Problem # 7. We note that V is the image of A and the kernel of B while V^{\perp} is the image of B and the kernel of A. In particular, dim $V^{\perp} = 2$.

- a) The rank of A is equal to the dimension of the image of A, that is, to the dimension of V. Hence rank A=3. The rank of B is equal to the dimension of the image of B, that is, to the dimension of V^{\perp} . Hence rank B=2. Answer: rank A=3, rank B=2.
- b) Let us pick a vector \vec{x} in \mathbf{R}^5 . Then $B\vec{x}$ is the orthogonal projection of \vec{x} onto V^{\perp} . In particular, $B\vec{x}$ lies in V^{\perp} . Now, $(AB)\vec{x} = A(B\vec{x})$ is the orthogonal projection of $B\vec{x}$ onto V. Since $B\vec{x}$ lies in V^{\perp} , we must have $A(B\vec{x}) = \vec{0}$. Thus $AB\vec{x} = \vec{0}$ for all vectors \vec{x} , from which AB must be the 5×5 zero matrix. Similarly, BA must be the 5×5 zero matrix.

Let us pick a vector \vec{x} in \mathbf{R}^5 . Then $A\vec{x}$ is the orthogonal projection of \vec{x} onto V, so the difference $\vec{x} - A\vec{x}$ is orthogonal to every vector in V. Therefore, $\vec{x} - A\vec{x}$ lies in V^{\perp} . Moreover, the difference $\vec{x} - (\vec{x} - A\vec{x}) = A\vec{x}$ lies in V and so is orthogonal to every vector from V^{\perp} . Thus $\vec{x} - A\vec{x}$ is the orthogonal projection of \vec{x} onto V^{\perp} , so $\vec{x} - A\vec{x} = B\vec{x}$. Thus

$$A\vec{x} + B\vec{x} = \vec{x}$$
 for all \vec{x} ,

from which A + B must be the 5×5 identity matrix. **Answer:** AB and BA are the 5×5 zero matrices and A + B is the 5×5 identity matrix.