Problem #4.

a) Examples show that a system of 4 linear equations in 3 variables can have no solutions, a unique solution, or infinitely many solutions. Consider, for example, systems

b) A system of 3 linear equations in 4 variables cannot have a unique solution, since once we reduce the system to the reduced row-echelon form, there has to be at least one free variable. The following examples show that such a system can have no solutions or infinitely many solutions:

$$x_1 + x_2 + x_3 + x_4 = 1$$
 $x_1 + x_2 + x_3 + x_4 = 1$ $2x_1 + 2x_2 + 2x_3 + 2x_4 = 1$ and $2x_1 + 2x_2 + 2x_3 + 2x_4 = 2$ $3x_1 + 3x_2 + 3x_3 + 3x_4 = 1$ $3x_1 + 3x_2 + 3x_3 + 3x_4 = 3$.

c) Let \vec{x} be a solution of the system $C\vec{x} = \vec{c}$ for some vector \vec{c} and C = AB. Let $B\vec{x} = \vec{y}$, so $A\vec{y} = \vec{c}$. Since B is a 3×4 matrix, by Part b) there exists infinitely many vectors \vec{z} such that $B\vec{z} = \vec{y}$. Then, for every such a vector \vec{z} , we have $C\vec{z} = (AB)\vec{z} = A(B\vec{z}) = A\vec{y} = \vec{c}$. This proves that the system $C\vec{x} = \vec{c}$ cannot have a unique solution. The system can have no or infinitely many solutions as the following examples show:

let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, so $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Consider the systems:

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 1$ and $x_1 = 1$ $x_2 = 1$ $x_3 = 1$ $x_3 = 1$ $0x_1 + 0x_2 + 0x_3 + 0x_4 = 1$ $0x_1 + 0x_2 + 0x_3 + 0x_4 = 0$.

Answer: a) Yes, Yes, Yes; b) Yes, No, Yes; c) Yes, No, Yes.