m675-sylla Math 775: Syllabus Topics in Analytic Number Theory

Math 775: Topics in Analytic Number Theory: Syllabus

Text (required): H. Davenport, Multiplicative Number Theory, Second edition, Revised by H. L. Montgomery, Springer-Verlag: New York 1980

Text (optional): H. L. Montgomery and R. C. Vaughn, Multiplicative Number Theory: I. Classical Theory, Cambridge University Press, Cambridge 2007.

Text (optional): G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge 1995.

Text (optional): H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications Vol. 53, American Mathematical Society: Providence, RI 2004.

This syllabus is incomplete and tentative, and will be superseded by later versions as the course evolves. (Version March 14) 3[D, Chap. 21]
# date Refs: Sections in: Davenport[D]; Montgomery-Vaughan [MV],Tenenbaum [T]
1 1/4 Tate's Thesis.
2 1/6 Tate's Thesis (cont'd)
3 1/9 C.0 Tate's thesis: prehistory, C.1 Hecke zeta function for ideal classes,
C.2 Hecke L-functions, ray class characters C.3 Hecke L-function-grossencharacters
4 1/11 C.3 Real quadratic grossencharacter, 1.0 Review Zeta fn-PNT,
12.4 Hadamard product for Dirichlet L-function, B(\chi). [D, chap. 12]
5 1/13 14.1 Zero free region for L(s, \chi), complex characters [D. Chap. 14]
1/16 [Martin Luther King Day]
6 1/18 14.2 Zero free region for L(s, \chi), real characters, exceptional zero
14.3 Landau's theorem, 14.4 Unconditional upper bound for exceptional zero [D. Chap. 14]
7 1/20 14.3 Landau exceptional zero bound, 14.4 Gap Principle, Page's theorem, 14.5 Unconditional Real zero bound
8 1/23 16.1 Zeros of L-functions, N(T, \chi), 16.2 Low-lying zeros, N(T, \chi) for imprimitive characters [D. Chap. 16]
9 1/25 16.3 Argument Principle Revisited, 19.1 Explicit Formula for L(s, \chi), 19.2 Proof outline [D. Chap. 19]
10 1/27 19.3. Explicit Formula proof; 20.1 Prime Number Theorem in Arith. Prog. [D, Chap. 20]
11 1/30 20.2 Refined Exceptional Zero Bound, 21.1 Siegel's Theorem Statment
12 2/1 21.2 Siegel's Theorem- Key Lemma
13 2/3 21.3 Siegel's Theorem Proof, 21.4 Discussion of Proof [D., Chap. 21]
14 2/6 22.1 PNT in Arith. Prog. II, 22.2 Averages of Primes in AP's: Bombieri-Vinogradov Thm statement;
23.1 Polya-Vinogradov inequality, prim chars., 23.2 Convex functions [D. Chap. 22, 23]
15 2/8 23.3 Polya-Vinogradov inequality, general case, 27.1 Large Sieve, 27.2 Duality Principle [D, Chap. 23, 27]
16 2/10 27.3 Approximate Identity Frame Constant, 27.4 Additive version of Large sieve [D, Chap. 27]
17 2/13 27.4 Additive version of Large sieve (cont'd) [D. Chap. 27], 27.5 Large sieve bound: Farey Fractions,
27.6 Renyi's large sieve [D., Chap. 27]
18 2/15 27.6 Renyi large sieve (cont'd), 27.7 Montgomery's refinement,
27.8 Linnik least quadratic nonresidue exceptional set [D., Chap. 27]
19 2/17 27.9 Large Sieve: Multiplicative Form, 27.10 Large Sieve: Full Analytic Form, 27.11 Gallagher Lemma
20 2/20 27.12 Proof of Analytic Large Sieve, 28.0 Bombieri-Vinogradov theorem outline,
28.1 Smoothed Bombieri-Vinogradov theorem: Preliminaries [parallel to D. Chap. 28]
21 2/22 Smoothed Bombieri-Vinogradov Theorem: 28.2 Basic Reductions, 28.3 The Mollifier, 28.4 Application of Large Sieve Estimates
22 2/24 Smoothed Bombieri-Vinogdradov: 28.4 Large Sieve estimates (cont) , 28.5 Mean square bounds for L-fns (skipped);
28.6 Completion of smoothed B.-V. proof assuming 28.5 estimates.
Feb. 25- Mar. 4 [Winter Vacation]
23 3/5 Smoothed Bombieri-Vinogradov: Summary; 28.5 Mean-square bounds for L(s, \chi), L'(s, \chi) on critical line,
28.6 Completion of smoothed B.-V. proof (review)
24 3/7 28.8 Application: Prime p with a prime divisor q of p-1 exceeding p^{0.6} (Goldfeld)
25 3/9 28.7 Completion of Bombieri-Vinogradov theorem: unsmoothing
26 3/12 29.1 Gallagher's mean square error for primes in arithmetic progressions [D., Chap. 29]
27 3/14 D.1 Lindelof's theorem, D.2 Vertical Growth of zeta function, D.3 Convexity bounds
28 3/16 E.1 Exponential sums, E.2 Weyl method: Linear and Quadratic Polynomials
29 3/19 E.2 Weyl method (continued). Presentation of Student Project Topics
30 3/21 E.3 Weyl method: higher degree case
31 3/23 E.4A Moments and size of zeta in critical strip, Conjectures, Random matrix view
32 3/26 E.4B. Moments conjecture, E.5 Subconvexity bound, finite sum part
33 3/28 E.5 Subconvexity bound, Finite sum part, E.6 Approximate functional equation
34 3/30 [No class]
35 4/2 E.6 Approximate function eqn, subconvexity, 26.0 Vinogradov sum of three primes outline
36 4/4 26.0 Vinogradov sum of three primes outline (cont'd), 26.1 Major arcs estimate: Singular series
37 4/6 26.1 Major arcs, singular series (cont.), 26.2 Minor arcs estimate
38 4/9 F.1 Hardy-Littlewood prime k-tuples, singular series, F.2 Uniform H-L conjecture, Gallagher's theorem,
39 4/11 F.3 Poisson and Exponential Distributions; Proof of Gallagher theorem assuming Gallagher lemma
40 4/13 [No class]
41 4/16 F.4 Proof of Gallagher lemma average singular series, G.1 Small Gaps between primes: Goldston-Pintz-Yildirim
42 4/17 G.2 Main estimates, G.3 Goldston-Pintz Yildirim explicit estimates (make-up class)
43 4/18 [Student projects presentations] Cardinal-Mertens matrices; Cramer V-function generalizations;
Pretentious methods in number theory (2 hours)