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Abstract

This paper studies continuation methods for finding isolated zeros of nonlinear functions.
Given a nonlinear function F’: R™ — R™ a threading homotopy is a function H(x,\) : R"*1 —
R™ with H(x,0) = F(x), such that the zero set of H is a single connected curve containing all
zeros of F(x). For a C! function F’, a necessary condition for the existence of a nondegenerate
C?! threading homotopy is that the topological degree of F(x) be 1, 0 or —1. For C? mappings
in all dimensions except possibly n = 2 this condition is also a sufficient condition for existence
of a C? threading homotopy which is weakly proper over 0. A homotopy H is weakly proper
over 0if for every interval [a, b] the set H=1(0) N (R™ X [a,b]) is compact. This condition rules
out any part of the zero set escaping to infinity at a finite value of the homotopy parameter.

Threading homotopies are potentially applicable in continuation methods for finding all dc
operating points of nonlinear circuits. We show that most transistor circuits have dc operating
point equations F'(x) = 0 with deg(F) = +1, so that threading homotopies exist in principle
for such operating point equations. It remains an open problem to explicitly construct such
threading homotopies.
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1. Introduction

This paper studies continuation methods to find all zeros of a nonlinear function I’ : R*—R"
which has a finite number of isolated zeros. The continuation approach to finding zeros is to
find a function H(x,A) : R™ x R—R” such that H(x,0) = F(x) while H(x,1) = G(x) is a

function with known zeros, the zero set
D(H) = {(x,\) : H(x,\) = 0} (1.1)

is a union of curves (1-dimensional components), and these curves can be individually traced
from the known zero set

Iy ={x:H(x,1)=0}

to find all solutions ['g of F'(x). The function H(x, A) is called a homotopy, and a homotopy
path is a path (x(t), A(t)) for t € [0,1] on which H(x,A) = 0. One method to find all the
zeros is to choose a homotopy H (x, A) such that each zero of F'(x) is on a separate connected
component of the zero set of H(x, A), and separate homotopy paths are followed to find each

zero of F'(x), see for example Allgower and Georg [1], §6, [2], Chow et al. [8], Drexler [17], and



Garcia and Zangwill [20], [21]. This has the advantage of permitting parallel computation to
find different zeros. This approach has been proposed in particular to find complex zeros of
univariate polynomials F(z), see Kojima et al. [33].

In this paper we study the opposite extreme, which are homotopies H(x,\) : R"*15R"
with H(x,0) = F(x), such that the zero set of H(x,\) is a single connected curve. We
call a homotopy with this property a threading homotopy for I', because the zeros of F(x) are
threaded along a single curve in the zero set of H(x, A), which passes back and forth through the
hyperplane A = 0. More generally we consider semi-threading homotopies, which are homotopies
H in which all zeros of F'(x) are on a single connected component of the zero set I'(H) of H,
but I'(H) may contain other connected components. Using a semi-threading homotopy all zeros
of F(x) can be located by tracing a single curve.

This study of threading homotopies is motivated by the problem of numerically comput-
ing all dc-operating points of nonlinear resistive circuits, e.g. circuits with transistors. A dc
operating point' for a nonlinear resistive circuit is any solution of a given system of network
equations F'(x) = 0 for the circuit. The detection of multiple operating points is of considerable
practical concern in circuit simulation, because some solutions of the network equations may
represent unintended pathological modes of operation, so that the circuit may fail in the field.
To avoid this, one would like to detect all possible operating points during the circuit-design
phase, or at least alert the designer to the presence of more than one operating point, before a
decision is made to fabricate an integrated circuit. Existing circuit simulators do not guarantee
to find all operating points, and there is now considerable interest in developing methods that
will find all operating points, cf. Mathis and Wettlaufer [34], Trajkovié, Melville and Fang [43],
Melville, Trajkovi¢, Fang and Watson [36]. The use of continuation methods to find individual
operating points has a long history, see Chao and Saeks [6]. However the problem of developing
continuation methods guaranteed to find all operating points has received relatively little study.
The idea of finding several zeros of I'(x) along one curve was made in the early 1970’s in Branin
[5] and Chua and Ushida [12]. In some of their examples, there are zeros of F'(x) on several

connected components of I'(H). It is natural in pursuing this approach to try to get all zeros

'Some authors use the term dc equilibrium point for a solution to the network equations F(x) = 0, and reserve
the term dc operating point for a linearly stable equilibrium point. We call the latter a stable dc operating point,
as in Green [24] and Green and Willson [26].



on a single component, which is the threading homotopy problem.

We call a homotopy H(z,A) weakly proper over 0 if for every closed interval [a,b] the
restriction H to R™ x [a,b] is proper over 0, i.e. H~1(0) N (R" X [a, b]) is compact. For such a
homotopy no part of the zero set of H(x, ) can escape to infinity at a finite value of A. We
consider the following problem.

Weakly Proper Threading Homotopy Problem. Let F': R*—=R" be a C"-function

(1 <r < oo) having a finite set of isolated zeros. Construct if possible a C"-homotopy
H(x, ) :R" x R—R"™,
with
(). H(x,0) = F(x).
(ii). Nondegeneracy Condition. The Jacobian DH (x, ) has rank n whenever H(x, ) = 0.
(iii). Connectedness Condition. The zero set I'(H) = {(x, ) : H(x, A) = 0} is connected.

(iv). Weakly Proper over 0 Condition. For every closed interval [a,b] C R the restriction

H|:R™ x [a,b]—=R™ is proper over 0.

The condition (ii) implies that the zero curves {(x,A) : H(x,A) = 0} have no bifurcations,
and with condition (iii) this implies that the set H(x,\) = 0 is a single curve containing all
the zeros of F'(x). As mentioned above, condition (iv) prevents the zero set from escaping to

infinity at any finite value of A. The conditions (ii)—(iv) lead to two cases; pictured in Figure 1.1.

Case (a). I'(x) = 0 has an odd number of solutions. Then the sets
I'y={xeR": H(x,\)=0}

are nonempty for all A € R, and |['y] = 1 for all |A| sufficiently large. (Here, |I')| denotes

the number of elements in the set [').)

Case (b). F(x) = 0 has an even number of solutions. Then |['y] = 0 for all large A of one
sign, and for large A of the other sign |['y| = 0 or 2 according as the zero set I'(H) is

bounded or unbounded.



(a) [I's] odd (b) |T'\| even

Figure 1.1. Threading paths

We are particularly interested in case (a). There, H(x, A) = 0 for large fixed Ay has a single
zero Xx),, which one can use as the starting point for a homotopy method to find all zeros.

In §2 we present necessary conditions and sufficient conditions for existence of threading
homotopies. It is clear that, given a finite set of isolated points in R”t!, one can always
construct a smooth curve in R™+! passing through these points. However it is sometimes
impossible to extend a map F : R®—R" to a weakly proper threading homotopy H : R*"t15R™
For a C'' mapping F a necessary condition for the existence of a nondegenerate C'! semi-
threading homotopy is that the topological degree of I’ be 0 or +1. (Theorem 2.1). An
immediate consequence is that there exists no C'! semi-threading homotopy for finding all zeros
of a complex polynomial p : C—C, where C is identified with R whenever p(z) is nonlinear.
(Corollary 2.1). We show for mappings F’ that are C"(2 < r < oo) with a finite set of isolated
nondegenerate zeros that the condition deg(F’) = 0, or £1 is necessary and sufficient for C”
weakly proper threading homotopies to exist, in all dimensions except possibly dimension n = 2.
(Theorem 2.2). We then show for mappings I’ that are C” (1 < r < oo) with a finite set of

isolated nondegenerate zeros that the condition deg(#’) = 0 or £1 is necessary and sufficient



for the existence of a weakly proper " semi-threading homotopy, in all dimensions n > 1.
(Theorem 2.3).

To design threading homotopies, it is clearly useful to have criteria which verify that the
threading property holds. Diener [16] gives a (somewhat restrictive) set of global conditions
on a C%function H : R"*1R” which guarantee that it has the threading property. Diener’s

condition is that there exists some positive K such that
sup{|[(DH(x)DH (x)T)7!| : x e R"'} < K < o0, (1.2)

where the Frobenius norm [[M|| for the matrix M is |[M||* = 3, ; M. He proves that, when
(1.2) holds, the Newton’s method flow gives a retraction of R"*! onto the set I'(H), thus
establishing that ['(H) is a connected set.

In §3 we return to our motivating problem, which concerns the possible existence of thread-
ing homotopies to find dc operating points of nonlinear circuits. We present theoretical results
which indicate that threading homotopies exist for a large class of nonlinear circuits, without
exhibiting such homotopies explicitly. More precisely, we show that a large class of circuits
can be modelled so as to have operating point equations F'(x) = 0 with deg(F’) = £1. Results
showing that deg(F’) = 1 for some classes of circuits were already obtained in the 1970’s in work
of Wu [52] and Chua and Wang [13], and we describe one such result (Theorem 3.1). This result
already applies to a large class of circuits of practical interest. Our main new result of section 3
is a result implying that deg(F) = £1 for operating point equations of circuits in Sandberg-
Willson form with nonlinear elements satisfying a suitable passivity condition (Theorem 3.2).
This condition is quite general. It applies to circuits using bipolar junction transistors, and may
well hold for all other transistor types. In any case it appears that most if not all transistor
models can be easily modified outside the “physically relevant” parameter range to satisfy this
passivity property. The resulting operating point equations then detect all the “physically rel-
evant” operating points. We thus can construct operating point equations for which threading
homotopies exist in principle; it remains an open problem to explicitly construct such homo-
topies. At the end of §3 we briefly sketch a class of “circuit deformation” homotopies, some of
which have been used in circuit simulators (see [35], [43]). These homotopies satisfy a “no-gain”
condition which insures properness of the homotopy, as observed in [36], [42]. It may well be

that a subclass of these homotopies have the threading property.



The problem of explicitly constructing threading homotopies to find dc operating points
seems to warrant further investigation, in view of the lack of reasonable alternative methods
to find multiple dc operating points for nonlinear circuits. We are not aware of any existing
method that can specify in advance the number of operating points of a given circuit, and this
seems to rule out approaches that follow distinct paths to find each zero separately. Other
zero-finding methods that proceed by a grid search to find zeros would be prohibitively slow
due to the very large dimensionality of the search space for any reasonable sized circuit. Various
algorithms have been given to find all operating points for piecewise linear models of circuits,
see Chua and Ying [14], Pastore and Premoli [39] and Yamamura [54]. Here the enormous
dimensionality of the search space presents difficulties. In contrast, methods that trace a single
connected component can be immediately implemented in any software that uses continuation
methods. Indeed they are already in use, but at present come with no guarantee of finding all dc
operating points (see [35], [36], [43].) Finally we note a recent approach using multi-parameter
homotopies, proposed by Wolf and Sanders [51].

This paper presents rigorous results for functions /'(x) and homotopies that are continuously
differentiable. Similar questions can be raised for piecewise linear functions /'(x) using piecewise
linear homotopies. Piecewise linear functions and homotopies have been considered in modelling
nonlinear circuits, see for example Huang and Liu [30], Ohtsuki et al. [38], and Vandenberghe

et al. [45].
2. Existence of Threading Homotopies

We derive necessary conditions and sufficient conditions for the existence of threading ho-
motopies. The basic invariant used is the topological degree of a mapping. Let F : R*—R"
be continuous and suppose that I’ is proper over 0, i.e. that the zero set I'(F') is compact. If
[(F) C B(0,T) = {x : ||x|]| < T}, and S*7! = {x : ||x|| = 1} then for R > T the map F
induces a mapping ¢ppr: S""'—S""! given by

F(Rx)

=——~ for xe S,
|| F (kX))

or.R(x)

The homotopy class of ¢ g(x) in the homotopy group m,_1(S"1) = Z is independent of
R > T and is called the degree of F, denoted deg(F). We identify m,_1(S™~!) with Z, using



the isomorphism in which the degree of the identity map is 1, and henceforth view deg(F’) as
an integer.
Now suppose that the zeros of F' are isolated and finite in number. The indez indy, (F) is

defined for any isolated zero xq of a continuous function F'(x), as the degree of the mapping

F.: 8"~ 1 587~ given by

 P(xo+ ex)
)= o+ o]

x[l=1,
for small enough positive ¢ (see Cronin [9], p. 53); any integer can occur as a value of indy, (F”).
The degree of F is given in terms of the indexes of the zeros of I’ by

deg(F)= > indy,(F). (2.1)

F(Xo)ZO
More generally, for an open set U in R”™ whose closure U is compact, and with F(x) # 0
everywhere on its boundary dU, we set
deg(F;U) := E indx, (F) .
F(xqg)=0

X()EU

Now suppose that Fis C'. A zero xq of F(x) is nondegenerate if det(DF(xq)) # 0.

(Nondegenerate zeros are always isolated.) The indez of a nondegenerate zero x¢ then satisfies
indy, (F') = sign (det(DF(xq)) = +1 .

The degree is an invariant of homotopies which are weakly proper over 0, in the following
sense. Suppose the C” function H (x, ) : R™ x [0, 1]—=R" is proper over 0, where r > 1, and set
F\ = H(x, ). Assume that 0 is a regular value for H, for Iy, and for I, i.e. all three Jacobians
DH, DF, and DF; have rank n at all points of the zero set. Then H~'(0) is a one-dimensional
“neat” C"-submanifold of R”™ x [0, 1] (Hirsch [28], 1.4.1). This 1-manifold is compact because H
is proper over 0, so the zero set does not “escape to infinity.” Then one has deg(Fp) = deg(F7),
by an easy adaptation of the proof of Corollary 5.1.3 of Hirsch [28]. Similarly, if U is as above,
and H~'(0) is disjoint from U x [0, 1], then deg(Fo;U) = deg(F1;U). The necessity for the
assumption “proper over 0”7 in such a homotopy is shown (for n = 1) by:

H(x,\) = 2 arctan(z) — A,

m



where “escape to infinity” occurs, and deg([y) # deg(Fy).

We give a necessary condition for the existence of a semi-threading homotopy. Call a C!
homotopy H nondegenerate if its Jacobian DH (z,\) has full rank n at every zero of H(x, A).
Theorem 2.1. Suppose that the zero set of a Cl-mapping F : R*—=R™ consists of a finite num-
ber of isolated nondegenerate zeros. If the Cl-function H(x,\) : R"T'SR" is a nondegenerate
semi-threading homotopy extending F(x), then the degree of I is 1, 0 or —1.

The simple proof of this result is based on the following well-known fact, which concerns
the index of successive zeros encountered in following a continuation method path having no
bifurcations. It is essentially 5.1.1 in Hirsch [28], who however assumes all functions are C'*°,
see also [3], Corollary 11.5.6. We include a proof for the reader’s convenience.

Lemma 2.1. Suppose that the C'-mapping F : R"—R" has a finite zero set with all zeros
nondegenerate. If H(x,\) : R""'5R"™ is a C'-function with H(x,0) = F(x) and the Jacobian
DH (x, ) has full rank n at every zero of H, then any two consecutive zeros x', x" of F(x)

found by traversing a solution curve (x(t), A(t)) of H(x,A) = 0 have opposite indez, i.e.

det(DF(x')) det(DF(x")) < 0 . (2.2)

Proof. By the implicit function theorem (x(t), A(¢)) is locally defined and C' in a neighbor-
hood of every zero (xg, Ag) of H(x, A). When traversing the curve (x(¢), A(t)), in the zero set

I'(H) from x’ to x”, the augmented gradient of H is:

- OH
DH —
oA
J = ,
dx  d)\
dt  dt
in which DH = [% oo %} and & = (dxét(t), e dxgt(t)). The augmented Jacobian det(J) is
always nonzero, because the tangent vector v = (fl—’t‘ , %&t)) to the curve is perpendicular to

the row space of DH (x(t), A(t)). Hence det(J) has constant sign; call this sign é. In addition

this perpendicularity gives

- OH ) .
DH — I %7 DH o0
I\
dx - dA o 2 o]



2 2
because <%) +> <d£¢) = 1, using the arclength parametrization. Taking determinants,
we obtain

dA ~
det(J)% =det(DH) .

At a point (x(t'), A(t')) = (x, 0) which gives a zero of F', DH(x') = DF(x') hence
. , . dA
sign (det DF(x')) = € sign ) (2.3)

If t' < t" are two consecutive zeros of A(t) along the curve, then the sign of A(t) is constant on

sign <%(t’)) = — sign <%(t”)) :

Then (2.3) shows that det DF'(x") and det(DF(x")) have opposite signs, and (2.2) follows. =

the interval (#/,¢"), while

Proof of Theorem 2.1. Suppose that x1,Xg,...,X,, are the zeros of F'(x) in the order they
are encountered when traversing, in a fixed direction, the curve {(x(t), A(t)) : t € R} comprising

the connected component of the zero set [I'(H) that contains the zeros of F'(x). By Lemma 2.1,
indy, (I") + indyx,, () =0.

Applying this in pairs, we have deg(F) = 0 if F'(x) has an even number of zeros, and
deg(F') = indy,, (F) = £1

if F'(x) has an odd number of zeros. =
This degree constraint of Theorem 2.1 is automatically satisfied in dimension n = 1, and in
that case the homotopy
H(z,\)=F(z) - X (2.4)

is always a threading homotopy. However in dimensions n > 2 the degree constraint is a
nontrivial obstruction:
Corollary 2.1. Let p(z) = Z;l:o ajzj be a polynomial of degree d > 2 with distinct roots.

If p(z) is regarded as a mapping p : C — C, then there exists no semi-threading homotopy

H(z,A): CxR—=C for p.

10



Proof. The index of each simple zero of a polynomial p(z) is 1. To see this, translate the
zero to z = 0, and by simplicity of the zero only linear terms in p(z) contribute to the index, so
without loss of generality suppose that p(z) = az, with a # 0. Write @ = a+bi and z = z +yi,

and viewing p(z) = (Re(p(z)), Im(p(z)) in R? one finds
Dp(0) = [ ) ;b ]

hence det(Dp(0)) = a* + b? > 0 since a # 0. Thus deg(p) is just the algebraic degree of p(z),
and is at least 2 if p(z) is not linear, hence Theorem 2.1 gives the result. =

Corollary 2.1 also holds for polynomials p(z) having multiple zeros, using the general defi-
nition of index, cf. Milnor [37], p. 32, but it does not apply to general multivariate polynomial
maps P : C"—C". For n > 2 such a polynomial map can have an isolated zero with index —1.
However one can show that if the map P(z) has real coefficients, then all nondegenerate real
zeros of P(z) have index 1, see Cronin [9], Lemma 9.3.2. In particular, if such a map has at
least two zeros, with all zeros real and nondegenerate, then deg(P) > 2, so that Theorem 2.1
applies to show that no threading homotopy exists.

We next establish sufficiency of the condition deg(F) = 0, or 1 for the existence of a

threading homotopy for C? mappings in dimensions n # 2. For this we introduce a condition
stronger than “weakly proper over 0.” Call a function H (x,A) R-proper over 0 if there is a
compact set B C R” such that H=!1(0) C B x R. This is “weakly proper over 0” with an
additional uniformity condition in the R-direction.
Theorem 2.2. For any n # 2, let F' : R"—=R" be a C"-mapping (2 < r < oco0) whose zero
set consists of a finite number of isolated nondegenerate zeros. If deg(F) is 1,0 or —1 then
there exists a nondegenerate threading homotopy H(x,\) : R"*'R™ for I, such that H is a
C" mapping which is R-proper over 0.

We do not know if Theorem 2.2 is true when n = 2.

The main part of the proof is:

Lemma 2.2. Suppose that n > 3 and that F' : R” — R" is a C"-mapping (2 < r < oo) which
has ezactly two zeros x* = (£1, 0,...0) with indg+ (F) = 1 and indy— (F) = —1. Then there
exists a C"-homotopy H(x,\) : R” x [0,1] — R™ with H(x,0) = F(x), stationary outside a

preassigned neighborhood of the line segment connecting x* and x~ such that H=(0) is a C"

11



embedded “neat” arc in R™ x [0, 1].

Here, as in Hirsch [28], p. 30, “neat” means that the arc meets the boundary at (x*,0) and
at (x7,0) in a C"-manner.

A form of Lemma 2.2 is essentially to be found in Whitney [46]; topologists call all of
its variants “The Whitney Lemma.” The condition n > 3 arises from Whitney’s need to
approximate a singular disk in R?” by an embedded disk. It is not clear to us however that the
proof in [46] avoids introducing extra circle components in H~' (0) N(R™ x [0, 1]): compare the
difference between semi-threading and threading above. However this problem is avoided in a
rather elementary proof of Lemma 2.2 appearing in Jezierski [27, Lemma 2.2]. The proof of
Jezierski makes no mention of embedded disks. Rather, it uses advanced calculus and the fact
that spheres of dimension > 2 are simply connected. Like Whitney’s proof, it is presented for
the C'*°-case; however the proof requires only the hypothesis C?, hence our restriction r > 2.

Jezierski uses n > 3 for the property of (n — 1)-spheres mentioned above.

Proof of Theorem 2.2. The necessary degree condition was already shown to be sufficient
in dimension 1, see (2.4), so suppose that n > 3. Lemma 2.2 shows how to “remove” a pair of
zeros of opposite degree. Now suppose deg(F’) = +1. Then one can arrange the zeros in an
order x1, %g3,...,Z2m,+1 S0 that consecutive zeros have opposite degree. One can find arcs con-
necting them in pairs (z;, #;+1) so that all tubular neighborhoods of disjoint pairs are disjoint.
One can then combine the homotopies above for the pairs (21, z2), (3, %4), ... (Z2m—1, Tam),
with homotopy parameter 1 > A > 0 and those for (z2,23), (z4,25), ..., (T2m, T2m+1), With
homotopy parameter 0 > A > —1, to obtain a threading homotopy, which is R-proper over 0.
With care, one can ensure that the “combined” homotopy is still C"; see Jezierski [31] for a
discussion of similar matters. A slight and obvious modification handles the case deg(#) = 0. =
Finally we establish the sufficiency of the condition deg(#’) = 0 or +1 for the existence of
a semi-threading homotopy for C'' mappings in all dimensions n > 1. We include this result
because it is the best we can do when n = 2, and, while it obtains a weaker conclusion than
Theorem 2.2, it has a more elementary proof.
Theorem 2.3. For alln > 1, let I’ : R"—R" be a C"-mapping (1 < r < oo) whose zero set

consists of a finite number of isolated nondegenerate zeros. If deg(F) =1, 0 or —1, then there

12



exists a nondegenerate C™ homotopy H(x, ) : R" L R™ extending F, which is weakly proper

over 0, such that:
(). All zeros of F'(x) lie on a single connected component of the zero set of H(x, \).

(ii). All other components of the zero set of H(x, \) are closed loops on which 0 < |[A| < 1.

Proof. The necessary degree condition was already shown to be sufficient in dimension 1, see
(2.4). For n > 2 we use an approach which starts from the proof of Lemma 5.2.9 of Hirsch [28].
That lemma essentially shows that given two zeros of degree 1 and —1 respectively, together with
an arc connecting them, and a tubular neighborhood U, of the arc, then there is a continuous
function GG agreeing with F outside U; which has no zeros in U;. That lemma is stated for C'*°
maps, but the cited proof, and all other proofs cited below, go through without change for C”
maps, with r > 1.

Now pick a nested collection of tubular neighborhoods Us; C Uy C Uy C U, where the closure
of each lies in the next; to find these, use the Tubular Neighborhood Theorem, Theorem 4.5.2 of
Hirsch [28]. We have already used U,. Note that G = F outside U; so G is C" outside U;. We
use the Relative Approximation Theorem 2.2.5 of Hirsch [28] to obtain a C" map G agreeing
with G = F outside Uy, which is close enough to G inside U, that it has no zeros there. (To be
specific: use that theorem with Hirsch’s U and K being Uy and with his W being U;.)

Let ¢ : R—R be a C"-function satisfying 0 < ¢(A) < 1, with ¢(X) = 0 for A <0, ¢(X) =1
for A > 1, and define J : R" x R—R" by

J(x,A) = ¢(1 = NF(x) + ¢(N)G(x) .

Now J is C". Let N = U x [0,1]. N has “corners” at dU, x {0,1}, so N is a C°-manifold
but not a differentiable manifold. The set (J|sn)~'(0) = {x’,x"}, where x’ and x” are the
two zeros of I’ that we are trying to remove. By “smoothing out the corners” (see Kirby and
Siebenmann [32], pp. 8 and 119) we can find a differentiable manifold M lying in the interior of
N with respect to R™ x [0, 00) — interior in the topological sense — such that Uy x {0} C M,
see Figure 2.1.

There is a relative transversality theorem, stated as “Corollary” on p. 73 of Guillemin and

Pollack [27], which says that .J|55s can be extended to a map J : M—R" which is transverse to

13



{0}. Extend J to R” xR so as to be C" and agree with .J outside M. Then (J|57)~"(0) includes
an arc of zeros of the type desired. However (.J|3r)~'(0) may also contain extra components,
which are closed loops in the interior of M. If x ¢ Uy, then J(x,\) = F(x,\) for all A € R.
Thus we have shown how to connect and “remove” a pair of zeros of opposite degree.

Now if deg(F") = —1, 0 or 1 one proceeds exactly as in the proof of Theorem 2.2, to thread

all the zeros together. =

R" x [0, 0o

s— U)

Figure 2.1. Smoothing out the corners

3. DC Operating Points of Nonlinear Resistive Circuits

The theory of dc operating points of transistor circuits is surveyed in Trajkovi¢ and Willson
[44] and, for work before 1974, in Willson [48]. In this section we make the theoretical obser-
vation that threading homotopy methods potentially apply to the dc operating point problem
by showing that most circuits can be modelled with operating point equations I'(x) = 0 such
that deg(F’) = 1. It follows that there is no topological obstruction to the existence of thread-
ing homotopies for such equations, and they certainly exist whenever Theorem 2.2 applies, i.e.
when F is C?; see also Theorem 2.3.

There is a long history of results on topological degree applied to nonlinear networks. These
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methods were developed to prove the existence of dc operating points, for which it suffices to
prove that deg(F) is odd, see Chua and Wang [12, Property 7]. The original method of Wu
[52] uses passivity properties of the circuits to prove deg(l’) = +1, and we follow this approach
here.

We consider nonlinear circuits made up of transistors and nonlinear diodes, and driven by
active sources which are current sources or voltage sources. A nonlinear resistive network is
passive if

P(v,i) = (v,):=v1t1 + vaia + ...+ vut, > 0 (3.1)

for any allowed set of voltages v and currents i. Here P(v,1) measures the power consumed
by the network, and the passivity condition? asserts that a network never generates power
internally, but may consume power. Circuits composed solely of nonlinear passive resistors and

transistors with no voltage or current sources are passive.

For a general circuit we extract a set of n independent variables x = (z1,...,2,) among
the 2n variables {vy,..., vy, 41,...,14,}, one from each pair (v;,7;), and solve for the remaining
variables y = (v1, ..., yn) using Kirchhoff’s voltage and current laws, to obtain

y=F(x).

That is, the variables y are uniquely determined as functions of x, and we call x the controlling
variables. The simplest case consists of wvoltage-controlled circuits, in which the controlling
variables v = (vy,...,v,) are the node voltages, giving potentials measured from a reference
node (“ground”) in the network, and the remaining variables 1 = (4;,...7,) give the currents
at each node. (There are no voltage or current variables for the reference node.) We may force
the node voltage at node k£ to be v, by attaching a new branch from the reference node to node
k which either contains a voltage source with potential vy or a current source with current i,

with the branch oriented towards node k. We define the column vector
F(v) = (F(v),..., F,(v))T, (3.2)

where i, = Fj(v) denotes the current at node k entering from the branch containing the voltage

source vg. The operating point equations for a voltage-controlled circuit with offered currents

2More general definitions of passivity are discussed in Chua et al. [10] and Wyatt et al. [53].
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1= (il,ig,...,in) is

F(v)=i. (3.3)

For fixed i € R™ this equation may have zero, one, or many solutions in v. The power P(v,1i)

drawn by the circuit from the voltage sources is
P(v,i) = (v, i) = (v, F(v)) (3.4)

and the passivity condition asserts that P(v,1) > 0.
The relevance of a passivity condition to the topological degree of F(v) —1iis the following
well-known fact.

Lemma 3.1. If a function G : R"—=R" satisfies a strict coercivity condition
(x,G(x)) >0 i [ix]|> R, (3.5)

then deg(G) = 1.

Proof. The condition (3.5) shows that all zeros of G'(x) lie in the compact set ||x|| < R. The
map ég,r(x) = %% is homotopic to the identity map on S™~! using radial projection of
the map

Ga(x) = MG(Rx) + (1 — M\)x, xeS™h,  0<A<1.

onto S™7! which is well-defined since the strict coercivity condition gives (x,G\(x)) > 0,
hence G\(x) # 0. Now deg(G) = 1 by the invariance of degree for homotopies proper over 0,
as explained in §2. "

If we set

E(v):=F(v)-1i (3.6)

then a sufficient condition for Fj(v) to satisfy a strict coercivity condition (3.5) can be given
in terms of the power drawn by the circuit. We say that function F(x) is eventually strongly

passive if there exist ¢ > 0 and R > 0, such that

(x, F(x)) > c||x||*, for||x||>R . (3.7)
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A positive linear resistor has this property. Eventual strong passivity of F'(x) implies eventual

strong passivity of Fe(x) for each ¢ € R™, since

(x, Fe(x)) = (%, F(x)) = (x,¢)

cllx[* =[xl llell, if [|x]| > & ,

v

v

1
el i [l > &7

with B’ = max(2||c||, R).

(3.8)

We now present results which show that deg(F’) = £1 for two large classes of circuit equa-

tions. One reasonably large class of transistor circuits has dc operating point equations that

are of the form

F(x)+Px=s,

(3.9)

in which F(x) is a vector of n functions of x describing the effect of nonlinear elements of

the circuit, assumed eventually passive (defined below), the conductance matrix P is assumed

positive definite but not necessarily symmetric, and s is a constant describing the active sources

in the circuit. Chua and Wang [13, theorem 2] prove the following result.

Theorem 3.1. Let F': R"—R"™ be a function
F(x) = F(x) + Px ,
in which P is a positive definite matriz and F(X) is eventually passive, that is,

(x, F(x)) >0 forall ||x||>R .

(3.10)

(3.11)

Then F(x) is eventually strongly passive, hence if I'.(x) = I'(x) — ¢, then deg(Fc) = 1 for all

c e R™
Proof. Positive definiteness of P gives
(x, Px) > c||x]|*, all x € R",
for some positive constant ¢. The eventual passivity condition for ﬁ’(x) yields

(x, F(x)) > (x, Px) > cl|x|[* i [Ix]| > R,

17
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i.e. F'(x) is eventually strongly passive. Now deg(F,) = 1 follows from (3.8) and Lemma 3.1.
.

Theorem 3.1 is readily applicable to a wide class of practical circuits. Consider for the mo-
ment voltage-controlled circuits using bipolar junction transistors. These circuits are modelled
using variants of the Ebers-Moll transistor model as a two-port in the common base config-
uration, see Appendix A. The resulting circuit equation has the form (3.9) except that P is
positive semidefinite rather than positive definite. Existing circuit simulators, such as SPICE,
add small shunt conductances to the Ebers-Moll model, see for example [4, p.14, 44, 45] where
the variable is denoted GMIN. These conductances are modelled as two resistors with resistances
(GMIN)~! between the base and the other two nodes of the transistor. If these resistors are
migrated to the linear part of the circuit, this will change the matrix P to P + diag(GMIN),
which is positive definite, and Theorem 3.1 applies. Green and Willson [26] give a detailed
description of circuits satisfying Theorem 3.1.

We next prove a general result which applies to nonlinear circuits in the Sandberg-Willson
form that separates linear and nonlinear parts of the circuit, see [40], [41], [47] and which
assumes a weaker passivity condition than Theorem 3.1. This result applies to circuits with
Ebers-Moll transistors without shunt conductances added. The nonlinear elements are treated

as voltage-controlled, with response function

i
F(v)=-1i, with i=] : . (3.13)
in
The linear part of the circuit has response
Qi=P(v—-c), (3.14)
in which (P, Q) are a passive pair of n X n matrices, i.e.
Qi= Pv implies (v,i)=vTi>0, (3.15)

and c is a vector of constants representing independent sources. Any linear circuit consisting of
positive linear resistors and independent voltage sources can be put in the form (3.14), as well

as many linear circuits containing current sources, see Sandberg and Willson [41, Theorem 1 ff].
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This set of equations is converted to circuit equations in Sandberg-Willson form by eliminating

the current variables i, to obtain the nonlinear system of equations
QF(v)+ P(v—c¢c)=0. (3.16)
We establish the following result.
Theorem 3.2. Let I : R"—R" be a C'-mapping and consider the mapping G : R"—R™ given
by
G(x):=QF(x)+ P(x—c¢), (3.17)
in which (P,Q) is a passive pair of n x n matrices, and c is given. If there exists R > 0 such
that F'(x) satisfies
(x—c, F(x))>0 for ||x|]|>R, (3.18)

then deg(G) = £1.

Remark. The condition (3.18) is a passivity condition that is much less stringent than the
eventually strong passivity condition (3.7). Note also that the form of G(X) can apply to
operating point equations using any set of controlling variables (hybrid variables) rather than

voltages.

Proof. We first study the 2n x 2n system G = (G1,G2) given by
Gi(xy) = FE)+y
Ga(x,y) == Qy-Plx-c).
We consider the homotopy H : R?*"*13R2?" given by H = (Hy, Hy) with
Hi(x,y,)\) == (1-NF)+Ax—¢c)+y,
Hy(x,y,A\) = Qy-Px-c). (3.19)
We will show that H is a homotopy proper over 0 and that deg(H (x,y;1)) = +1. This will
imply that deg(G) = deg(H (x,y,0)) = £1 by invariance of degree for proper homotopies.

To see that H is a proper homotopy, we show that all zeros of H(x,y, A) for 0 < A <1 lie

in a compact set. Any such zero satisfies
(1-NFx)+Ax—c)+y=0 (3.20)
Qy=Px-c).
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Now

(x—c, Hi(x,y,\))=(1 =N {x—c, Fx))+ A|x—c|* + (x—¢c,y).

The passive pair condition gives

<X - C7Y> > 0 )
which with (3.18) gives for 0 < A <1 that
<X_C7H1(X7Y7A)>>O Zf ||X||>R/7

where we define R’ = max(R,||c]|).

To see that deg(H (x,y,1)) = £1, we observe that G*(x,y) = H(x,y, 1) has
Gix,y) = x—c+y.
Gy(xy) = Galxy) = Qy - Px—-¢).
Thus any zero of G* has y = —(x — ¢) and the equation G3(x,y) = 0 becomes
Q(~(x—¢)) = Plx—c) .
Since (P, @) is a passive pair, this gives
- o) (x— ) = ~llx el > 0.

This forces x = ¢, hence G* has a unique zero (c,0). Since G* is an affine map that has a

unique zero, it is invertible, hence its Jacobian det(DG™) does not vanish. Thus

deg(H (x,y,1)) = deg(G*) = sgn (det L é D — 41, (3.21)

We have now established that
deg(r) = deg(H (x,y,0)) = deg(H (x,y,1)) = +1 .
To complete the proof, we show that |deg(G)| = |deg(G)|. To do this let K : R?"+1 — R” be
the homotopy K = (K71, K3) with
Ki(x,y,A) = Gi(xy - AF(x)),
(3.22)

Ky(x,y,A) = Gax,(1-Ny—AF(x)) .
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Now K is proper over 0 by an argument similar to that given for H. Also
K(xy,0)=Gx,y) and K(x,y,1)= (y,~G(x)) , (3.23)

so we have deg(G) = deg(K (x,y,1)). Interchanging coordinates in K(x,y, 1) and multiplying

by —1 does not change the absolute value of the degree, hence

| deg(G)| = | deg(K (x,y,1)| = |deg K (x,)| , (3.24)

where
K(x,y) = (G(x),y) = (Gx I)(x,y) . (3.25)
Now deg(K (x,y)) = deg(G/(x)), which proves that | deg(G)| = | deg(G)| = 1. ]

Theorem 3.2 applies to nearly all transistor circuits of practical interest. To verify the
passivity condition (3.18), it suffices to check it on each nonlinear circuit element separately.
For example, it holds for the Ebers-Moll model for bipolar junction transistors for all ¢ € R? as
is shown in Sandberg and Willson [41, Theorem 5], see Theorem A.1 in the Appendix. If there
are nonlinear elements for which (3.18) does not hold, we may modify their responses for large
||x|| to force (3.18) to hold. In this way we obtain modified operating point equations that
detect all the “physically relevant” dc operating points. We propose such model modifications
purely as artificial adjustments to the transistor model, but actual transistors exhibit breakdown
behavior which is roughly equivalent to a passivity property like (3.18).

The degree results show that for most circuits there exist in principle network equations
having threading homotopies. It remains an open problem to find explicit threading homotopies
for particular classes of network equations.

One of the difficulties in using homotopy methods in circuit simulators to find all zeros is
to force properness of the homotopy, to prevent zeros “escaping to infinity.” Trajkovi¢ et al.
[42] and Melville et al. [36] noted that this can be achieved for various circuits that have the
“no-gain” property defined in Willson [49] and Chua et al. [11]. A circuit has the no-gain
property if for any set of attached independent sources (either voltage or current sources), the
voltage difference between any two nodes of the circuit does not exceed the absolute values of
voltages across all the independent sources, and the current flowing into any node does not

exceed the sum of the magnitudes of currents flowing through all the independent sources. In
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[49] it is shown that all connected networks composed of two-terminal and three-terminal no-
gain elements have the no-gain property, and that linear resistors, bipolar junction transistors
and MOSFETS all have the no-gain property. Suppose that one can find a homotopy H(x, \)

for 0 < A < 1 with the two properties:

(i). H(x,A) = F\(x), where each F\(x) is the operating point equation for a circuit
C'y that has the no-gain property, for 0 < A < 1.

(i). H(x,0) = F(x) and H(x,1) = Fj(x) corresponds to a circuit with a unique

operating point.

The no-gain property of all circuits C'y then implies that the homotopy is proper. In this
case it directly follows that deg(F’) = 1 from the invariance of degree for proper homotopies,
because deg Fy(x)) = 1 by (ii). Such “no-gain” homotopies can often be found by varying the
parameters of the circuit elements, as described in [36]. The particular usefulness of such “no-
gain” homotopies is to give a priori bounds on a region containing all zeros of such homotopies,
see Trajkovi¢ et al [42]. These bounds provide a simple error check on correctness of homotopy
computations.

There is a natural class of candidate homotopies to consider for use in circuit simulators,
which we may call sandwich homotopies, that may well include threading homotopies. These
homotopies are constructed using circuit deformation homotopies { H(x,A): 0 < A < 1}, which
deform the circuit parameters of a no-gain circuit to obtain a circuit having a unique operating
point. A sandwich homotopy consists of combining two circuit deformation homotopies which
vary the circuit parameters in different ways, with one used on 0 < A < 1, and the other on
—1 < A <0, and then we set H(x,A\) = H(x,1) for A > 1, and H(x,\) = H(x,-1) for A < —1.
Some care is needed to make such a homotopy C? at the boundary values A = 1, 0 and —1.

We describe one kind of circuit-deformation homotopy, following the approach of Melville
et al. [36], for circuits consisting of linear resistors and bipolar junction transistors. First, the

3 are each

coupling elements in the bipolar junction transistors, the forward and reverse gains,
reduced monotonically to zero. By results of Willson [49], the transistors produced during this

process retain the no-gain property throughout. Now one has a network of uncoupled diodes

9These are the gain parameters o and ar appearing in the Appendix.
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whose v — i curves are eventually monotone, i.e. either f’(z) > 0 for |z| > R. The second
part of the homotopy is to deform the voltage-current curves of the diodes to make them all
monotone, by a C*-homotopy applied to each voltage-current curve on a bounded region. (The
diode v — 7 curves must satisfy some mild conditions for this to be possible. If f/(z) > 0 for
|z| > R then f(—R) < 0 < f(R) suffices.) The resulting circuit of strictly monotone diodes
has a unique operating point, by a well-known result of Duffin [14, Theorem 3]. One wants
such homotopies H(x, ) to be bifurcation-free, i.e. for the rank n condition (iii) above to be
satisfied. This can be done by allowing a space of small C? deformations around the homotopy
described above, using the approach of Chow, Mallet-Paret and Yorke [7]. These homotopies
certify that deg(Fp) = 1, because deg(F7) = 1 by the result of Duffin [18] and the homotopy
can be shown to be proper using the no-gain condition.

Sandwich homotopies come with no guarantee of being threading homotopies. However
they have successfully been used to find more than one operating point, see Green and Melville
[25]. In particular Melville et al. [36] describe a variable-gain homotopy which seems to work
well in practice, and which has been implemented in Sframe, a circuit simulation platform,
see [35]. Some of these homotopies have been observed empirically to have the threading
property. Perhaps a subclass of them can be proved to have the threading property, using
Diener’s condition (1.2) or an analogous criterion.

Acknowledgements. We are indebted to M. Green for corrections and improvements to an
early draft version of the paper, and to L. Trajkovi¢ for comments and references concerning
the no-gain condition. We thank S.-C. Fang, .. T. Watson and the many referees for helpful

comments.
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Appendix. Ebers-Moll model for bipolar junction transistors

The Ebers-Moll large signal model ([4], [19], [22]) for a bipolar junction transistor is pictured
in Figure A.1. This is the injection version of the Ebers-Moll model given in Getreu [22] , p. 12.
A node in a circuit designates a connected set of points in the circuit which are all at the same
voltage with respect to a reference point, usually called ground. There are only three nodes
in the Ebers-Moll model- collector, base, and emitter. In Figure A.1 the base node has been
drawn as two terminals (bq, b2) in order to treat the transistor as a two-port; this arrangement
is conventionally called the common base configuration for the Ebers-Moll model. This circuit

element contains two nonlinear diodes with (different) response curves of the form
F(0) = m(e™ - 1), (A1)

where m and n are both positive parameters. The ezponential diodes (A.1) are sometimes called
Ebers-Moll diodes. It also contains two current-controlled current sources with current gains
ar, ap that satisfy 0 < ap,ar < 1. The current flowing through a current-controlled current
source is equal to a fixed current gain « times a controlling current I flowing on a branch
somewhere else in the circuit. Thus a current-controlled current source is a linear element that
produces coupling between different parts of the circuit. Figure A.1 models specifically an npn
transistor; the model for a pnp transistor is obtained by systematically reversing the current

flow throughout this model.

ic
by

Figure A.1 Ebers-Moll model (common base configuration)
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This two-port can be viewed as a voltage-controlled two-port with the current responses

Tc o 1 - fl(v c)
BT Vs =

where vy and v, are the branch voltages. For example in Figure A.1 the current 2, flowing
out of the two-port into the collector terminal is the sum of two components: a current f;(vs.)
flowing in the same direction as ¢, and a current ar fz(vy.) flowing in the opposite direction as
ic, in accordance with the minus sign in (A.2).

In (A.2) the exponential diodes are

Ji(v1) = Les(e™™ = 1), (A.3)

and

fa(v2) = Ies (™ = 1), (A.4)

where I~cs is a parameter called the collector-base saturation current, and fes is a parameter
called the emitter-base saturation current. The quantities n; = Hqu, and ng = ;72, in which
q is the electron charge,  is Boltzmann’s constant and 7T} and T, are the temperatures at the
collector and emitter nodes, respectively. The temperatures are usually equal under normal

operating conditions. The power consumed by the transistor is

P = icfl (vbc) + ief? (vbe) . (A5)

Sufficient conditions for such a transistor to be passive ([23]) are that

l§

n 1
ap < =< and ong—lg—, (A.6)
es R N2 R

Sufficient conditions for such a transistor to satisfy the no-gain condition ([47]) are that

NCS S i
I.; — ar

IN

oF and n; =mngy . (A.7)

The conditions (A.7) hold under normal operation.
Sandberg and Willson [41, Theorem 5 and footnote 5] establish the following passivity prop-

erty of Ebers-Moll bipolar junction transistors.
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Theorem A.1. (Sandberg and Willson) Let 0 < oy < 1 and 0 < a3 < 1 be given. Suppose
that
fi(vk) = myg(exp(ngvg) — 1) for 1=1,2, (A.8)

with mgpn, > 0 and with

alg%ga% andQISZ—;SO%. (A.9)
Then for any (c1,cz) € R? the quantity
P(vy, v9) = [v1 03] l _22 —f‘l ] l 22213 ] 7 (A.10)
satisfies
lim  P(vy,v2) =400 . (A.11)

[[v]l—eo
Detailed models for bipolar junction transistors (see ([4], [12], [22]) elaborate on the Ebers-
Moll large signal model. In SPICE additional conductances are added for stability in solving
the algorithms, which amount to adding linear resistors with large resistances R = (GMIN)™1,

as pictured in Figure A.2.

7 7
by - — b,
+ +
R Ube Ube R
C - n €
e e

Figure A.2. Added shunt conductances (resistors)
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