Text (required): H. Davenport, Multiplicative Number Theory, Second edition, Revised by H. L. Montgomery, Springer-Verlag: New York 1980
Text (optional): H. L. Montgomery and R. C. Vaughn, Multiplicative Number Theory: I. Classical Theory, Cambridge University Press, Cambridge 2007.
Text (optional): G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge 1995.
Text (optional): H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications Vol. 53, American Mathematical Society: Providence, RI 2004.
(Version December 14, 2011)
# | date | Refs: Sections in: Davenport[D]; Montgomery-Vaughan [MV],Tenenbaum [T] | HW due dates | problems |
0 | ||||
1 | 9/7 | Introduction: 0.1 Addition vs Multiplication, Math Logic, 0.2 Distribution of Primes | ||
2 | 9/9 | 0.3 Probabilistic Number Theory; 1.1 Chebyshev estimates, Upper Bound [T, 1.2] | ||
3 | 9/12 | 1.1 Nair lower bound [T. 1.2, 1.3] 1.2 Recap: Gelfond-Shnirelman approach to lower bounds, 1.3 Tauberian theorems | ||
4 | 9/14 | A.1 Riemann-Stieltjes Integrals; Partial Summation [M, Appendix A] | ||
5 | 9/16 | 1.3 p-Adic vaulation of n!, 1.4 Mertens's First Theorem for (log p)/p [T. 1.3, 1.4] | ||
6 | 9/19 | 1.5 Asymptotic formulas for \sum 1/p, Prod(1-1/p) [T. 1.5]; 1.5B. Sieves vs. Mertens's Formula; 1.6 Chebyshev limits [T. 1.7] | HW#1 due | |
7 | 9/21 | A.2 Bernoulli numbers and functions; Euler-Maclaurin Summation; Harmonic Series [T, 0.2] | 3||
8 | 9/23 | 2.1 Arithmetic Functions; [T. 2.1, 2.2] 2.2 Ring of Arithmetic Functions; Formal Dirichlet Series [T. 2.3, 2.4] | ||
9 | 9/26 | 2.3 Mobius inversion formula: two forms [T. 2.5] | ||
10 | 9/28 | 2.4 Euler totient function [T. 2.7] 3.1 Average order- arithmetic fns [T. 3.1] 3.2 Divisor function-average order-Hyperbola method [T.3.2] | ||
11 | 9/30 | 3.3 Euler Totient Fn-Average Order; Farey Sequence [T. 3.4] ; 3.4 Mobius function-Average order-PNT equivalent [T. 3.6]; fire drill | HW#2 due | |
12 | 10/3 | 3.5 Squarefree numbers-Average Order [T. 3.7], 3.6 Multiplicative function-mean value [T 3.8] | 13 | 10/5 | 3.6 Multiplicative function-mean value (Erdos- alpha-beta method)[T 3.8] |
14 | 10/7 | 4.1 Sieve of Eratosthenes; Inclusion-Exclusion [T. 4.1] 4.2 Brun's Combinatorial Sieve [T. 4.2] | ||
15 | 10/10 | 4.2 Brun's Combinatorial Sieve,[T. 4.2] 4.3 Application:Estimating Rough Numbers (parameter method)[T. 4.2] | HW#3 due | |
16 | 10/12 | 4.3 Application:Estimating Rough Numbers [T.4.2] 4.4 Application: Upper Bound Twin Primes (statement) [T. 4.3] | ||
17 | 10/14 | 4.4 Application: Upper Bound Twin Primes,[T.4.3] 4.5 Fundamental Lemma of Combinatorial Sieve [T. 4.2] | ||
10/17 | Fall Study Break | |||
18 | 10/19 | 5.1 General Dirichlet Series:
Absolute Convergence, 5.2 General Dirichlet Series: Conditional Convergence |
||
19 | 10/21 | 5.2 (cont.), 5.3 General Dirichlet Series: Formulae for Abscissa of Conditional/Absolute Convergence | ||
20 | 10/24 | 5.4 Uniqueness Theorem for General Dirichlet Series; 6.1 Dirichlet's Theorem for Primes in Arithmetic Progession (Overview) [D,Chap 1] | HW#4 due | |
21 | 10/26 | 6.2 Dirichlet Characters; [D. Chap. 1,and 4] 6.3 Dirichlet theoreom L(1, \chi) not zero, \chi complex [D, Chap. 1] | ||
22 | 10/28 | 6.3 L(1, \chi) not zero, \chi complex; 6.4 L(1, \chi) not zero, \chi real, m=q odd prime [D., Chap. 1] | 23 | 10/31 | 6.4 (continued), 6.5 Gauss sum-I, 6.6 Proof L(1, \chi) not zero, \chi real, m=q prime [Chap. 1] |
24 | 11/2 | Class cancelled, building power failure | ||
25 | 11/4 | 6.6 (concluded); 6.7 Evaluation of Gauss sums, sign of sum [D.-chap 2] [Stephen DeB.] | ||
26 | 11/7 | 6.8 Goblins and Gaussians; 6.9 Cyclotomy formulas, 6.10 Application: Polygon constructions[D., Chap. 3] | HW#5 due | |
27 | 11/9 | 6. 11 L(1, \chi) nonzero, \chi real, general modulus m; 6.12 Dirichlet formula for L(s, \chi)-Fekete polynomials [D., Chap. 4] | 28 | 11/11 | 7.1 Primitive characters; 7.2 Real Primitive Characters : Kronecker symbols [D., Chap. 5] |
29 | 11/14 | 7.3 Class numbers of quadratic forms 7.4 Dirichlet Class Number Formula [D. Chapter 6] [HLM lecture] | ||
30 | 11/16 | 7.4 Dirichlet class number formula, Pell equation, 8.0 Distribution of Primes; Chebyshev revisited [D. Chap. 6, 7][HLM lecture] | ||
31 | 11/18 | Class Postponed | ||
32 | 11/21 | 8.1 Riemann's memoir, 8.2 Analytic continution and functional equation via theta function [D. Chap. 8] | HW#6 due | >|
33 | 11/23 | 8.3 Functional equation for theta function, 8.4 Zeta function for quadratic fields [D. Chap. 8] | 11/24 | Thanksgiving |
34 | 11/28 | 9.1 Functional equation for Dirichlet L-functions; 9.2 Primitive characters and Gauss sums [D, Chap. 9] | ||
35 | 11/30 | 9.3 Character theta function functional equation [D, Chap. 9] | ||
36 | 12/2 | 10.1 Gamma Function, 11.1 Entire functions of finite order, [D., Chap. 10, 11] | 37 | 12/5 | 11.1 Entire functions of Finite order; Jensen's formula, 11.2 Hadamard product for entire functions of order 1 [D. Chap. 11] |
38 | 12/7 | 11.2 (cont'd), 11.3 Paley-Wiener Theorem, 12.1 Infinite Product for xi(s), 12.2 Logarithmic derivative of xi(s) [D. Chap. 11, 12] | ||
39 | 12/9 | 12.3 Constants A, B in Hadamard product for xi(s), 13.1 zeta(s) has no zeros on Re(s)=1, 13.2 Zero-free region for zeta(s) [D, Chap.12, 13] | ||
40 | 12/12 | 15.0 Argument principle (Review); 15.1 Riemann formula for N(T): proof, 15.2 Estimate S(T) = O(log T). [D., Chap. 15] | HW#7 due | |
41 | 12/14 | 17.1 Explicit formula for \psi(x), 17.2 Inverse Mellin transform of Heaviside function; 17.3 Proof of Truncated Explicit Formula; 18.1 Prime Number Theorem- \psi(x) form [D. Chap. 17, 18.1] |