Problem # 3.

- a) Let us choose some linearly independent vectors $\vec{a}, \vec{b}, \vec{c}$ in \mathbf{R}^3 and the linear transformation $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^3$ such that $T(\vec{x}) = \vec{0}$ for all \vec{x} in \mathbf{R}^3 . Then $T(\vec{a}), T(\vec{b}), T(\vec{c})$ are not linearly independent. **Answer:** False.
- b) Suppose that $x\vec{a} + y\vec{b} + z\vec{c} = \vec{0}$ for some numbers x, y, z. Applying T to both sides of the equation, we get

$$\vec{0} = T(\vec{0}) = T(x\vec{a} + y\vec{b} + z\vec{c}) = xT(\vec{a}) + yT(\vec{b}) + zT(\vec{c}),$$

from which we must have x=y=z=0, since $T(\vec{a})$, $T(\vec{b})$, and $T(\vec{c})$ are linearly independent. Therefore, \vec{a} , \vec{b} , and \vec{c} are linearly independent. **Answer:** True.

- c) Let us choose some three vectors $\vec{a}, \vec{b}, \vec{c}$ that span \mathbf{R}^3 and the linear transformation $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^3$ such that $T(\vec{x}) = \vec{0}$ for all \vec{x} in \mathbf{R}^3 . Then $T(\vec{a}), T(\vec{b}), T(\vec{c})$ do not span \mathbf{R}^3 . Answer: False.
- d) Since the three vectors $T(\vec{a})$, $T(\vec{b})$, $T(\vec{c})$ span \mathbf{R}^3 and the dimension of \mathbf{R}^3 is precisely 3, the vectors $T(\vec{a})$, $T(\vec{b})$, $T(\vec{c})$ must be linearly independent. Then, by Part b), the three vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly independent. Since the dimension of \mathbf{R}^3 is precisely 3, the vectors $\vec{a}, \vec{b}, \vec{c}$ span \mathbf{R}^3 . Answer: True.