(\theta)) = L_{\infty}(\theta)$$
.

Proof. This is well-known, cf. [14] and [5, Lemma 1], and is deducible from (2.5). \Box

The main result of Cusick and Mendès France [5] yields:

Theorem 3.2. For any integer $m \geq 1$, let

$$G_m = \{ M \in \mathcal{M}(2, \mathbb{Z}) : |\det(M)| = m \}.$$

Then for any irrational number θ ,

(3.2)
$$\sup_{M \in G_m} (L_{\infty}(M(\theta))) = mL_{\infty}(\theta) .$$

and

(3.3)
$$\inf_{M \in G_m} (L_{\infty}(M(\theta))) \ge \frac{1}{m} L_{\infty}(\theta) .$$

Proof. Theorem 1 of [5] states that

(3.4)
$$\max_{\substack{a,b,d\\ad=m\\0\leq b< d}} \left(L_{\infty} \left(\frac{a\theta+b}{d} \right) \right) = mL_{\infty}(\theta) .$$

Let $GL(2,\mathbb{Z})$ denote the group of 2×2 integer matrices with determinant ± 1 . We need only observe that for any M in G_m there exists some $\tilde{M}\in GL(2,\mathbb{Z})$ such that $\tilde{M}M=\begin{bmatrix} a' & b'\\ 0 & d' \end{bmatrix}$ with a'd'=m and $0\leq b'< d'$. For if so, and $\psi=\frac{a\theta+b}{c\theta+d}$, then Lemma 3.1 gives

$$L_{\infty}(\psi) = L_{\infty}(\tilde{M}(\psi)) = L_{\infty}(\tilde{M}M(\theta)) = L_{\infty}\left(\frac{a'\theta + b'}{d'}\right) ,$$

whence (3.4) implies (3.2). To construct $\tilde{M}=\begin{bmatrix}A&B\\C&D\end{bmatrix}$, we must have

$$Ca + Dc = 0$$
.

Take $C=\frac{\mathrm{lcm}(a,c)}{a}$ and $D=-\frac{\mathrm{lcm}(a,c)}{c}$. Then $\gcd(C,D)=1$, so we may complete this row to a matrix $\tilde{\tilde{M}}\in GL(2,\mathbb{Z})$. Multiplying this by a suitable matrix $\begin{bmatrix}\pm 1 & c \\ 0 & \pm 1\end{bmatrix}$ yields the desired \tilde{M} .

The lower bound (3.3) follows from the upper bound (3.2). We use the adjoint matrix

$$M' = \operatorname{adj}(M) = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} ,$$

which has $M'M = \det(M)I = mI$ and $\det(M') = \det(M)$. If $\theta' = M(\theta)$, then

$$M'(\theta') = M'(M(\theta)) = M'M(\theta) = \theta$$
.

We prove by contradiction. Suppose (3.3) were false, so that for some $M \in G_m$ and some θ we have

$$L_{\infty}(M(\theta)) < \frac{1}{m} L_{\infty}(\theta)$$
.

This states that

$$mL_{\infty}(\theta') < L_{\infty}(M'(\theta'))$$
,

which contradicts (3.2) for θ' , since $\det(M') = \det(M) = m$.

Remark. The lower bound (3.3) holds with equality for some values of θ and not for other values. If for given θ we choose an $M \in G_m$ which gives equality in (3.2), so that $L_{\infty}(M(\theta)) = mL_{\infty}(\theta)$, then equality holds in (3.3) for $\theta' = \operatorname{adj}(M)(\theta)$. However, if $L_{\infty}(\theta) = \sqrt{5}$, as occurs for $\theta = \frac{1+\sqrt{5}}{2}$, then $L_{\infty}(M(\theta)) \geq L_{\infty}(\theta)$ for all M; hence (3.3) does not hold with equality when $m \geq 2$.

Proof of Theorem 1.1. Theorem 3.2 gives $L_{\infty}(M(\theta)) \leq \det(M)L_{\infty}(\theta)$. Now apply Lemma 2.2 twice to get

$$(3.5) K_{\infty}(M(\theta)) \leq L_{\infty}(M(\theta))$$

$$\leq |\det(M)|L_{\infty}(\theta)$$

$$\leq |\det(M)|(K_{\infty}(\theta) + 2).$$

To obtain the lower bound, we use the adjoint $M'=\operatorname{adj}(M)=\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$, and apply (3.5) with M' and $\theta'=M(\theta)$ to obtain

$$K_{\infty}(\theta) = K_{\infty}(M'(M(\theta))) \le |\det(M')|(K_{\infty}(M(\theta))) + 2) \ .$$

Since $|\det(M)| = |\det(M')|$, this yields

$$K_{\infty}(M(\theta)) \ge \frac{1}{|\det(M)|} K_{\infty}(\theta) - 2.$$

4. Numbers of Bounded Type and Proof of Theorem 1.2

Recall that the type $L(\theta)$ of θ is the smallest real number such that $q||q\theta|| \ge \frac{1}{L(\theta)}$ for all $q \ge 1$.

Theorem 4.1. Let θ have bounded partial quotients. If $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer matrix with $\det(M) \neq 0$, then

$$(4.1) L\left(\frac{a\theta+b}{c\theta+d}\right) \leq |\det(M)|L(\theta)+|c(c\theta+d)| \ .$$

Proof. Set $\psi = \frac{a\theta + b}{c\theta + d}$. Suppose first that c = 0 so that $|\det(M)| = |ad| > 0$. Then $L(\psi) \ge \frac{1}{\pi}$, where

$$(4.2) \hspace{1cm} x:=q||q\psi||=q||q\left(\frac{a\theta+b}{d}\right)||=q|q\left(\frac{a\theta+b}{d}\right)-p|\ .$$

We have

$$|ad|x = |aq| |aq\theta + (bq - dp)|$$

$$\geq |aq| ||aq\theta|| \geq \frac{1}{L(\theta)}.$$

For any $\epsilon > 0$ we may choose q in (4.2) so that $\frac{1}{x} \geq L(\psi) - \epsilon$. Then

$$(4.4) |\det(M)|L(\theta)| = |ad|L(\theta) \ge \frac{1}{x} \ge L(\psi) - \epsilon.$$

Letting $\epsilon \to 0$ yields (4.1) when c = 0.

Suppose now that $c \neq 0$. Again $L(\psi) \geq \frac{1}{x}$ where

$$x:=q||q\psi||=q|q\left(rac{a heta+b}{c heta+d}
ight)-p|\;.$$

We have

$$(4.5) |c\theta + d|x = q|(qa - pc)\theta - (pd - qb)|,$$

so that

$$\begin{aligned} |c\theta+d| \left| \frac{qa-pc}{q} \right| x &= |qa-pc| \; |(qa-pc)\theta - (pd-qb)| \\ &\geq |qa-pc| \; ||(qa-pc)\theta|| \; . \end{aligned}$$

We first treat the case qa - pc = 0. Now

$$\begin{bmatrix} a & -c \\ -b & d \end{bmatrix} \begin{bmatrix} q \\ p \end{bmatrix} = \begin{bmatrix} qa - pc \\ pd - qb \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix} ,$$

since $\det\begin{bmatrix} a & -c \\ -b & d \end{bmatrix} = \det(M) \neq 0$. Thus if qa - pc = 0 then $|pd - qb| \geq 1$, hence (4.5) gives

$$(4.7) |c\theta + d|x = q|pd - qb| \ge 1.$$

This yields

(4.8)
$$L(\psi) - \epsilon \le \frac{1}{x} \le |c\theta + d| \le |c(c\theta + d)|.$$

since $c \neq 0$. If we can let $\epsilon \to 0$ or else $\epsilon = 0$ for values with qa - pc = 0, then (4.1) follows from (4.8).

Now suppose that $c \neq 0$ and $qa - pc \neq 0$. From the definition of $L(\theta)$ we have

$$|qa-pc|\;||(qa-pc)\theta||\geq \frac{1}{L(\theta)}\;.$$

Given $\epsilon > 0$, we may choose q so that $\frac{1}{x} \ge L(\psi) - \epsilon$, and we obtain from (4.6) and (4.9) that

$$|c\theta+d| \ \left| \frac{qa-pc}{q} \right| L(\theta) \geq \frac{1}{x} \geq L(\psi) - \epsilon \ .$$

Using the bound

$$\left| q\left(\frac{a}{c}\right) - p \right| \le \left| q\left(\frac{a\theta + b}{c\theta + d}\right) - q\left(\frac{a}{c}\right) \right| + \left| q\left(\frac{a\theta + b}{c\theta + d}\right) - p \right|,$$

and noting that first term on the right side is equal to $q|\det(M)|\frac{1}{|c(c\theta+d)|}$ while the second term is $||q\psi||=\frac{x}{q}$, we obtain

$$\left| \frac{qa - pc}{c} \right| \le q |\det(M)| \frac{1}{|c(c\theta + d)|} + \frac{x}{q}.$$

Multiplying this by $\frac{c}{q}$ and applying it to the left side of (4.10) yields

$$(4.11) L\left(\frac{a\theta+b}{c\theta+d}\right) - \epsilon \le |\det(M)|L(\theta) + |c(c\theta+d)|\frac{xL(\theta)}{q^2}.$$

We now claim that

$$(4.12) L\left(\frac{a\theta+b}{c\theta+d}\right) \le |\det(M)|L(\theta)+|c(c\theta+d)|.$$

always holds. This is immediate if $L(\theta) \geq L(\psi)$. Now suppose $L(\theta) < L(\psi)$. Suppose we can let $\epsilon \to 0$ or else $\epsilon = 0$ through values with $qa - pc \neq 0$. Now the ratio $\frac{L(\theta)}{L(\psi) - \epsilon}$ becomes ≤ 1 in the limit, and since $q \geq 1$, (4.12) follows from (4.11). This completes the case $c \neq 0$. \square .

Proof of Theorem 1.2. Applying Theorem 4.1 and Lemma 2.1 gives

$$K\left(\frac{a\theta+b}{c\theta+d}\right) \le L\left(\frac{a\theta+b}{c\theta+d}\right)$$

$$\le |\det(M)|L(\theta)+|c(c\theta+d)|$$

$$\le |\det(M)|(K(\theta)+2)+|c(c\theta+d)|,$$

which is the desired bound.

Remarks. (1). The proof method of Theorem 4.1 can also be used to directly prove the bounds

$$(4.14) \frac{1}{|\det(M)|} L_{\infty}(\theta) \le L_{\infty}(M(\theta)) \le |\det(M)| L_{\infty}(\theta) ,$$

of Theorem 3.2, from which Theorem 1.1 can be easily deduced. The lower bound in (4.14) follows from the upper bound as in the proof of Theorem 3.2. We sketch a proof of the upper bound in (4.14) for the case $\psi = \frac{a\theta + b}{c\theta + d}$ with $c \neq 0$. For any $\epsilon^* > 0$ and all sufficiently large $q^* \geq q^*(\epsilon^*)$, we have

$$(4.15) q^*||q^*\theta|| \ge \frac{1}{L_{\infty}(\theta) + \epsilon^*}.$$

We choose $q = q_n(\psi)$ for sufficiently large n, and note that

$$q^* = |q_n(\psi)a - p_n(\psi)c| \to \infty$$

as $n \to \infty$, since ψ is irrational. We can then replace (4.9) by (4.15), and then deduce (4.11) with $L(\theta)$ replaced by $L_{\infty}(\theta) + \epsilon^*$. Letting $q \to \infty$, $\epsilon \to 0$ and $\epsilon^* \to 0$ in that order yields the upper bound in (4.14).

(2). For a given matrix M consider the set of attainable ratios

$$(4.16) \hspace{1cm} \mathcal{V}(M) := \left\{ \frac{L_{\infty}(M\theta)}{L_{\infty}(\theta)} : \theta \text{ has bounded partial quotients} \right\} \ .$$

By Lemma 3.1 the set $\mathcal{V}(M)$ depends only on its $SL(2,\mathbb{Z})$ -double coset

$$[M] = \{N_1 M N_2 : N_1, N_2 \in SL(2, \mathbb{Z})\}.$$

Theorem 3.2 shows that

$$(4.17) \mathcal{V}(M) \subseteq \left\lceil \frac{1}{|\det(M)|} , |\det(M)| \right\rceil .$$

It is an interesting open problem to determine the set $\mathcal{V}(M)$. Both $|\det(M)|$ and $\frac{1}{|\det(M)|}$ lie in $\mathcal{V}(M)$, as follows from Theorem 3.2 and the remark following it.

Acknowledgment. We are indebted to the referee for helpful comments and references, and in particular for raising the open problem about $\mathcal{V}(M)$.

REFERENCES

- A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University Press, 1984.
- 2. A. Châtelet, Contribution à la théorie des fractions continues arithmétiques, Bull. Soc. Math. France 40 (1912), 1–25.
- S. D. Chowla, Some problems of diophantine approximation (I), Math. Zeitschrift 33 (1931), 544-563
- 4. T. W. Cusick and M. Flahive, *The Markoff and Lagrange Spectra*, American Mathematical Society, Providence, RI, 1989.
- T. W. Cusick and M. Mendès France, The Lagrange spectrum of a set, Acta Arith. 34 (1979), 287–293.
- 6. H. Davenport, A remark on continued fractions, Michigan Math. J. 11 (1964), 343-344.
- 7. M. Hall, On the sum and product of continued fractions, Annals of Math. 48 (1947), 966-993.
- 8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford University Press.
- A. Hurwitz, Über die angenäherte Darstellungen der Zahler durch rationale Brüche, Math. Ann. 44 (1894), 417-436.
- D. E. Knuth, The Art of Computer Programming, Vol. II: Seminumerical Algorithms, Addison-Wesley, 1981.
- 11. M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207-215.
- M. Mendès France, The depth of a rational number, Topics in Number Theory (Proc. Colloq. Debrecen, 1974)
 Colloq. Soc. Janos Bolyai, vol. 13, North-Holland, Amsterdam, 1976, pp. 183–194.
- 13. M. Mendès France, On a theorem of Davenport concerning continued fractions, Mathematika 23 (1976), 136-141.
- 14. O. Perron, Über die Approximation irrationaler Zahlen durch rationale,, Sitz. Heidelberg. Akad. Wiss. XII A (4. Abhandlung) (1921), 3-17.
- G. N. Raney, On continued fractions and finite automata, Math. Annalen 206 (1973), 265– 283.
- W. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer-Verlag, 1980.
- J. O. Shallit, Continued fractions with bounded partial quotients: a survey, Enseign. Math. 38 (1992), 151-187.

18. H. M. Stark, Introduction to Number Theory, Markham, 1970.

J. C. LAGARIAS
AT &T LABS - RESEARCH
ROOM C235
180 PARK AVENUE
P. O. BOX 971
FLORHAM PARK, NJ 07932-0971
USA

 $\textit{E-mail address} : \ \texttt{jcl@research.att.com}$

J. O. SHALLIT
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO N2L 3G1
CANADA

 $\textit{E-mail address} : \ shall it @uwaterloo.ca$