2. Let A be a 4×3 matrix and let B be a 3×4 matrix. Suppose that rank $B=2$ and rank $A=3$.
a) What is the dimension of the kernel of A ?
b) What is the dimension of the kernel of B ?
c) What is the rank of $A B$?

Solution.

a) We have

$$
\operatorname{dim}(\text { kernel of } A)+\operatorname{dim}(\text { image of } A)=3 \text { and }
$$

$\operatorname{dim}($ image of $A)=\operatorname{rank}$ of $A=3$, from which $\operatorname{dim}($ kernel of $A)=0$.
b) We have

$$
\operatorname{dim}(\text { kernel of } B)+\operatorname{dim}(\text { image of } B)=4 \quad \text { and }
$$

$\operatorname{dim}($ image of $B)=$ rank of $B=2$, from which $\operatorname{dim}($ kernel of $B)=2$.
c) Let us consider the linear transformation $\vec{x} \longmapsto(A B) \vec{x}=A(B \vec{x})$. The transformation $\vec{x} \longmapsto B \vec{x}$ is a linear transformation $\mathbf{R}^{4} \longrightarrow \mathbf{R}^{3}$ and the image of this transformation is a plane in \mathbf{R}^{3}, since rank $B=2$. The transformation $\vec{y} \longmapsto A \vec{y}$ is a linear transformation $\mathbf{R}^{3} \longrightarrow \mathbf{R}^{4}$. This transformation transforms the plane that is the image of B into a plane, since the kernel of A is $\overrightarrow{0}$.

Hence the image of $A B$ is the plane and rank $A B=2$.
Answer. The dimension of the kernel of A is 0 , the dimension of the kernel of B is 2 , and the rank of $A B$ is 2 .

