1. Let \vec{a} and \vec{b} be vectors such that $||\vec{a}|| = 2$, $||\vec{b}|| = 3$ and the cosine of the angle between \vec{a} and \vec{b} is 1/3. Find the cosine of the angle between \vec{a} and $\vec{a} + \vec{b}$.

Solution. We have

$$ec{a} \cdot ec{a} = \|ec{a}\|^2 = 4, \quad ec{b} \cdot ec{b} = \|ec{b}\|^2 = 9, \quad ext{and} \quad ec{a} \cdot ec{b} = 2 \cdot 3 \cdot rac{1}{3} = 2.$$

Now, let ϕ denote the angle between \vec{a} and $\vec{a} + \vec{b}$, and we have

$$\vec{a} \cdot (\vec{a} + \vec{b}) = ||\vec{a}|| ||\vec{a} + \vec{b}|| \cos \phi,$$

 \mathbf{SO}

$$\cos \phi = \frac{\vec{a} \cdot (\vec{a} + \vec{b})}{|\vec{a}|| ||\vec{a} + \vec{b}||}.$$

We know $|\vec{a}|$, so if we determine $\vec{a} \cdot (\vec{a} + \vec{b})$ and $||\vec{a} + \vec{b}||$ then we can find $\cos \phi$.

Now

$$\vec{a} \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} = ||\vec{a}||^2 + \vec{a} \cdot \vec{b},$$

and

$$||\vec{a} + \vec{b}|| = \sqrt{(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b})} = \sqrt{\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}}.$$

Substituting the values of $\vec{a} \cdot \vec{a}$, $\vec{b} \cdot \vec{b}$, and $\vec{a} \cdot \vec{b}$, we get

$$\|\vec{a} + \vec{b}\| = \sqrt{4 + 2 + 2 + 9} = \sqrt{17}$$
 and $\vec{a} \cdot (\vec{a} + \vec{b}) = 4 + 2 = 6$.

Thus $\cos \phi = \frac{6}{2\sqrt{17}} = \frac{3}{\sqrt{17}}$.

Answer. The cosine of the angle between \vec{a} and $\vec{a} + \vec{b}$ is $\frac{3}{\sqrt{17}}$.