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Abstract

A transistor circuit consisting of linear positive resistors, ¢ exponential diodes, and p Ebers-
Moll modeled bipolar transistors has at most (d + 1)d 24(4=1)/2 jsolated dec operating points,
where d = ¢ + 2p. If, instead of bipolar transistors, the circuit employs Shichman-Hodges
modeled field-effect transistors, then it can have at most 2P3?7 (4p+q + 1)424(4_1)/2 isolated dc
operating points. Bounds are also obtained for the number of dc¢ operating points in circuits
using other transistor models.

I. INTRODUCTION

Circuits with nonlinear elements may have multiple discrete dc operating points. In
contrast, circuits consisting of positive linear resistors possess either one dc operating
point, or, in special cases, a continuous family of dc operating points. We consider the
problem of estimating upper bounds for the number of isolated dc operating points of
circuits consisting of linear positive resistors, exponential diodes, Ebers-Moll modeled [5]
bipolar transistors, and insulated-gate field-effect transistors (FETs) [21], such as metal-
oxide FETs (MOSFETSs). (Inductors and capacitors do not play a role in establishing a
circuit’s dc operating point and can be removed from the circuits by being short-circuited
and open-circuited, respectively.) Lee and Willson [12] showed that a circuit containing
two bipolar transistors possesses at most three isolated dc operating points. It is known
that for p > 2 there exist circuits with p bipolar junction transistors that have 27 — 1
distinct dc operating points [27]. For piecewise-linear circuits, upper bounds for the
number of isolated dc operating points were given by Belevich [2] and Fosséprez et al.
[6]. Belevich considers only reciprocal circuits consisting of ideal diodes, linear positive
resistors, and ideal transformers. For piecewise linear circuits consisting of linear positive
resistors and p transistors modeled employing 2p ideal diodes, Fosséprez et al. obtained
an upper bound of 2?7 isolated dc operating points. However, it appears that no upper
bounds of any kind are known for general circuits having p > 2 transistors.

A circuit’s operating points are solutions of a system of nonlinear equations

F(x) = 0. (1)

We present explicit upper bounds for the number of isolated zeros of such systems when

the circuit equations are of Sandberg-Willson form [20], under suitable assumptions on

the v — 2 characteristics of nonlinear diodes. By applying Theorem 1 given in Section III

to a system of circuit equations with ¢ exponential diodes and p Ebers-Moll modeled
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transistors, we obtain the upper bound (d+1)? 24%=1/2 where d = ¢ + 2p. 1f, instead of
bipolar transistors, the circuit employs Shichman-Hodges modeled field-effect transistors,
the number of isolated dc operating points that the transistor circuit may have is at most
2327 (4p+q+1)722(9=1/2 These bounds on the number of dc operating points of transistor
circuits are a direct application of a result of Khovanskii [10] in real algebraic geometry.
We also obtain upper bounds for circuits with transistors modeled by piecewise-linear
diodes and by piecewise-exponential diodes.

We note that to obtain finite upper bounds on dc operating points, it is necessary to
make assumptions on the v — ¢ characteristics of nonlinear diodes used in the circuits,
because there are examples of circuits having infinitely many isolated dc operating points,
due to Nishi [15]. The bounds we obtain are, however, probably far from best possible
for the circuits to which they apply. For circuits containing p transistors and an arbitrary
number of linear positive resistors and independent current and voltage sources, it seems
reasonable to conjecture an upper bound of 2? — 1 dc operating points.

II. CirculT EQUATIONS

I1I-A. Bipolar-Junction Transistors

We study equations for a circuit shown in Fig. 1 with ¢ exponential diodes and p
bipolar transistors given in the general Sandberg-Willson form [20], [22], [24], [25]. This
is a system of d = ¢ 4+ 2p equations

QTF(x)+Px+c=0, (2)

where
f 1(1‘1)
F(x):= : (3)
fa(za)
and the f;(z;) are monotone increasing functions with f;(0) = 0, characterizing exponen-
tial diodes. The exponential diodes have characteristics

fZ(J}Z) = mi(e”iz" — 1) (4)

The d x d constant matrices P, Q, and T possess the following properties:
(i) The d x d matrices (Q,P) form a passive pair. That is,

for x,y €Rr?% if Qx =Py, then (x,y)>0, (5)
where (x,y) = YL, 2.

(ii) T is a block-diagonal matrix whose first p blocks are 2 x 2 block matrices of the
form

— 1

[ ! _O‘Z’“], 1<i<p, iodd, (6)

followed by ¢ 1 x 1 blocks, each equal to 1. The controlled-source current-gains satisfy
0< Qi 0y < 1.



The Ebers-Moll model [5], [23] for a bipolar junction transistor consists of two nonlinear
exponential diodes described by (4) in which m;n; > 0 and m; > 0 for a pnp transistor,
and m; < 0 for an npn transistor. The 2 x 2 blocks in T that appear in TF(x) in (2)
model a bipolar junction transistor as a pair of linearly coupled exponential diodes.

The model parameters m;,n; for 1 < ¢ < 2p also satisfy the passivity, no-gain, and
reciprocity conditions given below.

An Ebers-Moll modeled bipolar transistor is passive [8] if and only if fi(x;), fiz1(xit1),
and transistor current-gains «; and o4 satisfy

aiy1 < < —
mi41 Q;

Qip1 < < —. (7)
niy1 (6%

The assumption of the no-gain property, i.e., no temperature difference between the two
transistor pn junctions, implies a common functional form (4) for f;(x;) and fit1(2i41).
The necessary and sufficient conditions for an Ebers-Moll model bipolar transistor to
possess the no-gain property [26] are:

@ip1 < < —
miy1 Q;
nN; = Nj41. (8)

The Ebers-Moll model parameters also satisfy the reciprocity condition [5]
m;o; = Mip1041. (9)

1I-B. Field-Effect Transistors

We also consider circuits shown in Fig. 2 consisting of insulated-gate FET devices. We
use the Shichman-Hodges transistor model [21] (called Level I MOSFET model in Spice
23))

We can write equations for circuits consisting of FET devices in the form similar to
the form for circuits consisting of bipolar transistors. Such circuits can be viewed as
a purely resistive multi-port to which each FET device is connected via two two-ports
sharing a common terminal. We let the source of each FET be the common terminal for
the two-ports. (This choice lowers the upper bound on the number of operating points
that we are able to obtain.) Then, the port currents ig;_; and i, are the gate and
the drain-source transistor currents of the k-th FET device, respectively. The voltages
Top—1 and x9k, are the gate-source and drain-source voltages, respectively. In the case of
insulated-gate FET devices, the gate current is always zero, i.e., 19,1 = 0.

The general form of the nonlinear equations for a circuits consisting of ¢ exponential
diodes and p FET devices is a system of d = ¢ + 2p equations:

QF(x)+Px+c=0, (10)



where

0

fz(l‘bﬂ?z)
0

f4(«’1737 1’4)
0
f2p(x2p—17 l’2p)
Jopr1(T2p41)

Julza)

Functions fop(22x—1,x2k), for k < p, are monotone increasing functions that describe
the dependence of the FET drain-source current on the gate-to-source and drain-to-source
voltages in three regions of operation (cutoff, saturation, and linear, respectively). In the
case of an n-channel FET, the forward region (normal mode of operation) (zg; > 0) is
given by relations:

0 if zop—1 < vy,
— :
Jor(Tape1, o) = %Peg;(.?}zk—l —v)* (1 + Azgp) if 0 < @op_1 — v < oy
QZPEffx2k(2($2k—1 — o) — xak) (1 + Awar) 10 <o < o1 — o

(12
where x9;_1 and x4 are the gate-to-source and drain-to-source voltages, respectively; K,
is the transconductance factor, vy, is the threshold voltage, W and L are the channel
width and length, respectively, L.y = L — 2Lp is the effective channel length, Lp is
the lateral diffusion correcting factor, and A is output conductance factor. The reverse
region (inverted mode of operation) is characterized by similar relations obtained by
inverting the signs of for(@or—1,z2x) and of zqx, and by replacing voltages zq;_1 with
Top—1 — To9p. Hence, each FET device is described by two sets of relations, depending
whether the device operates in the forward or in the reverse mode of operation. Functions
fie(zg), k =2p+1,...,d are monotone increasing functions with f(0) = 0, characterizing
exponential diodes (4). Therefore, the degree of the polynomials fi(xg_1,x) is at most
three. FET devices also possess the passivity and the no-gain properties.

III. UprPER BOUNDS

We consider systems of nonlinear equations of the form
AF(x)+Bx+c=0, (13)
where x = (21, ©2, ..., z4) and

fl(ﬂfl)
F(x) := S (14)
Ja(za)



This equation is equivalent to (2) with constant matrices A = QT and B = P.

We discuss three different types of functional forms for the nonlinear diodes fi(z;): ex-
ponential functions, piecewise-linear, and piecewise-exponential functions. The simplest
model for a bipolar transistor is the Ebers-Moll model, which uses the exponential form.
Piecewise-linear functions have often been used to approximate nonlinear resistors ([4],
p. 76).

For exponential functions we obtain an upper bound using the following result of Kho-
vanskii [10], [11, p. 12].

Theorem 1. (Khovanskii) Consider a system of n polynomial equations

Pz, .. 20,01, ,ya) =0, 1 <i<n, (15)

in n+d variables x1,..., T, Y1,...,Yq, in which each P; is of total degree d;. Suppose in
addition that

i=1

Y; = exp (Z nijxj) , 1 <i<d, (16)

in which all coefficients n;; are real. The number of isolated real zeros in R"*? of this
system is al most

didy -+ d, (3 d; + 1)% 27041/, (17)
=1

Proof. See [11], p. 12 and Chapters 2 and 3. O

The bound (17) obtained by the method of Khovanskii may not be the right order of
magnitude in its dependence on d. Perhaps the right order of magnitude would replace
the term 244172 with ¢? for some positive constant c.

Theorem 1 immediately yields the following upper bound:

Theorem 2. Consider a system of nonlinear equations

AF(x)+Bx+c=0 (18)
where X = (21, T9,...,24) and

fi(x)
Fx)i=| (19)
fa(x)

has entries f;(x) = exp(z;l:l ni;xj) for 1 <o <d. This system has at most

(d_l_ 1)d 2d(d—1)/2 (20)

isolated zeros.
Proof. This follows by applying Theorem 1 withn =dand d; =1,for 1 <:<d. O
Theorem 2 applies to circuit equations with Ebers-Moll modeled bipolar transistors and
exponential diodes. This is achieved by absorbing the constant terms in the nonlinear
diodes (4) in the Ebers-Moll model into the constant term ¢ in (18).



Theorem 2 also applies to circuit equations with Gummel-Poon transistor models [7],
[9]. In the Gummel-Poon model additional functional dependence of the emitter and
collector currents on the “base charge” is introduced. This dependence manifests itself
in the transistor currents now being sums of exponential functions with three distinct
exponents.

It may well be that a stronger upper bound than (20) is valid for system (18) of the
special form

filx) =exp(niz;) 1<¢<d. (21)

For d = 2, the upper bound given by Theorem 2 is 18 real solutions. However, it can be
shown that for d = 2 there can be at most 6 real solutions, as pointed out by Poonen [18].
A recent result of Nishi [17] asserts that there can be at most 5 real solutions. There are
simple examples of this type having 4 real zeros. For example, the “decoupled” pair of
equations

et — 22, —1 =

e€”? —3x—1 = 0 (22)

has 4 real solutions.

We next consider piecewise-linear circuits, e.g., circuits with piecewise-linear modeled
bipolar transistors and FET transistors [4]. In the piecewise-linear case there is very
simple and well known upper bound for the number of solutions, given by Chua [3],
which states that the number of isolated zeros of a system of d nonlinear equations where
each function f;(z;) is continuous piecewise-linear with k; pieces, is

frky e kg, (23)

This result applies with no assumption of monotonicity (or even continuity) of the diode
characteristics, nor does it require that f(0) = 0.

Better upper bounds than (23) can sometimes be obtained for piecewise-linear circuits
by taking advantage of special properties of the circuit equations, as done by Fosséprez
et al. [6], Theorem 4.1. That paper also presents various examples of piecewise linear
circuits that have continuous families of non-isolated zeros (ill-posed systems) (see their
Examples 2.11).

We now obtain bounds for dc operating points of circuits with piecewise-exponential
modeled bipolar transistors. Such models arise when approximating exponential func-
tions in the Gummel-Poon model [9] over certain ranges of voltages where some expo-
nential terms become negligible.

By a piecewise-exponential function, we mean a function f(y) of the form

fy) = cipexp(ney) + ooy +cspy ye <y < yrya, (24)

where —co =91 <y < ... < ypy1 = F00.
Theorem 3. Consider a system of nonlinear equations

AF(x)+Bx+c=0, (25)



where x = (z1,...,24) and
f1($1)
F(x):= : (26)
fa(zaq)
has entries f;(x;) thal are piecewise-exponential functions with k; pieces of form
croexp(nge) + eapx + csyy,  for 1 <0< d. (27)
This system has at most
kyky .. kg(d + 1)7240=1D72 (28)

isolated zeros.

Proof.

The set of isolated zeros of the system (26) is contained in the union of the set of
isolated zeros of the kik;...ky systems of the same form that are obtained by replacing
each of the f; with one of its pieces extended to the whole range R of z;, in every possible
way. There are I1Z_,k, possible segment sets and each segment set contributes at most
(d+ 1)d2d(d_1)/2 zeros by Theorem 1. O

A similar extension of these results applies to FET devices modeled using piecewise-
cubic functions:

Theorem 4. Consider a system of nonlinear equations

AF(x)+Bx+c=0 (29)

where x = (21, 22,...,24) with d =2p + q and

has entries fi(x) for i even, 1 <1i < 2p, is a piecewise cubic polynomial in variables
Ty, ..., Ty with k; pieces, and f;(x) = 0 foriodd, 1 <i < 2p, and f;(x) = eXp(Z;l:zp_H ni;jx;)
for2p+1 <1< d. This system has al most

37 (4p + g+ 1)72907 D 2y kg Ky, (31)

1solated zeros.



Proof. Half of the first 2p equations in (29) are of degree three, and half are of degree
one. The result follows by applying Theorem 1 with n = 2p + ¢, d = ¢, and d; = 3 for
v even and ¢ < 2p, d; = 1 for 2 odd and ¢ < 2p, and d; = 1 for 2p < ¢ < d, to obtain
an upper bound for isolated zeros involving a given choice of cubic polynomial piece for
each of the f;;. Since there are at most kyky...kg, such choices, (31) follows.  O.

For circuits using FET devices modeled using (12), each f; has three pieces and two
forms (depending on the mode of operation: normal or inverted) and the upper bound is

P32 (4p + g+ 1)72007 /2, (32)

If the circuit contains no exponential diodes, its equations (29) become piecewise cubic
polynomials, and 2P3%F is then an upper bound for the number of isolated dc operating
points.

It is interesting to note empirically that the presence of diodes in practical circuit
designs does not seem to affect the number of dc operating points that the circuit pos-
sesses. Nevertheless, the diodes, being exponential nonlinearities, contribute to the upper
bounds in the theorems above.!

Our results can be also applied to metal-semiconductor FET devices (MESFETSs).
Their model is similar to the model of MOSFET devices with the nonlinearities being
polynomials of degree 5 [23]. The upper bound on the number of dc operating points
in circuits employing MESFETs is easily obtained by applying the same approach as in
Theorem 4.

Another type of FET devices are junction field-effect transistors (JFETs) [1]. The
JFET dc model includes two exponential diodes that form a dc path from the gate to
the drain and to the source, respectively. Our results can be extended to such devices by
taking into account the two additional exponential diodes per each JFET.

IV. CONCLUDING REMARKS

The upper bounds stated in Section III depend on the particular functional form as-
sumed for the nonlinear functions f;(x). This seems to be unavoidable. The function
f(z) = 22 + sin x represents a monotone increasing nonlinear diode with f(0) = 0, but
the equation

flz) — 22 — i =0, (33)

with the monotone increasing function f(x) = 2z + sin z, has infinitely many real
solutions. Allowing small perturbations around a “nice” function does not eliminate
such examples. For example, for any ¢ > 0 the system

flz) =22 —¢/4 =0, (34)

M we considered a gate of an FET transistor to be the common terminal of the two-ports by which each FET
transistor is connected to the resistive multi-port shown in Fig. 2 (as one would most likely attempt because
the gate of an FET would then correspond to the base of a BJT transistor) we obtain, instead, a higher upper
bound of

2P34P(6p+q+ 1)‘12<I(q_1)/2.



with f(z) = 2z + esin z, has infinitely many real solutions. Note that the function sin
is a sum of two exponentials with imaginary exponents. This shows that assumption of
exponentials with real exponents in Theorem 1 is necessary for the finiteness of the upper
bound. Nishi [15] recently reported that transistor circuits may possess infinitely many
solutions in some cases where the diode characteristics have positive first and second
derivatives, i.e., are increasing convex functions.

It would be desirable to obtain upper bounds for the number of dc operating points
that were insensitive to small perturbations in the v — ¢ characteristics of elements in the
circuit, because physical devices will contain such imperfections. It seems reasonable to
allow only perturbations that preserve the sign of the first two derivatives. However, in
view of the Nishi example [15], one still must put additional conditions on the matrices
A, B and the vector ¢ in (13) to rule out infinitely many solutions. Such conditions
surely exist, for if A = I and B is a FPy-matrix, then it is well known that the system (13)
has at most one solution for each fixed ¢ whenever the f;(z;) are monotone increasing
functions, see Willson ([25], Theorem 12). It may well be that a finite upper bound can
be obtained with the conditions A, B weakened further, perhaps to the conditions on
QT and P given in the Sandberg-Willson form (2).

The upper bounds of Section I1I do not make use of all properties that circuit equations
possess. In particular, they make no use of properties (i) and (ii) of the Sandberg-
Willson form equations (2), nor do they employ the passivity (7), the no-gain (8), and
the reciprocity (9) properties of transistors. Improved upper bounds may be possible
for such circuit equations with exponential-type diodes, assuming these properties hold.
For example, it is known that the circuit equations in Sandberg-Willson form (2) for a
circuit having at most two transistors (d =4, p =2, ¢ = 0) have at most three isolated
real zeros, see Lee and Willson [12]. However, one can find equations of the form of
Theorem 1 for d = 4 that have 16 isolated real zeros.

We conclude with a brief discussion of two other methods that have been proposed to
obtain upper bounds on the number of dc operating points of transistor circuits.

Nishi and Kawane [13], [14] present an interesting alternate approach to obtaining upper
bounds for the number of solutions of circuit equations for nonlinear resistive circuit by
assuming that the circuit elements satisfy monotone sign conditions on derivatives such as
Cb‘é—gf) > 0, or a convexity condition like %
of the matrices QT and P in (2). They announce an upper bound of 2¢ operating points
for systems (13) under such extra hypotheses. These papers do not provide complete
details of the proof. It does seem that this general approach should yield bounds under
appropriate hypotheses [16].

Another approach to obtaining upper bounds for the number of dc operating points of

> 0, together with restrictions on the form

transistor circuits was recently outlined by Sarmiento-Reyes [19]. That paper announces a
result (Theorem 1) stating an upper bound of 3/ for the number of dc operating points of a
circuit consisting of bipolar transistors, positive linear resistors, and independent sources,
where [ is the number of “negative submatrices” appearing in certain decompositions of
the circuit equations. A priori the number f of such submatrices is upper bounded? by

2For this bound see footnote 1 on page 103 of [19], where n = 2p, p being the number of bipolar transistors.



2p
2°F,

10

where p is the number of bipolar transistors. Therefore, this bound appears to be

double-exponential in p. The paper [19] does not contain a proof of Theorem 1.
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Fig. 1. DC network with bipolar junction transistors.
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Voltages v; across transistor pn junctions
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Fig. 2. DC network with field-effect transistors. Voltages v; across the transistor terminals correspond
to the variables z;.



