INTEGRAL SELF-AFFINE TILES IN R" II. LATTICE TILINGS

JEFFREY C. LAGARIAS AND YANG WANG

ABSTRACT. Let A be an expanding n X n integer matrix with |det(4)| = m.
A standard digit set D for A is any complete set of coset representatives for
Z™/A(Z™). Associated to a given D is a set T (A, D), which is the attractor of
an affine iterated function system, satisfying T = Ugep(T + d). It is known
that T(A,D) tiles R™ by some subset of Z™ This paper proves that every
standard digit set D gives a set T(A,D) which tiles R™ with a lattice tiling.

1. INTRODUCTION

Suppose that A4 is an n x n real matrix which is ezpanding, i.e. all its eigenvalues
A; have |[);| > 1, and that |det(4)] = m is an integer. Associated to any finite
set D C R™ with |D| = m there is then a unique compact set T = T(A4, D) which
satisfies the set-valued functional equation

(1.1) A1) = (T +4),

deD

which is given explicitly by
(1.2) T(A,D) := {Z A7*dy s alldy €D }
k=1

We call the vectors d € D digits, based on the viewpoint that (1.2) gives a mul-
tidimensional generalization of a radix expansion for the members of 7. The set
T(A,D) is called a self-affine tile if it has positive Lebesgue measure. For most
pairs (A4, D) the set T(A4, D) has Lebesgue measure 0, and only special pairs (4, D)
yield self-affine tiles.

The name “self-affine tile” refers to a geometric interpretation of the functional
equation (1.1): it says that the affinely dilated set A(T') is perfectly tiled by the m
translates T' 4+ D of T, and that the overlaps (T'+ d) N (T + d') have measure zero
for distinct d, d’ € D. Moreover it can then easily be shown using the functional
equation that T tiles R™ by translation. Many examples of such tiles have fractal
boundaries, cf. Falconer [9], Section 8.3.
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A lattice self-affine tile is a self-affine tile T = T'(4,D) produced by a pair
(A, D) such that the difference set A(D) = D — D is contained in a lattice A which
is A-invariant in the sense that

(1.3) A(A) C A

Such self-affine tilings always give a tiling of R™ by a set of translations S contained
in A. An integral self-affine tile! is a special case of lattice self-affine tile where
T = T(A, D) has an integer matrix 4 € M,(7Z) and an integer digit set D C Z™; in
this case one can take A = Z™. The study of lattice self-affine tiles can always be
reduced to the special case of integral self-affine tiles by an affine transformation,
cf. Lemma 2.1 below.

This paper continues a study of integral self-affine tiles, and studies the question:
which integral self-affine tiles can tile R™ with a lattice tiling?

One motivation for studying the structure of tilings concerns the construction
of orthonormal wavelet bases in R™. Gréchenig and Madych [12] (cf. Theorem 1)
showed that the characteristic function x7(z) of an integral self-affine tile T is a
scaling function of a multiresolution analysis that produces an orthonormal wavelet
basis of L2(R™) if and only if T tiles R™ with the lattice Z™. This is equivalent to
that the Lebesgue measure u(7T'(4,D)) = 1.

In studying lattice tilings for integral self-affine tiles, without loss of generality
we may restrict consideration to a special subclass of (A4, D) which we call primitive.
Associate to any integral pair (4, D) the A-invariant sublattice Z[4, D] of Z™ that
contains the difference set D — D. When 0 € D this is:

Z[A,D] = Z[D, A(D),..., A" }(D)] .

A pair (A4, D) is primitive if Z[A, D] = Z", and we then call D a primitive digit set
for A. Part I observed that if T' = TQALD) is an integral self-affine tile there is
another integral self-affine tile T' = T'(4, D) with (A, D) primitive and 0 € D, such
that

(1.4) T=B(T)+v,

for some? B € M,(Z) with |det(B)| # 0 and some v € Z". This shows that T
has a lattice tiling of R™ if and only if T does. Consequently it suffices to study
primitive digit sets.

Part I introduced a distinction between standard digit sets and nonstendard digit
sets. A primitive digit set is called standard if it forms a complete residue system
(mod A), i.e. a complete set of coset representatives of the group Z"/A(Z™), oth-
erwise it is nonstandard. (The extension of this definition to imprimitive digit
sets is given in part I.) All standard digit sets give self-affine tiles, i.e. the mea-
sure u(T(A,D)) > 0. However most nonstandard digit sets have u(7T(4,D)) = 0.
Part I showed that if |det(A)| = p is prime, then all nonstandard digit sets have
u(T(A,D)) = 0. However when | det(A)| # p there exist nonstandard digit sets with
u(T(A,D)) > 0. Part I also proved that the measure condition u(T(4,D)) =1

! Strictly speaking the integrality property is associated to the pair (4, D) For any self-affine
tile there are infinitely many choices of (A, D) with T' = T(A, D). Some of these pairs might be
non-integral.

2The columns of B then form a basis of the lattice Z[4,D].
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necessary to get a multiresolution analysis giving a wavelet basis can never hold for
nonstandard digit sets.

The distinction between standard and nonstandard digit sets is important for
tiling questions. This paper considers only standard digit sets and proves:

Theorem 1.1. Every integral self-affine tile T coming from a standerd digit set
gives a lattice tiling of R™ with some lattice T' C Z™.

This result was first conjectured by Grochenig and Haas [11], who proved that it
is true in the one-dimensional case. The hypothesis of a standard digit set cannot be
removed from this conjecture, for there are integral self-affine tiles 7' coming from
non-standard digit sets that have no lattice tilings, e.g. A = [4] and D = {0, 1, 8,9}
has T =[0,1]U [2, 3].

To indicate why establishing Theorem 1.1 is a nontrivial problem in higher di-
mensions, we observe that iterating the functional equation (1.1) does not neces-
sarily find lattice tilings. The functional equation (1.1) can be used to directly
produce self-replicating tilings of R™, which are translation tilings of R™ consistent
with (1.1) in the sense that for each tile T+ v in the tiling, the inflated tile A(T +v)
is a finite union of tiles in the tiling. (The concept of self-replicating tiling is due
to Kenyon [17].) However the primitive pair (4,D) with

oo as[is=eo={[o] [O] [V [R])

has a standard digit set D, and the tile T(4,D) has the property that all self-
replicating tilings using T'(A4,D) are non-periodic tilings, hence are not lattice
tilings, cf. Lagarias and Wang [20], Example 2.3. Nevertheless, this particular
tile does have a lattice tiling,® using the lattice 3Z @ Z = {[3b“] ta,be Z}.

To place these results in a more general context, we remark that it remains an
open question whether every tile T" which tiles R™ by translation has a periodic
tiling. (A tile is a compact set of positive measure, which is the closure of its
interior, and has a boundary of measure zero.) Venkov [32] proved that every
convex set T that tiles R™ by translation has a lattice tiling, and his result was also
found by McMullen [25]. Nonconvex tiles need not have any lattice tilings, e.g. on
R, take T' = [0, 1] U [2, 3].

The contents of the paper are as follows. §2 describes a Fourier-analytic tiling
criterion taken from Grochenig and Haas [11], which implies that a lattice tiling
exists unless a certain scaling operator has a nonconstant eigenfunction of eigenvalue
m. In §3 we suppose that such a nonconstant eigenfunction exists, and introduce a
notion of special eigenfunction f(z). A key to our approach is a result showing that
the zero set Z; of a special eigenfunction, when projected on the torus T™ = R"/Z",
is invariant under the linear map AT (Corollary 3.4.) The general idea of obtaining
information from zero sets of special eigenfunctions goes back to Conze and Raugi
[6]. In §4 we introduce the notion of streiched tile, which is a tile whose smallest
A-invariant lattice generated by the differenced digit set D —D is Z", but which has
u(T(A,D)) > 1. Stretched tiles T'(A4, D) essentially correspond to the case where

3Kenyon [17] states a result (Theorem 12) which would imply the truth of the Lattice Tiling
Conjecture, and which furthermore asserts that there always is a lattice tiling with an A-invariant
lattice. However this result is false. The tile (4, D) in (1.5) is a counterexample to it, as is shown
in Lagarias and Wang [20], Section 4.
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special eigenfunctions exist for (A4,D). We use a recent result of Conze and Raugi
[7], together with Lemma 3.3, to prove that the zero sets of special eigenfunctions
of stretched tiles contain translates of an AT-invariant vector space of dimension
> 1 (Theorem 4.1). In §5 we explicitly construct a class of stretched tiles whose
digit sets have a quasi-product form (Theorem 5.1). In §6 we use Theorem 4.1 to
prove a structure theorem for those (4, D) giving stretched tiles, which shows that
they all essentially arise from the construction of §5 (Theorem 6.1). §7 uses this
structure theorem to prove that all stretched tiles T'(A, D) give lattice tilings by
some sublattice of Z". Appendix A proves a Noetherian property for zero sets of
real-analytic functions, which is needed for the proofs in §3.

We are indebted to K.-H. Grochenig, A. Haas, and D. Hacon for helpful conver-
sations.

2. FOURIER-ANALYTIC TILING CRITERION
It is known that T'(4, D) tiles R™ by translation with some tiling set I satisfying
(2.1) I C Z[4,D),

cf. Grochenig and Haas [11], or Lagarias and Wang [19]. If T' = Z[A, D], then
T(A, D) tiles R™ with a lattice tiling, and this occurs if and only if the Lebesgue
measure u(T(A4,D) of the tile is

(2.2) W(T(A,D)) = [ : Z[4,D]] = det(Z[4, D)) .

Vince [33] and Grochenig and Haas [11] give criteria for the equality ' = Z[A4, D].
We follow the latter, see Lemma 2.3 below.

As a preliminary fact we recall that the study of general lattice self-affine tiles
can be reduced to the study of integral self-affine tiles that are primitive.

Lemma 2.1. Let T = T(A,D) be an integral self-affine tile in R™. There is an
invertible affine transformation L(z) = Bz + v such that L(T) = T, where T' =
T(/I,ﬁ) 15 an integral self-affine tile with 0 € D and (141,75) primitive, i.e. A €
M, (Z), D CZ" and Z[A, 75] — Z™. Furthermore A is similar to A over Q.

Proof. This is Lemma 2.1 of Lagarias and Wang [20]. O

For a digit set D we define the digit function gp : R™ — C by
1 .
(2.3) gp(z) := W Z exp(27i(d, z}).
deD
We also define the correlation function up : R™ — R by
1
(2.4) up(z) := |gp(z)|? = DF ddZE:D exp(27i( d — d', z)).

In the rest of this section, we always assume that D is a complete residue system
(mod A). We also assume that D7 is some complete residue system (mod AT).

Lemma 2.2. For all z € R", we have

(2.5) > up((AT) Mz +1) =1

leDT
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Proof. See Grochenig and Haas [11], Lemma 5.1. [

We now define a linear operator C’A,D on the space Q(R™) of exponential poly-
nomials, where Q(R") consists of all

(2.6) flz) = Z am exp(2mi(m, z)), am € R,

with only finitely many a,, # 0. Define the transfer operator (:”A,D : QR™) —
Q(R™) by

(2.7) Canf(z) = Y up((A7) (e + 1) F((A7) (e + D).

1eDT

It is easy to check that (:”A,D is a linear operator that maps Q(R™) into itself, by
expanding the terms up(-) using (2.4), and C4,p is independent of the choice of
DT,

We will be concerned with the action of é’A,D on the space QF (R™) of real cosine
polynomials

(2.8) flz) = Z am cos(2m(m, z)), am € R,

meL™

with only finitely many a,, # 0. This is exactly the set of functions f(z) in Q(R"™)
left fixed by the involution J f(z) = f(—=z). It is easy to check that CAZ’A’D commutes
with the involution J, hence it has Q*(R™) as an invariant subspace.

Lemma 2.2 shows that the constant functions are eigenfunctions of (:”A,p with
eigenvalue 1. Grochenig and Haas [11] (Proposition 5.3) give the following eigen-
function criterion for T'(4, D) to have a Z™tiling:

Lemma 2.3 (Z™-Tiling Criterion). T(A, D) tiles R™ with a Z"-tiling if end only
if the only solutions f(z) € QT (R™) of
(2.9) Capf(z) = f(z)

are constant functions.

3. ZERO SETS OF EIGENFUNCTIONS

Througout this section, A denotes an expanding matrix in M, (Z) and D denotes
a complete residue system (mod A).

If u(T(A,D)) =1 then T(A, D) lattice tiles R™ with the lattice Z™, so we need
only study the case when u(T(4,D)) > 1. Our basic approach to finding a lattice
tiling is to study the structure of the zero set of a specially chosen nonconstant
eigenfunction f(z). This approach was used by Grochenig and Haas in the one-
dimensional case; they attribute the idea to Conze and Raugi [6].

Lemma 3.1. Suppose that there exists a nonconstant f(:l;) € QY (R™) satisfying
(3.1) Canf(2) = f(a).
Then there ezists such an eigenfunction f(z) satisfying

(3.2) f(z)>0 and f(0) >0,
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which has a nonempty (real) zero set Z; = {z € R™: f(z) = 0}.
Proof. Suppose that f(z) € QF(R™) is nonconstant and satisfies (3.1). Define
fi(z) = f(=z) - ynel]}gglf(y), fa(z) = ;Ié%zgf(y) — f(=).
Clearly both f;(z) > 0 for all z € R", and
fa(2) = fu(=) = max f(y) - min f(y) > 0.

yER™

Now we define f(z) to be any one of the fi(z), f2(z) that satisfies f;(0) > 0. The
zero set Z; is nonempty by construction, and our choice of f(z) guarantees that
f(z) > 0 and f(0) > 0, proving the lemma. [

Remark. We call an f(z) having the properties of Lemma 3.1 a special eigen-
function of (4,D). The property f(0) > 0 and the periodicity of f(z) (mod Z")
guarantees that Z" N Z; = 0, a fact which will be important later.

The key fact we start from is the following result:

Lemma 3.2. Let f(z) be a special eigenfunction of (4,D). Then
(3.3) Z; CAT(Z;)+ T

Proof. If z € Z; then (:‘A,Df(z) = f(z) = 0. Let DT be a complete residue system
(mod AT). Then by definition

(3.4) Y up((AT)Hz + D) F((4T) =+ 1) =0

Since f(z) > 0 everywhere, every term on the right-hand sum must be zero. Now
Lemma 2.2 implies that some z* = (AT)~1(z + I) gives

up(z*) > 0,

hence f(2*) = 0. Now AT(2*) =z +1,s0 z € AT(Z;)+ Z™. Thus Z; C AT(Z;) +
Z"™ 0O

Lemma 3.3. Let g(z) be a real-analytic function that is periodic (mod Z™). If
B € M,(Z) is nonsingular such that Z, C B(Z,) + Z", then

Z, = B(Z,)+Z".
Remark. This lemma does not assume that the matrix B is expanding.

Proof. We descend onto the n-torus T" := R™/Z". The integer matrix B induces
a map B, : T" — T, and since g(z) is periodic (mod Z") we may view it as a
function defined on T™, which we shall denoted (by an abuse of notation) still by
g(z). Define Z, := {z € T™: g(z) = 0} and let

B*(Z,):={zecT": Bfzc Z,}.
Consider the sequence of real-analytic zero sets in T",

Z,2Z2,NBNZ;) 2 2N B (Z)NB*(Z) 2+
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Since real-analytic zero sets on T™ have the Noetherian property (see Theorem A.1
of Appendix A), this sequence must eventually stabilize, hence there is some k& > 0
such that

k k+1
(3.5) ﬂ B:j(Zg) = ﬂ B*_j(zg)'
§=0 7=0
Applying B¥*1 to both sides of (3.5) gives
k+1 k+1 k41
(3.6) N Bi(Z) = [ Bi(Z,) = Z,n ([ BilZy)).
j=1 i=0 j=1

However Z, C B(Z,)+Z™ implies that Z, C B,(Z,), so Bi(Zg) C Bi+1(Zg); hence

E+1 E+1
B*(Zg) = ﬂ Bz(zg) < ﬂ Bi(zg) = Zg'
j=1 j=0
Lifting B*(Z,) = Z, back to R™ gives the lemma. [I
Applying Lemma 3.3 to Z; yields:

Corollary 3.4. The zero set Z; of a special eigenfunction satisfies

(3.7) Z; = AT(Z;)+ 7™
Now, for each ! € Z™ define the map 7 : R™ — R™ by
(3.8) n(z) = (A)"(z +1).

Let Y C R™ such that Y + Z" =Y. We call Y 7-inverient with respect to up, or
simply 7-invaeriant, if for any z € Y,

(3.9) 1eDT and up(n(z)) >0 = n(z)eY.

It is easy to check that 7-invariance doesn’t depend on the choice of PT. The zero
set Z; of a special eigenfunction f is always 7-invariant with respect to up as a
result of (3.4). We call Y C T™ 7-invariant if 7, 1(Y) C R™ is T-invariant, where
Ty ¢ R™ — T™ is the cannonical covering map.

Grochenig and Haas [11] settled the one-dimensional case of Theorem 1.1 by
showing that u(T'(4, D)) > 1 can never occur for primitive pair (4, D) when n = 1.
The essential part of their proof is contained in the following lemma.

Lemma 3.5. Let D be a primitive standard digit set of A. If u(T(A,D)) > 1 then
the zero set Z; of a special eigenfunction f(z) cannot contain a discrete nonempty
T-invariant set Yy with Y; =Yy + 7.

Proof. We argue by contradiction. Suppose not, and let Yy C Z; be a discrete
nonempty 7-invariant set with Yy = Y; + Z™ Let Y; := m,(Y;). By Lemma 2.2,
for each y € Y; there exists at least one ! € DT such that up(7i(y)) > 0, and so
m(y) € Ys. Because AT (7(y)) = y (mod Z™), we have therefore AT(Y;)+7Z" D Y;.
Hence AT(Y;) D Yy, which implies A7(Y;) = Y; because Y; is finite, and so AT
acts as a permutation on ¥;. So for any y € Y; we have (47 )¥(y) = y (mod Z")
for some finite k. Solving this equation shows that y is rational, i.e. y € Q™.
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We show that for each y € Y there exists exactly one | € DT such that .i(y) €
Y;. Suppose there were distinct I1,l; € DT such that 7, (y), 7,(y) € ¥;. Then we
have AT (7, (y)) = AT (m,(y)) = y (mod Z™). But 7, (y) Z 7,(y) (mod Z™). This
contradicts the fact that A7 is a permutation on Y;.

So now for any y € Y; there exists an I* € DT such that up(m+(y)) > 0 and
up(7i(y)) = 0 for all I € DT and ! # I*; hence up(m+(y)) = 1. Since y € ¥} is
arbitrary, we have

(3.10) up(y) = lgp(W)* =1, ally€¥;.
Using the definition (2.3) of gp(z), and that 0 € D, (3.10) holds if and only if
(d,y) =0 (mod 1), alld € D and all y € Y.
We use this fact to define a new lattice
(3.11) IF'={w: weZ"and (w,y) € Zforally € Y;}.

Because Y; lies in finitely many Z™-equivalence classes, I' is a full rank sublattice
of Z™. Also Yy NZ"™ = 0, because Z; N Z™ = 0, hence we have I' # Z™. We next
show that

(3.12) A(T) CT.
To see this, given w € T and y € Y7, there is a y; € Y} such that AT(y) = y; +1
for some l € Z™, and

(Aw,y) = (w, ATy) = (w,y1 + 1) = (w,y1) + (w,1) € Z,

since (w,y) € Z by definition of I', and (w, ) € Z since both w,l € Z™.
Now (3.10) implies that D C T hence A(D) =D — D CT, so (3.12) implies that
Z[A,D])CT. But T is a proper subset of Z", contradicting Z[4,D] = Z". O

We now can settle the one-dimensional case, where 4 = [+m] with m > 2,
and a standard digit set D = {d1,...,dmn} C Z is just a complete residue system
(mod m). The primitivity condition Z[A4, D] = Z is equivalent to

(3.13) ged(d—d' : d,d €D)=1.

Theorem 3.6 (Grochenig and Haas). Suppose that A = [+m] and D is a com-
plete residue system (mod m). Setd =gcd(d —d': d,d' € D). Then T(A,D) tiles
R by the lattice dZ, and u(T(4,D)) =d.

Proof. We reduce to the case that d = 1 using Lemma 2.1. Now Lemma 3.5 applies
to show that u(T(A4,D)) = 1, because the real zero set Z; of any nonconstant
trigonometric polynomial must be discrete. [

When the dimension n > 2 the case u(T(A, D)) > 1 can occur, as in the example
(1.5) of §1.
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4. STRETCHED TILES AND HYPERPLANE ZEROS OF SPECIAL EIGENFUNCTIONS

To prove that all standard digit sets give tiles having lattice tilings, it suffices
to study the case of (4, D) such that Z[A4,D] = Z™ and u(T(4,D)) > 1. Wecall a
pair (4, D) with this property, or more generally with

#T(4,D)) > [2": Z[A, D]},

a stretched tile.

Lemma 2.3 and Lemma 3.1 combine to show that a stretched tile has a special
eigenfunction. The proof of Theorem 1.1 rests on a special property of the real
zero set of a special eigenfunction Z; of a stretched tile which is that it contains
translates of certain linear subspaces of R", stated as Theorem 4.1 below. To put
this result in perspective, we first describe general facts about the structure of Z;.

The real zero set Z; of any real analytic function f on R™ periodic (mod Z")
has a geometric decomposition*

(4.1) Zf = O(MZ + Zn)

in which each M; is an irreducible real-analytic manifold of dimension 0 < d; < n—
1, and which is irredundant in the sense that no M; +m is strictly contained in any
other M; +m’, where m, m’ € Z™. (We allow equality M; +m = M;+m/' to occur,
in (4.1), e.g. this happens if M; is a vector space containing some nonzero elements
of Z™.) The finiteness of the decomposition (4.1) follows from the periodicity of
f(z) (mod Z™) and from the compactness of T™ = R™/Z", using the Lojaciewicz
structure theorem for real-analytic varieties, see Appendix.

It appears that the global structure of the set Z; is a union of translates of
rational subspaces of R™ of various dimensions. A rational subspace V of R™ is a
linear space having a basis consisting of rational vectors v € Q™. This would follow
from:

Hyperplane Zeros Conjecture. Let h : R™ — C be an analytic function that is
periodic (mod Z™). Suppose that there is an ezpanding integer matriz A such that

Zy C A(Zh) + Z™.
Then
(4.2) Zy = |J(@i + Vi) + 27,
i=1

in which each z; € R™ and each V; is a rational subspace of R™. (The V; need not
all have the same dimension.)

We derive a weak result in the direction of this conjecture for a special eigen-
function of a stretched tile, which will suffice to prove our main result.

4 “Geometric” means that we don’t keep track of the multiplicities of zeros.
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Theorem 4.1. Let A € M,(7Z) be ezpanding and D be a primitive complete residue
system (mod A). Suppose that u(T(A,D)) > 1, and let f(z) be a special eigenfunc-
tion for (A,D). Then the real zero set Z; contains a finite number of translates
{yi + W :0< i< k— 1} of a proper rational subspace W of R™ with AT(W) =W
such that:

(1) Let §s = mn(yi) for all0< i< k—1. Then
(4.3) AT (Big1) = B,

where we define §r = Yo.
(2) Let DT be a complete residue system (mod AT). Then for everyz € y;+ W
we have

(4.4) > up(n(z)) = 1.
1 T
(@)€Y + WAL

The main ingredient in the proof of this theorem is a result of Conze and Raugi
[7]. Before stating that result, we first generalize the notion of 7-invariance to
general subsets of R™. Let DT be a complete residue system (mod AT). We say
that a closed set Y C R™ is 7-invariant with respect to DT if for any I € DT,

(4.5) y€Y and up(n(y)) >0 — mn(y)eY.

A compact 7-invariant set with respect to DT is minimal if it contains no smaller
nonempty compact 7-invariant set with respect to DT.

Proposition 4.2 (Conze and Raugi). LetY be a minimal compact T-invariant
set with respect to DT that is contained in the real zero set Z¢ CRR™ of an analytic
function f : C* — C. Then there ezists a subspace V of R™ with AT(V) =V such
that

(4.6) v Uw+v)ca,

j=0

where each y; €Y, and U;;g(yj + V) is T-invariant with respect to DT. Further-
more, we can choose {Yo,Y1,.--,Yk—1} C Y to be a periodic orbit in the sense that

for all0 < j <k —1, there is some l; € DT such that
(4.7) Yivr =7,(y;)  with  u(yipa) >0,
where Yy 1= Yo.

Proof. This is derived directly from a theorem of Conze and Raugi [7]. Note that
the set T(AT,DT) is the closure of its interior and 0 € T (AT, DT). Therefore there
is a small neighborhood U of 0 such that U NT(AT,DT) ¢ Z;. Now, we choose an
z € UNT(AT,DT) such that z ¢ Y. From (1.2) z has a radix expansion

r = Z(AT)_jlj each [; € DT,
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Hence Theorem 3.5 of Conze and Raugi [7] implies that there exists a vector space
V of R™ with AT(V) = V such that

E-1
(4.8) YC | Jw+V)C 2,

1=0
with the property that the set Uf:_ol(yi + V) is 7-invariant with respect to DT.
Furthermore, we can choose {yo,¥1,.--,¥k—1} C Y to have the property that

(4.9) Yi+1=7,(y)  with  up(yj+1) >0,
where [; € DT and yi :=yo. O

Lemma 4.3. Let V be a subspace of R™. Then w,(V) is closed in T™ if and only
if V is a rational subspace of R™.

Proof. We first show that if V' is a rational subspace of R™ then 7,(V) is closed
in T™. Let wy, wy, ..., w, € Z™ form a basis of V. Suppose that z* € T"
is in the closure of m,(V). Then we may find a sequence {y;} in V such that
lim;_, o0 mn(y;) = 2*. Write

”
Y; = Z b-’kwk.
k=1

Since all w € Z™, we may choose all b ; € [0,1). Therefore we can find a subse-
quence {jm} of {j} such that
lim b;_ x = by, alll <k<r.
Let y* = Y} _; bjws. Clearly, m,(y*) = z*. Hence 2* € m,(W). Therefore m,(V)
is closed in T™.
We next prove the following hypothesis: If v € R™ then the closure of 7, (Rv)
in T™ is a rational subspace. To see this, let v = [B1,...,8,]F. Without loss of

generality we assume that 3i,...,8, are linearly independent over () while 8y =
2221 ax,;B; with a;; € Q for all 1 < k < n. The set

{m [m] (mod Z™): m € Z}
6.

is dense in T" (see Cassels [4], Theorem I, p.64). Now let Vo = {4z : z € R"}
where A = [ag,;]. Then V; is a rational subspace of R™, and 7,(Vp) is contained
in the closure of @, (Rv). But m,(Vg) is closed and V5 O Rv. Hence the closure of
Tn(Rv) is 7, (Vp), proving the hypothesis.

Finally, let vq, ..., v, be a basis of V. Suppose that V_V] is the closure of m,(Rv;)
in T™. Then the closure of 7,(V) contains Wy + ---+ W,. But Wy + .-+ W, is
closed in T™ because it is a rational subspace, and it contains 7, (V). Hence the
closure of m, (V) is Wy + - - - + W,., proving the lemma. [J

Corollary 4.4. Let f : R™ — C be continuous and periodic (mod Z™). Suppose
that V is a subspace of R™ such that vo+V C Z; where vg € R™. Then vo+W C Z;
where W is the smallest rational subspace of R™ containing V ezists.
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Proof. First, let {V,} be a set of rational subspaces of R™. Then m, (ﬂa Va) =
No ™n(Va) is closed in T™; so (), Va must be a rational subspace of R™ This
implies that the minimal rational subspace W containing V. Since f(z) is periodic
(mod Z™) we may view it as a continuous function defined on T™. Now, m,(vo) +
Tn (W) is the closure of m,(vg) + 7, (V) in T™ Hence 7, (vo) + 7 (W) is in the zero
set of f: T" - C. Thusvo+ W C Z;. O

Proof of Theorem 4.1. We construct a nonempty minimal compact 7-invariant
set Y with respect to DT in Z; as follows, where f(z) is a special eigenfunction of
(A, D). Take any point zo € Z; and set Xo = {zo} and recursively define the finite
sets {X; : j > 0} by letting X; consist of all points z; such that z; = n(z;_1)
with z;_; € X;_, and l € DT such that up(z;) > 0. Then the 7-invariance of Z;
with respect to DT gives X; C Zg forall j > 0. The set U}io X; lies in a bounded
region in R™ because the mappings 7; are uniformly contracting with respect to a
suitable norm in R™ (cf. Lagarias and Wang [20], Section 3 or Conze and Raugi [7]).
Now let Yo be the set of all cluster points of sequences {z; : z; € X;}. Then Yo is
a compact set, and we show that Yy is 7-invariant with respect to DT. If y € ¥,
and up(mi(y)) > 0 where I € DT, take a subsequence z;, € X;, that converges
to y, so that 7(2;,) — m(y). Now up(n(z;,)) > 0 for k sufficiently large, hence
7i(zj,) € Xj,+1; so we may construct a sequence having 7;(y) as a cluster point,
proving 7(y) € Yo. The existence of a nonempty minimal compact 7-invariant set
Y with respect to DT contained in Y; follows by a Zorn’s Lemma argument.

It follows from Proposition 4.2 that there exists an AT -invariant subspace V and
{y: €Y : 0 <i< k— 1} such that

k—1
(4.10) v Jw+v)cz,

1=0

with the property that the set Ufz_ol(yi + V) is 7-invariant with respect to DT.
Furthermore, for each i there is an I; € DT such that y;41 = 7, (y:) and up(y:) > 0,
where y; := yo. Now let W be the smallest rational subspace of R™ containing
V. Since AT(W) is also a rational subspace containing V and it has the same
dimension as W, we must have AT (W) = W. By Corollary 4.4,

(4.11) ngol(yi—{—W) C Z;.

1=0

Moreover, since Wn(Uf:_Ol(yi + W)) is the closure of m, (Uf:_ol(yi + V)) in T?,
we conclude that Ufz_ol(yi + W) is T-invariant with respect to DT. Furthermore,
AT (y;11) = yi (mod Z™). This implies (1).

We now prove (2). Let z € y;_1+W. We show that for any I € DT, up(n(z)) > 0
only if 7(z) € y; + W +Z". Suppose this is false, then there exists an I* € DT with
up(7+ (2)) > 0 such that - (z) & y; + W + Z™. The 7-invariance of Uf;ol(yi + W)
with respect to DT implies then that 1i(z) € y; + W for some j where y; + W #
y; + W. Hence z € AT(y; + W + Z™) C y;—1 + W + Z™. But this could happen
only if

Yicr +WHZL" =y 1 + W+ L™
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By applying the operator (AT )*¥~! to the above equation, we obtain
Yy +WHZ =y + W+ Z7,

a contradiction. (2) now follows immediately from Lemma 2.2. O

5. STRETCHED TILES AND Quasi-ProbucT ForM DiGIT SETS

Our object in this section is to present a large class of pairs (A,D) giving
stretched tiles T(A4,D). In §6 we shall then prove a structure theorem asserting
that all pairs (A4, D) with Z[4, D] = Z™ and u(T(A,D)) > 1 essentially arise from
this class.

Suppose now that A is an expanding integer matrix having the block-triangular
form

(5.1) A:[“é} ;1’2],

where A; and A; are r x r and (n —r) X (n — r), respectively, with 1 <» <n—1.
We say that a digit set D for A is of quasi-product form if it has the form

(52) D= {[ " ] 4 [ i~ ] L 1< < | det(4y)], 1<5 < |det(Az)|},

with the properties:

(1) {ai} C Z" is a complete residue system (mod A4;), and {b;} C Z"~".

(2) ¢;; € Z™" for all 4,5 and for each % the set {Qc;; : 1 < j < |det(A2)|}is
a complete residue system (mod 43).

(3) Q@ € My, (Z) has |det(Q)| > 2 and 4,Q = QA for some A, € My (Z).

The conditions (i), (ii) imply that D is necessarily a standard digit set.

Theorem 5.1. Let A be an ezpanding integer matriz of block-triangular form

(5.3) A:[‘él ;1’2],

where A1 and Az are r x r and (n —r) X (n — r), respectively. Suppose that D
is o primitive standard digit set for A which is of quasi-product form (5.2). Then
| det(Q)| divides u(T(A, D)), so that u(T(A,D)) > 1.

Proof. Suppose that D is of quasi-product form. Consider the block-diagonal ma-

trix
- [A o0
A= [ 0 , ]

together with the new digit set

D= {[ Q(Z,]- ] : 1<i< |det(4y)], 1<j< |det(A2)|}.

We pair the digits of D and D by

a; 7 a; ~
d= [ bi + Qci s ] €ED — d= [ Qci ] eD.
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There is a simple relationship between T(A, D) and T(A, D), which implies that
(5.4) W(T(4,D)) = W(T(4, D))

Define a map ¢ : T(4,D) — T(/i,ﬁ) by ¢(z) = &, where if

then

SE AN S

Cr Aj* 0 A4;F
hence

~ Z 1
5.5 = = =
( ) ’ [22] [$2—¢($1)]
where

¥(z1) = D (Crai, + A7 *03,).

k=1

The function 9 : T(A41, {a;}) — R™ " is easily checked to be a measurable function,
hence (5.4) follows from (5.5) using Fubini’s theorem.
Next we define the expanding matrix

~ Ay O
4= [ 0 A ] :
where A, € M, _.(Z)and A,Q = QA,, together with the digit set

i {| 2 |+ 1<i<idaant 1<4 < |aer(an)

Ci,j
~ I, 0
a=[% ol

A= QZQ—l, D= Q('ZS)

Set

and we then have

So it follows from Lemma 2.1 that

(5.6) T(4,D) = QT(A4,

)

);
and hence
W(T(4,D)) = | det(@)|u(T(4, D)),
since | det(Q)| = | det(Q)|. Combining this with (5.4) completes the proof. [T
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Remark. The name stretched tile is suggested by (5.6), which shows that in a
weak sense the tile T'(4, D) is stretched by the matrix Cé along the R™~"-coordinate
directions. See Theorem 6.1 for the general case.

As an example of Theorem 5.1, consider the pair (4,D) of (1.5). Let P = [9}].
The the digit set DT = P(D) for the matrix AT = PAP~11is a standard digit set of
quasi-product form with @ = [3]. Theorem 5.1 asserts that 3 divides u(T(AT,DT)),
and so 3 divides u(T(A4,D)). In fact, u(T(4,D)) = 3.

6. STRUCTURE THEOREM FOR STRETCHED TILES

We now use Theorem 4.1 to prove a structure theorem concerning stretched tiles,
which is a converse to Theorem 5.1.

Theorem 6.1. Let D be a primitive standard digit set for the erpanding mairiz
A € M,(Z), and suppose that u(T(A,D)) > 1. Then there ezists a matric P €
GL(n,Z) such that the following two conditions hold.

(1) There is some r with 1 <r <n— 1 such that

Blo]

-1 _
(6.1) PAP —[c B,

where By, By are v x r and (n — r) X (n — r) ezpanding integer matrices,
respectively, and C is an (n — r) X r integer matriz.
(2) The digit set P(D) of PAP~! is of quasi-product form.

Before proving this result, we derive a corollary. Write 4; ~z A; to mean
A; is integrally similar to Aj, i.e. there exists some @ € GL(n,Z) such that
Az = QA;1Q 1. We say that A is (integrally) reducible if

Alo]

(6.2) A~Z[ o 4

where A; and A; are nonempty. We call A irreducibleif it is not integrally reducible.

Corollary 6.2. Suppose that the ezpanding matric A € M, (Z) is irreducible. Then
for all primitive standard digit sets D the tile T(A, D) lattice tiles R™ with lattice
YA

Proof. If u(T(A,D)) > 1 then (6.1) shows that A is integrally reducible, which
contradicts the irreducibility of A. Thus u(T(4,D))=1. O

A sufficient condition for irreducibility of A is that the characteristic polynomial
of A is irreducible over (). Using this criterion any expanding matrix A with
| det(A4)| = p a prime is irreducible, because if a decomposition (6.2) existed then
|det(A41)| > 1 and |det(Az)| > 1.

Lemma 6.3. Let D be a primitive standard digit set for A. Suppose that P €
GL(n,Z). Then P(D) is a primitive standard digit set for PAP~'. Furthermore,

(6.3) gp(p)(z) = gD(PTm), up(p)(z) = uD(PTm).
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Proof. Since D is a complete residue system (mod A), for distinct di,d2 € D we
have d; — d; ¢ A(Z™). Hence P(d; —d3) ¢ PAP~Y(Z"), so P(D) is a complete

residue system (mod PAP~!). It is primitive because
Z[PAP™', P(D)] = PZ[A,D] = Z™
Now for any z € R",

1 ) 1 .
gp(p)(z) = W E exp 27i(Pd, z) = W E exp 2mi(d, PTz) = gp(PT2).
deD deD

So gP(D)(CC) = gD(PTm). Similarly, UP(D)(:E) — uD(PTz)‘ O

Proof of Theorem 6.1. Since u(T(A4, D)) > 1 there exists a special eigenfunction
f(z) for (4,D) by Lemma 3.1. Now Theorem 4.1 states that there exists a rational
subspace W of R™ having dim(W) = r with 1 <r < n — 1, and with AT(W) =W
such that Z; contains at least one translate of W. It is well-known that one can
choose a unimodular matrix P; € GL(n,Z) that maps a given rational subspace W
onto the first k-coordinate axes, i.e.

(6.4) Py(W) = E, := {[ T ] 2, EIR’}.

This directly follows from the Hermite normal form decomposition for a rational
basis of the vector space W, see Schrijver [28], Theorem 4.1 and Corollary 4.3b.
Now W is an invariant subspace of AT, hence

- BT 7T
(6.5) PATP = [ o BT ] :
for integer matrices BY , Bf and CT. Therefore, taking the transpose yields
B 0
-1 _ 1
PAP " = [ c B, ] ,

with P = (Pl_l)T. Both B; and B; are expanding because A is expanding. This
proves (1).
We now prove (2). Let

B, 0

— -1 _ 1

B:=PAP "= [ c B, ]

and £ := P(D). Then £ is a primitive standard digit set for B. We have ug(z) =
up(PTz).

Our object is to analyze the structure of the digit set £, to eventually prove that
it is of quasi-product form. For any vector v € R™ the notation v = [3}] always
means that v; € R™ and vy € R™™ 7.

Let £7, €T be complete residue systems (mod BY) and (mod BY), respectively.

Let

b
(6.6) 5T::51T@5§:{b:[b;]:bleng,bzeB;f}.
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Then the fact that BT is block upper-triangular implies that £7 a complete residue
system (mod BT). Let DT = (PT)~'£T7. Then DT a complete residue system
(mod AT), because AT = PTBT(PT)-1.

Now, let {y; + W : 0 < j < k — 1} satisfy the properties of Theorem 4.1. We
have AT o m,(yj4+1) = mn(y;) where yg := yo, and

(6.7) > up(AT) Yz + 1) =1, zecy+W

1epT
(A7) He+l)ey; 41 +WHL™

Applying the transformations v; = (PT)~!y; and ! = (PT)~1b with b € £7 in (6.7),

we may rewrite (6.7) as

(6.8) > ug(BT) Yz +b) =1, =z€wv+E,,

beeT
(BT) M(e+b)e€vjy1+ B +L"

using (6.4) and Lemma 6.3.
We proceed to simplify the formula (6.8). Choose z € v; + E, and define

(6.9) Aj= {mEZ": (BT)_l(z:—}—m) E'uj+1—|—ET—|—Z”}.

We show that A; is well-defined independent of the choice of z € v; + E,. More
precisely, denote

a; .
where oy := ag and B := Bo. Then

(6.10) A = [ T?J ] +A

in which A is the lattice Z™ @ Bg' (Z™ ") and
(6.11) n; := B Bj1— ;.

To prove these facts, let z = [2 | € v; + E,. Then m € A; if and only if

1
3

Bf cT -t T my -7 z
8wl (B IR D= [a]
for some z € R™ and k; € Z™"". So the condition for m € A; is
(B2)7'(8; +ma2) =Fj1 (mod Z™7).
The above is equivalent to
Bj +ma = By 41 (mod By (Z"77)),
i.e. my = n; (mod BT (Z™~7)), which gives (6.10) and (6.11).

Using these formulae, the identity (6.8) becomes

(6.12) > > ue (BY) (2 + [32])) =1

biegl b €E7
by—n}€B] (Z™77)
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for z € v; + E,. Note that for each 0 < j < k — 1 there is exactly one b; € ET such
that b = n} (mod BT (Z™~7)); denote this by € £F by b3 ;- Then (6.12) is reduced
further to

(6.13) > oue(w+ (BT [B]) =1,
b,€ET
where w := (BT)~1(z + [bgj]) and z € v; + E,.
We now use (6.12) to establish a series of claims.
dy

Claim 1. Suppose that d = [2] and d' = [ i] are two digits in £ such that

d1 —d) € B1(Z"). Then di = d} and
(6.14) (dy—d},B;) =0 (mod 1), 0<j<k—1.

Proof of Claim 1. We make use of the orthogonality relations® on the abelian group
Z"/B1(Z7): For all m = [} ] € Z™, we have

my o |det(Bl)| ifm; € Bl(Zr),
exp(2mi , (By) b —

Define
Fi={(d,d)e€ExE:d—d € B(Z")®Z""}.
Using the orthogonality relation above and the definition
1

ug(z) = W Z exp(27ri(d—d’,m>),
d,d'e€
we obtain
Z Z ug (w—i— [(BT%“MD
bie€T d,d'€E
B |det(13 Do D exp (2md d,w+ [(B )i b)
b,€ET d,d'€€
- Idet:(lB > exp (2md d'yw+ [(B )7 ]>)
d,d'€€ b, e€T
1 .
= |det(Bl)||d6t(B2)|2 Z exp(27rz(d_d/,w>).

(d,d")eF

Now, the above equation combines with (6.12) to give

(6.15) D exp(2mi(d — d',w)) = | det(B1)|| det(By)|*.
(d,d')eF

We next show that

(6.16) |F| = | det(By)| | det(B3)|?,

5The functions Xp, (m1) 1= exp(27r'i(m1,(pr)_lb1)) for b; € SIT form a complete set of char-
acters on Z"/B1(ZT).
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which will force all the exponentials on the left side of (6.15) to be 1. To prove
(6.16) note that £ is a complete residue system (mod B); hence the set F viewed as
a subset of Z™/B(Z™) x Z™/B(Z™) is a subgroup. Its quotient group is isomorphic
to Z"/B1(Z"), which has size | det(B;)], so (6.16) follows.

Now we know that exp(2ni(d — d’, w)) = 1 for all pairs (d,d') € F, so

(6.17) (d—d',w) =0 (mod 1).

For z € v; + E,, write z = [fg;] Then

0 z
(s L, D)= L o6 +n)
for some z; € R". Notice that b3 ; —n} € B (z"-7). By (6.11),

(BZ)H(B; +b3;) = (B3 )""(Bj +nj + Byma) = Bj41 + ma

for some my € Z™~". Hence

w=

z21 :|
Bit1+ma |’
(6.17) now becomes
(dl — d"1,21> + <d2 — d;,ﬂj+1> =1 (HlOd 1)

But (d1 — df, z1) is a continuous function of z; € R”, and as z; runs through R” so
does z;. Hence we must have d; —d} = 0, and

<d2 — d;,,@j+1> =1 (IIlOd 1),
proving Claim 1. O

Claim 2. There exists a By-invariant proper sublattice I' of Z™~" such that for all
d=[%]andd' =[] in €, if (d,d') € F then

(6.18) dy —dy €T.

Proof of Claim 2. Define the lattice ' in Z™~" by
.= {mz €Z" " :(mg,B;) =0(mod 1), 0<j<k— 1}.

Then T is a sublattice of Z"~", and it is full rank because all §; € Q"7 ". Claim 1
gives

(d2 —dy,B8;) =0 (mod1l), 0<j<k-1
Hence dy — d}, € T.

It remains to check that I' is a proper sublattice of Z™~" and B,(I') C I'. First,
all y; + W are contained in Z; for some special eignefunction f(z) of (4,D), so
(yj + W)NZ™ = 0. Since v; + E, are the images of y; + W under a unimodular
linear map, (v; + E,) NZ™ = 0. But v; = [gj] Hence B; ¢ Z™~"; so ' must be a
proper sublattice of Z"~". Next, we show that I' is Bp-invariant. (6.11) states that

BIBi+1=p; (mod Z™T),
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hence for any my € T,

(Byma,Bjt1) = (ma, B] Bjt1)
(ma, B;) (mod 1)
0 (mod 1),

proving Bx(I') CT. O

Claim 3. The digit set £ = P(D) is of quasi-product form.

Proof of Claim 3. For a given residue class m; + B1(Z") we pick a digit [5:] € €
with a; = my (mod B1(Z")), which exists since £ is a complete residue system
(mod B). Consider all other digits [:7] € &€ having

a; =a; (mod Bi(Z")).
It follows from Claim 1 and Claim 2 that a; = a; and b; — b, € . Taking a basis
matrix @ € M,_,(Z) for T', we can write
bi — b = Qcij
for some ¢;; € Z™". Since £ is a complete residue system (mod B), the set of
such [:f] € & has cardinality | det(Bz)|, and {Qc;; : 1 < j < |det(Bz)|} forms a

complete residue system (mod B;). Now because I' is Bp-invariant, there exists a
By € My—»(Z) such that

ByQ = @B;.
Finally, | det(Q)| > 1 because T is a proper sublattice of Z*~". O

Finally, Theorem 6.1 follows from Lemma 6.3 and Claim 3. [

7. LaTTICE TILINGS
We now use Theorem 6.1 to prove Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem by induction on the Lebesgue
measure u(T(A,D)) of the tile T(A4,D), where D is a standard digit set for 4 €
M, (Z). This measure is an integer, by Theorem 1.1 of part I. The base case is
therefore u(T'(4,D)) = 1, in which case T(4, D) tiles by Z".

For the induction step, suppose that it is true for all tiles of measure less than k,
with k£ > 2, and that u(T(A, D)) = k. We consider first the case that Z[A4, D] # Z™.
The proof of Lemma 2.1 shows that

(7.1) T(4,D) = Q(T(4, B)) +v,
where 4 € M, (Z) is similar to A over Q, and Q € M,(Z) with |det(Q)| > 2, hence

TRV w(T(4,D))

The induction hypothesis applies to (141, 75), so T(fi, 75) tiles with a lattice T'CZn,
and (7.1) then shows that T'(4, D) tiles R™ using the lattice I' = Q(T') C Z"™.

< k.
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Next suppose that Z[A4, D] = Z™. Since u(T(A4,D)) = k > 2, the tile T(4,D) is
a stretched tile. Theorem 6.1 shows that there exists a P € GL(n, Z) with
B; 0
C By |’

where By € M,(Z) and By € M,,_,(Z) with 1 <r <n—1, and € := P(D) has the
quasi-product form

(7.2) B:= PAP 1= [

(7.3) £= {[ b, +aé2ci,j ] :1<i< |det(By)], 1 <5< |det(Bz)|}

with | det(@)| > 2. Since
T(A,D) = P 'T(PAP™ !, P(D)) = P"'T(B, §),

we only need to show that T(B, £) lattice tiles R™.
Consider the new pair (B1, &) where

& = {ai 11<i< |det(Bl)|}.

&1 is a complete residue system (mod B;). Furthermore, Z[B, £] = Z™ implies that
Z[B1,&1] = Z". Hence &; is a primitive standard digit set for B;.

We claim that we can always find a factorization (7.2), (7.3) with the additional
property that

(7.4) W(T(By,&)) = 1.

To see this, assume that r is the smallest positive integer with which the factor-
ization (7.2), (7.3) exists. If » = 1 then we already have u(T(B1,£1)) = 1 by
Theorem 3.6. Suppose that u(T(B1,&1)) > 1. Then r > 1 and by Theorem 6.1
there exists a P; € GL(r,Z) such that

PlBlpl—l:I:Bl 0 :|,

C: B,
where By € M,,(Z), B € M,_,,(Z) with 1 < r; < r, and P;(€) has the quasi-
product form. Now if we let

then .

Aoap—1 B, 0

—rn
for some integer matrices Bj and C’, with P(D) having the quasi-product form.
This is a contradiction because r; < r. Hence we have u(T(B1,&1)) = 1, proving
the claim.

-~

We next associate to the pair (B, £) a new pair (E, ) given by

(7.5) E:[% 122],

(7.6) £= {[ Q“ciij ] : 1<i<|det(By)], 1<j < |det(32)|}.
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The proof of Theorem 5.1 already shows that
W(T(B,8)) = w(T(B,€)) = b,

and it also shows that the new pair (BT, £1) given by

(7.7) B = [ ff)l 1(3); ] :
(7.8) et :{[ c“] ] : 1< |det(By)], 1<j< |det(Bz)I}

where B2Q = QBZT, has
(7.9) T(B,8) = [ L g ]T(BT,ST).

Note that

and it is easy to check that £' is a complete residue system (mod B'). So the
induction hypothesis applies to show that T(BT, &) lattice tiles R™, and hence
T(E, E) also lattice tiles R™ as a result of (7.9).

Assume that T(E, E) tiles R™ with the lattice I'. We now come to the main point
of the proof: we show that T(E, E) also tiles R™ with a (possibly different) lattice
I'* which is a direct sum Z" @ I'y where I'y C Z™~". We start by observing that
the orthogonal projection of T(E, E) to its first r-coordinate plane is T'(B1, £1). So
since I' C Zn, every tile

T(B,€)+7, ve€T,
in the tiling by I’ orthogonally projects to

T(B1,&1)+7v1, MEZL

where v := []1]. These projections are measure-disjoint for different +;’s. Thus the
tiling T(B, £) + T’ of R™ using I' naturally divides up into cylinders

(7.10) U(v1) == (T(B1, &) +71) ®R™".

-~

Look at the tiling of the particular cylinder U(0), which is given by T(E, )+ T
where

(7.11) I'=Tn({0}ez"").

Clearly I' is a sublattice of Z™, Write IV = {0} ® I'; where I'; C Z™~". Now I'; is
a sublattice of Z"~", and T(B, £) tiles U(y1) by {y1} ®T;. Hence T(B, £) tiles R™
by T'* :=Z" ¢ T;.

Next we claim that the tile T(B, £) also tiles R™ using the lattice T* = Z" @ I';.
To prove this claim we note that the orthogonal projection of T'(B, £) onto its first
r-coordinate plane is also T(Bi, £1) as a result of the triangular form of B and
the quasi-product form of £. Hence T'(B, £) also tiles the cylinder U(y;) for each
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v1 € Z". Tt thus suffices to prove that T(B, &) + I tiles the cylinder U(0), where
I' is defined in (7.11). Recall that the proof of Theorem 5.1 shows that

L1 o

m:[”l]eT(B,s) = a:[m2_¢(ml)]eT(§, ),

T2

where ¢ : T(B1, &) — R™™" is a certain measurable function, see (5.5). This rela-
tion shows that translates of T(B, £) by I inherit the measure-disjointness property
from that of translates of T(E, E) by I''. It also yields the covering property for the
cylinder U(0), since the map [z.] — [Ez—:’:/}(ml)] maps U(0) one-to-one onto itself.
Thus T(B, £) tiles R™ using the lattice Z" @ T';. This proves the Theorem. [

APPENDIX. NOETHERIAN PROPERTY OF REAL-ANALYTIC ZERO SETS ON T".

Let O = O(T™) denote the space of globally real analytic functions f(z) on the
n-torus T = R™/Z". These are exactly the Z™-periodic functions on R™ which
arise as the restrictions to R™ of a Z"-periodic complex-analytic functions f(z)
defined on some domain

J. = {z: (21,.--,2n) € C" : |Im(2)| < € for 1 Sign},
or, equivalently, that
f(z) = Z (a.m cos(27m(m, z)) + by, sin(27(m, z)))
meL™

with all a,,, b, € R and

Y~ (lam| + bm|) exp(el|ml]) < oo,

meLZ™

for some € > 0 depending on f(z), where ||m|| denotes the Euclidean norm.
Let Z(T™) denote the family of zero sets of all functions f(z) € O(T") on T".
We prove the following theorem.

Theorem A.1l. The set Z(T™) is Noetherian. That is, any descending chain
Z12 27232432

of elements of Z(T™) must eventually stabilize, i.e. Zy = Zy41 = Zg42 = -+, for
some k > 1.

The proof uses two facts, stated below as lemmas. By a local real-analytic zero set
Z we mean a real analytic zero set defined on an open set U C R"”, not necessarily
extendable to a larger neighborhood.

Lemma A.2. Given a local real analytic zero set Z defined in an open set U of
R™ and a point & € Z, there is a (possibly smaller) neighborhood U’ of z, on which
Z NU' consists of finitely many patches of irreducible real-analytic manifolds, of
various dimensions.
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Proof. The zero set Z comes from that of a complex-analytic variety on an open set
V C C* by intersecting it with R™. The complex-analytic analogue of the lemma
is well-known for complex-analytic varieties, cf. Grunning and Rossi [14], Theorem
19 of Chapter II and Theorem 10 of Chapter III.

Alternatively, the lemma follows using Lojaciewicz’s Structure Theorem for real-
analytic varieties, cf. Krantz and Parks [18], Theorem 5.23, or Lojaciewicz [24]. O

Lemma A.3. Given a local real analytic zero set Z defined in an open set U of
R™ and which is irreducible and a point ¢ € Z. If Z is another real-analytic zero
set with Z C Z then there is some (smaller) neighborhood U’ of © such that either
ZNU' =ZNU' orelse dim(Z NU') <dim(ZnU’).

Proof. This follows from the non-redundancy part of Lojaciewicz’s Structure theo-
rem. []

Proof of Theorem A.1. Any global zero set Z € Z(T™) has finitely many irre-
ducible real-analytic pieces in an open neighborhood of each point z € T", by lifting
to z € R™ and using Lemma A.2. Since T™ is compact, we extract a finite subcover
and conclude that Z consists of finitely many irreducible components globally.

Now Lemma A.3 says that an irreducible piece in a descending chain Z; D
Z;4+1 either remains the same globally, or else splits into pieces that are of lower
dimension, and by the above, Z;11 only has finitely many pieces. Assign to Z; the
vector v[i] = [v;(1),...,vi(n)] where v;(d) counts the number of irreducible pieces
of dimension d in Z;. This is a vector of integers, and it is nonincreasing under the
lexicographic ordering >r,, i.e. v[i] > v[¢ + 1]. Since the lexicographic ordering is
a well-ordering, the descending chain condition holds. [
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